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Abstract

A microbolometer is a device for measuring the power of incident elec-
tromagnetic radiation via the heating of a material with a temperature-
dependent electrical resistance in infrared (IR) cameras. The change in
the resistance is measured with an applied bias voltage, which yields a
current that is fed to an integrator. The integrator then yields a readout
voltage that represents the output signal of the system. The bias voltage
also heats the resistance, and thus in the uncooled microbolometer sys-
tem, the bias voltage is only applied periodically to allow the resistance
to cool down. In the camera, an array of bolometers gives an IR image.
Based on the heat equation and the Stefan Boltzmann law of black-body
radiation, models can describe the underlying behavior of the bolometer,
before the readout voltage. We would like to investigate if the underly-
ing bolometer parameters can be identified using readout voltage data.
Further, we investigate how noise affects the system and how the models
can be modified to account for the noise. A better understanding of the
components and the noise phenomena could potentially yield better de-
tectors. This report is done in collaboration with FLIR, based in Täby.
FLIR develops and produces cameras for temperature measurement.
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1 Introduction

1.1 The IR camera

Electromagnetic radiation of wavelengths between 700 nanometer to 1 millime-
ter comprise what is usually referred to as infrared light. Much like the normal
camera is able to detect and display variations of visible light (400 nanometers
to 700 nanometers), infrared cameras produce pictures colored according to the
variations in infrared radiation (IR) of a scene. Since infrared emission from
an object is closely related to its temperature, an IR camera essentially pro-
duces a heat map to the eye, coloring parts of a scene relative to temperature.
For instance in Figure 1, a cat is depicted based on the IR radiation it emits.
Many infrared cameras are also able to accurately estimate the temperature of
an object in addition to depicting it.

Figure 1: Infrared picture of a cat sitting on a table during night. The
warmblooded cat is clearly distinguished from its cold surrounding, making
the cat visible to the IR camera although not visible to the eye. Source:
https://www.scienceabc.com/

Infrared cameras are used widely within industrial and military applications,
enabling or enhancing tasks such as dark vision, heat leakage detection, moisture
detection, chemical spill leakage detection and firefighting. An overview about
different devices together with a catalog can be found in [1]. There exist mainly
two types of techniques for infrared cameras: thermal detectors and quantum
detectors. We will here focus solely on thermal detectors, and especially the
uncooled bolometer. A bolometer consists of a plate (pixel) made of metal or
semiconductor material, which for instance could be a mixture of silicon nitride
and vanadium oxide. This plate is suspended in the air via two supporting
legs that is connected to a substrate. The supporting legs are also connected
to a voltage source. The structure is depicted in Figure 2. Incoming infrared
radiation is focused via a lens to the plate, causing it to be heated, which in
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turn alters its resistance. This change in resistance can be measured through
an input voltage and the resulting current is a function of the strength of the
incoming infrared radiation and hence the temperature of the emitting scene.

Figure 2: Physical structure of the bolometer [10].

1.2 Project description

The project aims to establish a mathematical relationship between the temper-
ature of an object and the resulting bolometer signal. Briefly, the incoming
radiation of an object, described by the Stefan-Boltzmann law, heats up the
bolometer, which can be described by the heat equation. The applied voltage is
used to measure the change in resistance due to the temperature change. More
precisely, the output signal is a voltage from an integrator, that can be used
to retrieve the change in the resistance and thus via the heat equation and the
Stefan-Boltzmann law the temperature of the target. An explicit description of
the output signal is given in Section 2.

In reality however, the output signal is noisy. The project aims to incorporate
noise into the model in a manner consistent with data and experience. A good
model of the noisy signal might for example enable applying an efficient filtering
algorithm that reduces noise. The project’s aim is to investigate how a noisy
input signal affects the output signal.

More precisely in this project we:

• simulate the read-out signal of the bolometer by solving the differential
equations modeling the problem,

• reproduce numerical simulations that fits with empirical experiments,

• model and analyze the noise in the differential equations,

• reproduce numerical simulations (with noise) that fits with empirical ex-
periments.
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2 Model and discretization

In this section, the heat equation for the bolometer and a model for the readout
circuit are described.

