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Introduction

◮ New upcoming regulation for insurance industry: Solvency II

◮ Stipulates methods for calculating capital requirements

◮ Standard model: scenario based approach

◮ Capital charge is given as the difference between
◮ the present value of A− L under best estimate assumptions

◮ the present value in a certain shock scenario.
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Introduction

◮ As an alternative, insurers may adopt an internal model
◮ Should be based on a Value-at-Risk approach

◮ The capital charge is the difference between
◮ the present value under best estimate assumptions

◮ the p-quantile of the value in one year (here, p = 0.005).

◮ Disability rates fluctuate over time
◮ Value-at-Risk dependent on future disability rates

◮ Suggests us to consider stochastic disability models

◮ The aim of this talk:
◮ suggest and fit a model for stochastic disability

◮ determine systematic recovery risk for large portfolios in terms
of p-quantiles
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Introduction

This talk is based on the following four papers:

◮ Aro, H., Djehiche, B., and Löfdahl, B. (2015): Stochastic
modelling of disability insurance in a multi-period framework.
Scandinavian Actuarial Journal.

◮ Djehiche, B., and Löfdahl, B. (2014): A hidden Markov
approach to disability insurance. Preprint.

◮ Djehiche, B., and Löfdahl, B. (2014): Risk aggregation and
stochastic claims reserving in disability insurance. Insurance:
Mathematics and Economics.

◮ Djehiche, B., and Löfdahl, B. (2015):Systematic disability risk
in Solvency II. Preprint.
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Disability inception

◮ Let Ex ,t denote the number of healthy individuals with age x

at the beginning of year t

◮ Let Dx ,t denote the number of individuals among Ex ,t with
disability inception in the interval [t, t + 1)

◮ Assume Dx ,t is binomially distributed given Ex ,t :

Dx ,t ∼ Bin(Ex ,t , px ,t)

where px ,t is the inception probability of an x-year-old.

B. Löfdahl Disability insurance: estimation and risk aggregation



Disability inception

◮ We suggest the following logistic regression model:

logit px ,t := log
( px ,t

1− px ,t

)
=

n∑

i=1

ν itφ
i (x),

where φi (x) are age-dependent user-defined basis functions

and ν it are the model parameters for year t.

◮ Logistic regression is a widely used modelling tool in
insurance, finance and many other areas.

◮ The logistic transform guarantees that px,t ∈ (0, 1).
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Disability inception

Given historical values of Dx ,t and Ex ,t , and a set of basis
functions {φi}, the log-likelihood function for yearly values of νt
can be written

l(νt ;D·,t) =
∑

x∈X

[
Dx ,t

n∑

i=1

ν itφ
i (x)− Ex ,t log

(
1 + exp

{ n∑

i=1

ν itφ
i (x)

})]
.

◮ If the basis functions are linearly independent, −l(νt) is
strictly convex.

◮ Unique estimate of νt

◮ Minimizing over Rn using methods from numerical
optimization yields estimate of νt .

◮ Straightforward extension allows for modelling termination
probabilities.
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Modelling the future

The above models yield estimations for historical probabilities.
What about the future?

Classical approach (Lee and Carter (1994), Aro and Pennanen
(2011), Christiansen et. al. (2012) and others):

◮ Fit model to data, obtain time series of estimations of {νt}

◮ Assume a stochastic process form for ν, estimate the
parameters from this time series.

Inconsistent assumptions!

◮ νt is a parameter in the first step, realization of a stochastic
process in the second step!

◮ May cause conceptual and numerical problems.

We suggest a hidden Markov model to perform both steps
simultaneously.
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Modelling the future

Assume ν unobservable Markov process with transition densities f
parameterized by θ. Complete data likelihood becomes:

l(θ;D·,1:n, ν1:n) =

n∑

t=1

[
l(νt ;D·,t) + log fνt |νt−1

(θ)
]
.

E-step: Given θk , integrate l(θ;D·,1:n, ν1:n) with respect to the
distribution of ν1:n conditional on the observations D·,1:n, e.g. let

Q(θ|θk) = E θk [l(θ;D·,1:n, ν1:n)|D·,1:n],

M-step: maximize Q w.r.t. θ to obtain

θk+1 = argmax
θ

Q(θ|θk).
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Numerical Results, disability inception

Assume ν multivariate Brownian motion with drift, i.e. let

νt = ξ + µt + AWt ,

and let θ = (ξ, µ,A).

◮ M-step can then be performed analytically.

◮ E-step requires particle simulation methods.

◮ We estimate θ and ν over the period from 2000-2011 using
disability claims data from Folksam, with basis functions

φ1(x) =
64− x

39
and φ2(x) =

x − 25

39
.
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Numerical Results, disability inception
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Figure: Center: Raw data. Right:Classical approach. Left:Hidden
Markov.
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Numerical Results, disability inception

Table: Relative difference of the estimated drift and volatility parameters
between the two models.