2.1 Heat equation for the bolometer

The resistance R(T ) of the bolometer is a function of the temperature T , which
for metals and semiconductors can be described by [10]

R(T ) = Rse
α(T−Ts), (1)

where α is a constant that depends on the material of the bolometer, and Rs is
the resistance of the bolometer at the substrate temperature Ts.

The temperature of the bolometer as a function of time (and the incoming IR
radiation) can be described by the heat equation, the Stefan-Boltzmann law and
the Joule heating law

C
dT

dt
=
Vb(t)

2

R(T )
+ ε(Pt + Ps − 2AsσT

4)−Gleg(T − Ts), (2)

T (0) = Ts.

Here Vb(t) is the input voltage, εe is the material specific emissivity of the
bolometer, Pt is the radiation power from the scene, Ps is the radiation power
from the substrate, 2As is the total surface area of the bolometer (upside and
downside), σ is the Boltzmann constant, and G is thermal conductivity of the
supporting legs. The term Vb(t)

2/R(T ) is the power resulting from Joule heat-
ing, that is the power induced by the bias voltage over the bolometer, and
2AsσT

4 represents the radiation power emitted from the bolometer according
to Stefan-Boltzmann’s law. The latter also relates Pt to the target temperature
Tt of a scene object as Pt ∝ T 4

t .

2.2 Readout voltage equation

Each pixel of an IR camera can be modeled as the circuit in Figure 3. More
precisely the resistance of the bolometer corresponds to the resistor R2. To
measure the resistance R(T ) a bias voltage is applied over the resistance R2.
The bias voltage, however, excessively heats up the bolometer, and consequently
the bias voltage is periodically shut off to let the bolometer cool down. This
results in an input signal for the bias voltage that is a periodic square signal

Vb(t) =

{
vb ntf < t < ntf + ti

0 otherwise.
n ∈ N (3)
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Figure 3: Circuit schematic that model a pixel of the IR camera generated with
https://www.digikey.com/schemeit.

The resulting current from R2, is then subtracted from the current yielded from
the resistance R1. This difference in current is then fed to the capacitor C2,
which functions as an integrator. The voltage over the capacitor C2 is the
readout voltage Vsamp. Using Kirchhoff’s law, this voltage is expressed as

Vsamp =
1

C̃

∫ ntf+ti

ntf

(
V0
RS
− Vb(s)

R(T (s))

)
ds+ E (4)

where C̃ is the capacitance of C2. Clearly, in order to compute this integral, we
need to know the temperature as function of the time. This relation is described
by (2). Notice that Vsamp does not depend on R(T ) if Vb = 0, and thus it is
only relevant to integrate up to time ti.

The output signal can therefore be simulated in the following way. We set an
initial temperature T0 for the bolometer and solve the heat balance equation (2).
Then we compute the integral describing the readout signal (4).

2.3 Illustrative example

A reasonable and realistic simulation of the bolometer response can be obtained
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Table 1: Parameters and coefficients used in Section 2.3

ti 65 µsec α −0.02
tf 1/30 sec e 0.8
RS 800 kΩ A 17 µm (square)
Ts 300 K As 17 µm (square)

Gleg 250 µWK−1 C̃ 4 pF
C 25 nJK−1 V0 3.1 V
vb 3 V E 2 V

by solving the equations (2)-(4) with the parameters and coefficients given in
Table 1. Moreover we have set T0 = Ts, Pt = Asσ(T0 + 10)4 and Ps = AsσT

4
s .

The solution of (2) is illustrated in Figure 4. In the phase when the bias voltage
is active, usually referred as integration time, the temperature of the bolometer
rises of circa 3K. This is due to the fact that the current flowing through
a component causes its overheat. When the bias voltage is not active, the
temperature of the bolometer drops of circa 3K, therefore we refer to this phase
as cooling time. See Figure 5 for the illustration this such phenomena. The
readout is illustrated in Figure 6.

As we can see in Figure 4-5, the temperature of the bolometer does not only
depend on the incoming IR radiation, namely the temperature of the object we
are observing, but also on the bias voltage. In order to mitigate this phenom-
ena, the frame-time tf is set much larger than the integration time ti to avoid
overheat the bolometer. In particular the function temperature T oscillates in
the time (after very few pulses) around the temperature due to the incoming IR
radiation. This also reflects in the readout, since Vsamp becomes constant, i.e.,
the bolometer has cached the temperature of the observed object.

2.4 Numerical methods for simulating the bolometer

The output signal can be simulated by setting an initial temperature for the
bolometer and by solving the heat balance equation (2). The readout Vsamp
corresponds to the integral (4) that can be approximated with any numerical
integration algorithm such as Riemann sum, trapezoidal rule, etc. The equa-
tion (2) cannot be solved naively with a numerical scheme for ODE described,
e.g., in [5, 2]. Namely, any matlab ODE solver is not capable of solving (2).
This is due to the fact that the function Vb(t) (bias voltage), defined in (3), has
a very fast variation. The strategy for effectively solve the problem consists in
splitting the domain in sub-domains where Vb(t) is constant.

Assume that we want to solve (2) for 0 ≤ t ≤ mt for a fixed m ∈ N, namely we
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Figure 4: Solution to the heat balance equation (2).
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Figure 5: Solution to the heat balance equation (2) during the integration time
Vb > 0, and during the cooling time Vb = 0.
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Figure 6: Readout voltage (4)8



want m pulses. The time domain can be split as

[0,mtf ] =

m−1⋃
k=0

(Ik ∪ Jk)

where Ik = [kt, ktf + ti] and Jk = [ktf + ti, (k + 1)tf ]. We set T0(0) := T0 and
for k = 1, 2, . . . , we solve the ODE in Ik

C
dTk+1

dt
=

v2b
R(Tk+1)

+ εe(Pt + Ps − 2AσT 4
k+1)−Gleg(Tk+1 − Ts) , t ∈ Ik

Tk+1(ktf ) = Tk(ktf ) (5)

we set α := Tk+1(ktf + ti) and we solve the ODE in Jk

C
dTk+1

dt
= εe(Pt + Ps − 2AσT 4

k+1)−Gleg(Tk+1 − Ts) , t ∈ Jk

Tk+1(ktf + ti) = αk+1 (6)

The solution T (t) of (2) is obtained by gluing the functions Tj(t), i.e.,

T (t) =



T0(t) t ∈ I0 ∪ J0
T1(t) t ∈ I1 ∪ J1

...

T1(t) t ∈ Ik ∪ Jk
...

Tm(t) t ∈ Im ∪ Jm

In conclusion, the solutions of the ODEs (5)-(6) can be approximated with any
numerical scheme such us Euler method, Runge-Kutta, etc. We did not observe
any difficulty in solving these equations and we chose the explicit Euler method
as solver since this can easily be extended to the noised model (stochastic dif-
ferential equation) that we will introduce in the next section.

3 Model with noise and discretization

There are several sources of noise in a micro-bolometer setup:

• Thermal noise in the resistances,

• Flicker noise in resistances,

• Burst noise,

• Thermal fluctuations in the bolometer temperature,

• Noise in incident IR radiation,

9



Figure 7: Equivalent model for thermal noise in a resistor.

• Noise in read out circuits.

In this report we shall only consider the first two types of noises, thermal and
flicker noise in resistances.

3.1 Thermal noise

Any resistance with a temperature T above zero, will cause the charge carriers
in the material to fluctuate. The fluctuations are independent of each other,
and will generate a current with a voltage. This phenomenon is referred to as
thermal noise, but is also known as white noise and Johnson noise. This type of
noise was first discovered by the Swedish engineer John B. Johnson [3], and his
colleague Harry Nyquist, also Swedish, provided a theory for the noise based on
statistical physics[6]. One of the characteristics of the noise, is the flat power
spectrum for all most all frequencies, which is also characteristic for white light.