µ σ

ν
1

0.92 0.48

ν
2

0.93 0.23
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Continuous time modelling

We now bring a discrete termination model into a continuous time
setting and consider

◮ claims reserving for annuity policies

◮ systematic recovery risk for large portfolios
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A conditional independence model

Let Z be a stochastic process, let qx be a non-negative function,
and let N1,N2, . . . be counting processes starting from zero, with
FZ ∨ FN -intensities

λkt = qx(t,Zt−)(1− Nk
t−). (1)

◮ N1,N2, . . . represent the state of insured individuals

◮ Z represents the state of the economic-demographic
environment

◮ x is a parameter representing eg. the age of the insured

◮ We assume that N1
t ,N

2
t , . . . are independent conditional on

FZ
t .
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Annuities and present values

The random present value of an annuity policy that pays gx(t,Zt)
monetary unit continuously as long as Nk

t = 0, until a fixed future
time Tx , is given by

Bk
t,Tx

=

∫ Tx

t

gx(s,Zs)(1− Nk
s )e

−
∫ s

t
r(u)duds, (2)

where r is the short rate.

◮ Allows for payments from the contract to depend on time,
state of the economic-demographic environment and the age
of the insured.

◮ For example, the contract could be inflation-linked and
contain a deferred period.
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Annuities and present values

Further, let X denote a finite set of age groups, and let
I nx , x ∈ X , n ≥ 1, denote the set of individuals with age x in a
portfolio of n policies. Naturally, we must have

∑

x∈X

|I nx | = n. (3)

Now, we consider a portfolio of annuity contracts. Define the

portfolio random present value B
(n)
t by

B
(n)
t =

∑

x∈X
k∈I nx

Bk
t,Tx

. (4)

Key idea: Take a large portfolio to diversify away the individuals.
Only the systematic risk should remain.
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Annuities and present values

If Z is Markov, the conditional expected value of the liabilities at

time t + 1, L
(n)
t+1, is given by

L
(n)
t+1 = E [B

(n)
t |FN

t+1 ∨ FZ
t+1]

=
∑

x∈X
k∈I nx

[
Bk
t,t+1 + (1− Nk

t+1)e
−

∫ t+1
t

r(u)duvx(t + 1,Zt+1)
]
,

(5)

where

Bk
t,t+1 =

∫ t+1

t

gx(s,Zs)(1− Nk
s )e

−
∫ s

t
r(u)duds, (6)

vx(t + 1,Zt+1) = E [

∫ Tx

t+1
gx(s,Zs)e

−
∫ s

t+1
(qx (u,Zu)+r(u))duds|Zt+1].

(7)

Goal: determine the quantiles of L
(n)
t+1 at time t.
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Large portfolios

The conditional Law of Large Numbers states that, conditional on
FN
t ∨ FZ

s with s ≥ t,

lim
n→∞

1

n

n∑

k=1

Nk
s − E [

1

n

n∑

k=1

Nk
s |F

N
t ∨ FZ

s ] = 0 a.s. (8)

Hence, using the conditional dominated convergence theorem, we
have

lim
n→∞

1

n
L
(n)
t+1 − E [

1

n
L
(n)
t+1|F

N
t ∨ FZ

t+1] = 0 a.s. (9)

For a large portfolio, we suggest the approximation

L
(n)
t+1 ≈ E [L

(n)
t+1|F

N
t ∨ FZ

t+1]. (10)
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Large portfolios

Evaluating (10),

E [
1

n
L
(n)
t+1|F

N
t ∨ FZ

t+1] =
1

n

∑

x∈X
k∈I nx

(1− Nk
t )V

x , (11)

where

V x =

∫ t+1

t

gx (s,Zs)e
−

∫ s

t
q̄x (u,Zu)duds

+ e−
∫ t+1
t

q̄x (u,Zu)duvx(t + 1,Zt+1). (12)

◮ First term represents benefits payed in [t, t + 1)

◮ Second term represents value of remaining liabilities at t + 1.

◮ What about the function vx?
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A reserve equation

Let q̄x(t, z) = qx(t, z) + r(t). Assume that q̄x is lower bounded,
gx is continuous and bounded, and that Z is a Markov process
with infinitesimal generator A.

Then, vx(t, z) given by (7) satisfies the Feynman-Kac PDE

{
−∂vx

∂s
+ q̄x(s, z)vx = Avx + gx(s, z), t ≤ s < Tx ,

vx(Tx , z) = 0.
(13)

Classical but highly useful result:

◮ Value of remaining liabilities at t + 1 can be calculated by
solving (13)!
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Large portfolios

For a large portfolio, we suggest the approximation

L
(n)
t+1 ≈

∑

x∈X
k∈I nx

(1− Nk
t )V

x . (14)

◮ The idiosyncratic risk vanishes, only systematic risk remains!

◮ We approximate the portfolio quantiles by the
computationally much simpler systematic risk quantile,
obtainable by simulation of Z on [t, t + 1].