In electrical circuits, thermal noise is commonly modeled as an additional power
source in series with the resistance, see Figure 7. Due to the random nature
of the additional power source, it is not possible to predict the instantaneous
voltage produced, but instead the average behavior. Nyquist[6] found that the
power spectrum of thermal noise to be

S(f) = 4kBTR, (7)

where kB is the Boltzmann constant, T is the temperature of the resistance, and
R is the resistance. The total contribution of the noise source is then calculated
by summing up the contribution from each frequency component.

E
[
V 2
]

=

∫
B

S(f)(d)f, (8)

where B is the bandwidth of the circuit.

A statistical model commonly used to white noise is a stationary stochastic
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process where the auto-correlation function is

R(s, t) =
E[(Xt − µt)(Xs − µs)]

σtσs
=

{
σ2
t , t = s,

0, t 6= s
(9)

meaning that the process is uncorrelated in time. A distribution that can be
used for this process is the Gaussian distribution N (0, σ).

3.2 Flicker Noise

Another type of noise source that exists in circuits is flicker noise, or also known
as low frequency noise, 1/f noise or pink noise. The power spectrum of the
Flicker noise is

S(f) ∝ k

fα
. (10)

where α ∈ [0.5, 1.5] and k is a material constant.

One explanation of the occurrence of the flicker noise in resistors is that the
charge carriers get trapped in capture sites of the conductor, and are then
released with variable rates. This was first explained by Schottky for flicker
noise in vacuum tubes [7].

To generate the flicker noise in simulation there are several methods available,
listed in [4] and [8].

3.3 Noise model and simulation scheme

To compensate for the noise in the read-out circuit, one first has to determine
how noise enters the differential equation governing the behavior of the system.
The simplest possible solution is of course to add a noise term of a normally
distributed character to the left hand side in Equation (2), rendering the theory
for diffusion processes readily available. More precisely we rewrite Equation (2)
as

CdT =

(
Vb(t)

2

R(T )
+ ε(Pt + Ps − 2AsσT

4)−Gleg(T − Ts)
)
dt+K(t)dW (11)

T (0) = Ts

where K is a function of time, and W ∼ N(0, dt). The function K(t) is chosen
according to the following heuristic. We expect the noise in the output to be
the cause of resistor fluctuations. Motivated by the setup for Figure 7, we thus
redefine the voltage over the bolometer resistance as

V → V0 + ∆V, (12)

where V0 is the noise-less resistance over the voltage, and ∆V is a random
variable representing the random fluctuations in the voltage.
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We thus want noise to enter the heat equation in Equation (2) roughly as

C
dT

dt
=

(Vb(t) + ∆V )2

R(T )
+ f(T ), (13)

where ∆V is the added noise term, accounting for the fluctuations in the re-
sistance R(T ) and f(T ) are the other terms in Equation (2). Expanding the
square we get the equation

C
dT

dt
=

1

R(T )
(V 2
b (t) + 2Vb(t)∆V + (∆V )2) + f(T ), (14)

If the squared noise term is negligible in the limit, we are left with

C
dT

dt
=

1

R(T )
(V 2
b (t) + 2Vb(t)∆V ) + f(T ) (15)

Thus we chose K(t) in Equation (11) as K(t) = 2Vb(t)σ, where σ is a parameter
to be calibrated or physically motivated. The noisy heat development can now
be simulated in a well defined setting, with the dynamics independent of step
size ∆t:

CTi+1 =

(
Vb(ti)

2

R(Ti)
+ ε(Pt + Ps − 2AsσT

4
i )−Gleg(Ti − Ts)

)
∆t+ 2Vb(ti)σ

√
∆tWi

(16)

T (0) = Ts

where Wi ∼ N(0, 1).

4 Numerical experiments

In order to test that the model makes sense from a physical perspective, sim-
ulation experiments have been conducted. Expertise from FLIR has provided
metrics against which outputs from the model has been benchmarked, along
with suggestions for electronic design experiments. Below the resulting experi-
ments are presented along with benchmarks if applicable.

4.1 Solution with noisy model

For the parameter σ, we set as a baseline

σ =
√

4KTsR(Ts) (17)
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where K is the Boltzmann constant. This value is of order 1e−7 and is possible
to motivate from a physical perspective. A detailed explanation can be found
in [9].

We will however amplify or diminish σ depending on our needs with a constant
d. Thus we will use

σ = d
√

4KTsR(Ts) (18)

Plots from running the temperature simulation and succeeding integrator with
the noisy scheme outlined in Equation (16) are shown in Figure 8. We see that
the difference from the deterministic solution is marginal, even with amplified
noise.

4.2 Investigating model accuracy as function of σ

The model accuracy can be measured with the Noise Equivalent Temperature
Difference (NETD), which has form

NETD =
std(V (T, σ))

V (T + 1, 0)− V (T, 0)
(19)

It compares the standard deviation of the noisy output signal at temperature T
with the difference in a deterministic signal when heating the observed object
from T to T + 1. In other words, a large NETD indicates that the noise in
the output is too large to detect a change of 1 degree in the observed object.
Figure 9 depicts NETD over σ at T = 300. At this temperature, FLIR has
estimated NETD to 20 mK. This knowledge lets us solve σ from the graph,
resulting in a value of around 7e−6.
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NETD at T=300

Figure 9: NETD as function of σ
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Figure 8: Temperature and output signal development over time for d = 100.
Red: Noisy solution, Black: Deterministic solution

14



4.3 Noise dependence on integration time

Since measurements are collected only during integration time, a larger integra-
tion time on one hand acts to increase the measurement time-span and hence
the reliability of the measurement. On the other hand, a larger integration time
infers more substantial heating of the thermistor, resulting in increased noise.
It is therefore of interest to investigate how the output noise depends on the in-
tegration time. In Figure 10, signal standard deviations for different frame rates
are plotted against simulations of different integration times. The curve grows
approximately as t3/2. FLIR has estimated the curve to grow approximately
as t1/2, indicating our model is growing at too fast speed. This same peculiar-
ity might explain that the plot of NETD over integration time is increasing,
contrary to the experience at FLIR suggesting a decreasing NETD-curve.
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Figure 10: Output standard deviation over integration time

4.4 Power spectrum of output signal

Expertise from FLIR suggest that the power spectrum of the output signal is
dependent on the frame-rate, and situated somewhere between the white and
1/f noise spectrum. In order to test the accordance between this experience
and the model, the power spectrum of the output signal for different frame-rates
have been generated. The result can be seen in Figure 11, together with a 1/f
deterministic curve. Indeed, the output signal seems to shift from a white noise
character to a 1/f character as frame-rates are altered.
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Figure 11: Power spectrum of output signal for different frame-rates 1/tf

4.5 Linearity of the output signal

The linearity of the output signal as a function of incoming radiation effect is
an assumption made during the calibration process at FLIR. The deviation of
the signal from this assumption require re-calibration of the camera at regular
intervals. It is therefore of interest to investigate how this linearity is affected
by factors possible to influence by design. For example, FLIR suggest that the
design of the bias voltage curve during integration time might be important to
achieve a higher degree of linearity in the output signal. In Figure 12, output
signals Vsamp over incoming effect Pt are plotted for different designs of bias
voltage curve. The different bias voltage curves tested are

1. Constant voltage, as assumed in all previous simulations

2. Triangular voltage

V (t) =

{
ax+ b 0 ≤ t ≤ ti/2
cx+ d ti/2 ≤ t ≤ ti

3. Bell-curve

V (t) =
1√

2πσ2
e−

(x−µ)2

2σ2 0 ≤ t ≤ ti

4. Linear

V (t) = ax 0 ≤ t ≤ ti

All parameters in alternatives 1), 2), 3) are set to assure the power applied
during integration time is the same as in the base case 1), and no noise is added
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in this simulation. Interestingly enough, a tendency towards a more linear
behavior is observed for the bell shaped bias voltage curve.
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Figure 12: Power spectrum of output signal for different frame-rates