◮ It is hard to proceed further without simplifications.
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Homogeneous portfolio and one-factor model

Consider a large, homogeneous portfolio under a one-factor model,
let

V =

∫ t+1

t

g(s,Zs)e
−

∫ s

t
q̄(u,Zu)duds

+ e−
∫ t+1
t

q̄(u,Zu)duv(t + 1,Zt+1), (15)

so that

L
(n)
t+1 ≈

n∑

k=1

(1− Nk
t )V . (16)

◮ 1-year risk still depends on Z on [t, t + 1].

◮ However, these types of liabilities tend to have a long duration
(pensions, disability etc)

◮ The remaining liabilities value v(t + 1,Zt+1) will dominate.

◮ This motivates the use of a comonotonic approximation!
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Homogeneous portfolio and one-factor model

Let the uniformly distributed random variable U be defined by

U = FZt+1
(Zt+1), (17)

define the stochastic process Z̄ by

Z̄s := F−1
Zs

(U) = F−1
Zs

(FZt+1
(Zt+1)), s ≤ t + 1, (18)

and define V̄ by

V̄ =

∫ t+1

t

g(s, Z̄s)e
−

∫ s

t
q̄(u,Z̄u)duds

+ e−
∫ t+1
t

q̄(u,Z̄u)duv(t + 1,Zt+1). (19)

V̄ is now simply a function of Zt+1!
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Homogeneous portfolio and one-factor model

Under reasonable assumptions on q, g and the generator A of Z ,
we can obtain a V̄ that is monotone in Zt+1!

For example, we can take q > 0 and increasing, g > 0 and
deterministic, and define Z by

dZt = α(t,Zt)dt + σ(t,Zt)dBt . (20)

Since V̄ is then decreasing in Zt+1, the sought quantiles are given
by

F−1
V̄

(p) =

∫ t+1

t

g(s)e−
∫ s

t
q̄(u,F−1

Zu
(1−p))duds

+ e−
∫ t+1
t

q̄(u,F−1
Zu

(1−p))duv(t + 1,F−1
Zt+1

(1− p)). (21)
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Numerical Results

We consider a disability recovery model fitted to data from
Folksam, and simulate annuities paying 1 monetary unit
continuously until recovery or the age of 65.

◮ Solve the Feynman-Kac PDE for v(t + 1, ·) on a large grid of
z-values

◮ Simulate 10,000 paths of Z on [t, t + 1].

◮ For each path, simulate 2,000 contracts

◮ Examine convergence of the CLLN approximation

◮ Performance of the comonotonic approximation
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Numerical Results, convergence
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Figure: Simulation of 10,000 paths of Z to obtain 99,5% quantiles. Blue:
Portfolio of up to 2,000 contracts. Red: CLLN approximation.
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Numerical Results, comonotonic approximation
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Figure: Simulation of 10,000 paths of Z to obtain 99,5% quantiles. Red:
CLLN, Blue: 2,000 contracts, Red dashed: comonotonic approximation.
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Extra: Approximations for multi-factor models

Claims termination often assumed to depend on age and disability
duration.

◮ We propose the following logistic regression model:

logit px ,d,t =
n∑

i=1

φi (x)
k∑

j=1

ν
ij
t ψ

j (d),

where φi and ψj , are age and duration dependent basis
functions, respectively.

◮ We can fit the model parameters using the EM-algorithm.

◮ How can we use this model to calculate one-year risks?
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Extra: Approximations for multi-factor models

Define the process Z by

Zt =
n∑

i=1

φi (x)
m∑

j=1

ψj (t)ν i ,jt =: a(t)Tνt . (22)

A continuous time approximation of the logistic regression model
yields the intensity

q(t, νt) = c log
(
1 + exp

{
Zt

})
=: f (Zt). (23)

◮ Z is scalar valued, so if we can find the generator of Z , we
have a one-factor model!

◮ However, in general, Z need not even be Markov.
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Extra: Approximations for multi-factor models

From the Itô formula,

dZt = (ȧ(t)Tνt + a(t)Tµ)dt + a(t)TAdWt , (24)

which cannot directly be written as

dZt = α(t,Zt)dt + γ(t)dW̄t . (25)

To obtain a process Ẑ of the form (25), we consider the Markov
projection technique introduced by Krylov (1984) and extended in
various ways by Gyöngy (1986), Kurtz and Stockbridge (1998) and
others.

If we choose α s.t.

α(t, z) = E [ȧ(t)Tνt + a(t)Tµ|Zt = z ], (26)

then Ẑ and Z have the same marginal distributions.
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Extra: Approximations for multi-factor models

We obtain the following explicit expression for α:

α(t, z) = aTµ+ ȧT (ξ + µt) + (z − aT (ξ + µt))
aTAAT ȧ

aTAATa
(27)

Curiously, it happens that Ẑ is a Hull-White process.

The quantiles of Ẑs are given by

F−1

Ẑs

(1− p) = a(s)T (ξ + µs) +
√

sa(s)TAATa(s)Φ−1(1− p).

(28)

These quantiles are plugged into the comonotonic approximation
formula!

Equality of marginal distributions does not imply equality of
systematic risk quantiles, but quantitative studies suggest the error
is in the order of 1%.
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Thank you for your attention!
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