4.6 Spectrum of the output noise depending on spectrum
of input noise

The noise of the voltage is suspected to contain a component with a 1/f spec-
trum, so called Flicker noise. It is therefore interesting to investigate the effect
of replacing the noise term in Equation (11) with a term of 1/f spectrum. For a
detailed explanation of how such a noise term is generated, see Section 3.2. The
power spectrum of the output noise with 1/f noise as input is seen in Figure 13.
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5 Outlook and future extensions

5.1 Noise process inclusion

In section 3 we went through the heuristic underlying the inclusion of noise in
the model. This heuristic is however not entirely satisfactory. Although one can
certainly argue for the negligibility of the squared noise term, it was dropped
rather ad hoc. Neither did we account for the fact that the noise as inserted in
the heuristics is subject to multiplication by a dt-term in the actual simulation,
making it hard to establish a scaling scheme for the noise term with a well
defined stochastic limit as step-size goes to 0. What we need in order to fully
solve this matter is stochastic calculus.

Consider thermal noise and assume that the bias voltage V (t) can be described
as a diffusion process. Thermal noise has a white noise behavior, so ideally,
stochasticity around the mean of the bias voltage Vm(t) should have white noise
form. Unfortunately, white noise is not possible to write as a diffusion process.
We therefore suggest that V (t) is modeled as follows:

dV = k(Vm(t)− V (t)) + σdWt

This is a Ornstein-Uhlenbeck process, which imposes a mean reverting mecha-
nism. If the process is above Vm(t), the drift term is negative and the process
will tend to move towards Vm(t). If the process is below Vm(t), the reverse holds
true. This makes correlation and variance increase over time limited when com-
paring to the standard Brownian e.g. By adjusting the constants σ and k,
we can generate an erratic process dynamics with mean-adjusted noise much
resembling white noise.
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Let us consider what happens with the temperature dynamics in equation (2)
when we assume the function V (t) has the stochastic dynamics as described
above. We are going to use the Lemma of Ito, which states that if a diffusion
process X has dynamics dX = µ(t)dt + σ(t)dWt, then f(X) (under certain
regularity conditions) has dynamics

df =

(
∂f

∂t
+ µ(t)

∂f

∂x
+
σ(t)2

2

∂2f

∂2x

)
dt+ σ(t)

∂f

∂x
dWt

In our case f(x) = x2, so ∂f
∂t = 0, ∂f

∂x = 2x, ∂2f
∂2x = 2. Moreover, µ(t) =

K(Vm(t) − V (t)), and σ(t) = σ. Plugging in these values in the Ito formula
gives

df = (k(Vm(t)− V (t))2V (t) + σ2)dt+ σ(t)2V (t)dWt

or

dX(t) = (k(Vm(t)−
√
X(t))2

√
X(t) + σ2)dt+ σ(t)2

√
X(t)dWt

Note that the temperature dynamics constitute a well defined stochastic pro-
cess with the deterministic V replaced by the stochastic function X. The re-
placement operation turns the deterministic ODE into a diffusion process with
another diffusion process (X) as drift coefficient. As X is adapted to the same
underlying filter as T , the process is well defined via the Ito integral.

6 Conclusion

A mathematical model for the temperature evolution of a microbolometer and
the corresponding output voltage was derived. The model is built using the heat
equation, the Stefan Boltzmann’s law, and the Joule heating law. The change
in the temperature of the bolometer is measured through the resistance change.
The heat equation model was modified based on heuristic arguments to include
an additive noise term in the bias voltage, and the resulting differential equation
was discretized and solved using the explicit Euler scheme.

This, however, led to counter intuitive results regarding the NETD and the
power spectrum of the output voltage, raising the question whenever the as-
sumed stochastic model was accurate enough. Unfortunately, there was no
experimental data available to verify the numerical simulations to.

Nevertheless, hindsight provided us with a more well defined stochastic model
to model the phenomena. Unfortunately, time was not enough to try out this
idea.
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