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We study convex stochastic optimization problems.

✔ Stochastic LP duality, linear quadratic control and calculus of
variations

✔ Stochastic problems of Bolza, shadow price of information and
optimal stopping

✔ Illiquid convex market models (Jouni&Kallal, Kabanov,
Schachermayer, Guasoni, Pennanen)

✔ Super-hedging and pricing, utility maximization and optimal
consumption

Convexity gives rise to dual optimization problems and dual
characterisations of the objective functionals.
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Example (Super-hedging in a liquid market).

inf x0
0,

s.t.
{

CT ≤ x0
0 +

∫

T
xt · dSt a.s.

where x0
0 is the initial wealth, CT is a claim, x is a predictable process

(portfolio of risky assets) and S is a price process. The infimum is over
initial wealths x0 and predictable processes x.
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Example (Super-hedging in a liquid market).

inf x0
0,

s.t.
{

CT ≤ x0
0 +

∫

T
xt · dSt a.s.

where x0
0 is the initial wealth, CT is a claim, x is a predictable process

(portfolio of risky assets) and S is a price process. The infimum is over
initial wealths x0 and predictable processes x.

The dual problem is

sup
Q∈M

E
Q[CT ],

where the supremum is over martingale measures.
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Example (Kabanovs model). Consider a set

{x ∈ BV | (dx/|dx|)t ∈ C(ω, t) ∀t}

where C(ω, t) ⊂ R
d is a convex cone for all (ω, t). C(ω, t) is the set of

self-financing trades in the market at time t. A predictable process of
bounded variation is self-financing if

(dx(ω)/|dx(ω)|)t ∈ C(ω, t) ∀t a.s.
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Example (Kabanovs model). Consider a set

{x ∈ BV | (dx/|dx|)t ∈ C(ω, t) ∀t}

where C(ω, t) ⊂ R
d is a convex cone for all (ω, t). C(ω, t) is the set of

self-financing trades in the market at time t. A predictable process of
bounded variation is self-financing if

(dx(ω)/|dx(ω)|)t ∈ C(ω, t) ∀t a.s.

Example (Linear case).

C(ω, t) = {(x0, x1) ∈ R
2|x0 + x1 · St(ω) ≤ 0},

where S is the price process of a risky asset, x0 refers to a bank account
and x1 to the risky asset. Portfolio is self-financing if all trades of the
risky assets are financed using the bank account. The inequality allows a
free disposal of money or assets.
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Example (Optimal consumption in a convex market model).

sup E

∫

T

Ut(ω, dc),

s.t.

{

(d(x(ω) + c(ω))/|d(x(ω) + c(ω))|)t ∈ C(ω, t) ∀t a.s.

xt(ω) ∈ D(ω, t) ∀t a.s..

where Ut is an utility function for all t almost surely and D(ω, t) is the
set of allowed portfolio positions at time t. The supremum is over
predictable processes of bounded variation x and c. x is the portfolio
process, and c is the consumption process.
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Example (Optimal consumption in a convex market model). A dual
problem is

inf E −

∫

T

U∗
t (yt)dt,

s.t.

{

yt(ω) ∈ C∗(ω, t) ∀t a.s.

(da(ω)/|da(ω)|)t ∈ D∗(ω, t) ∀t a.s..

where U∗
t is the concave conjugate of the utility function, C∗(ω, t) is the

polar of C(ω, t) (y is a consistent price system), D∗(ω, t) is the polar of
D(ω, t), and the supremum is over semimartingales with the canonical
decomposition y = m + a.
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Example (Optimal consumption in a convex market model). A dual
problem is

inf E −

∫

T

U∗
t (yt)dt,

s.t.

{

yt(ω) ∈ C∗(ω, t) ∀t a.s.

(da(ω)/|da(ω)|)t ∈ D∗(ω, t) ∀t a.s..

where U∗
t is the concave conjugate of the utility function, C∗(ω, t) is the

polar of C(ω, t) (y is a consistent price system), D∗(ω, t) is the polar of
D(ω, t), and the supremum is over semimartingales with the canonical
decomposition y = m + a.

The aim is to formulate problems like this in a general framework and
deduce the dual problems by general methods.
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Let (Ω,F , F, P ) be a complete filtered probability space, Let N be the
set of predictable processes of bounded variation. Let U be a separable
Banach (or its dual).
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Let (Ω,F , F, P ) be a complete filtered probability space, Let N be the
set of predictable processes of bounded variation. Let U be a separable
Banach (or its dual). Define F : N × Lp(Ω; U) → R ∪ {+∞} by

F (x, u) = E[f(ω, x(ω), u(ω))],

where f is a normal-integrand. The value function is

φ(u) = inf
x∈N

F (x, u) = inf
x∈N

E[f(ω, x(ω), u(ω))].
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Let (Ω,F , F, P ) be a complete filtered probability space, Let N be the
set of predictable processes of bounded variation. Let U be a separable
Banach (or its dual). Define F : N × Lp(Ω; U) → R ∪ {+∞} by

F (x, u) = E[f(ω, x(ω), u(ω))],

where f is a normal-integrand. The value function is

φ(u) = inf
x∈N

F (x, u) = inf
x∈N

E[f(ω, x(ω), u(ω))].

A function f : Ω × (X × U) → R ∪ {+∞} is a normal integrand if the
epigraph epi f ⊂ Ω×X ×U ×R is measurable and ω-sections are closed.

In particular ω 7→ f(ω, x(ω), u(ω)) is measurable when x ∈ L0(Ω; X)
and u ∈ L0(Ω; U), and for fixed ω, (x, u) 7→ f(ω, x, u) is lower
semicontinuous. Moreover, F is convex if f(ω, ·, ·) is convex.
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Example (Convex market models). Let U = BV , and

f(ω, x, u) = k(ω, x, u) + δD(ω)(x) + δC(ω)(dx + du),

where (and similarly for δC(ω))

δD(ω)(x) =

{

0 if x ∈ D(ω)

+∞ otherwise,
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Example (Convex market models). Let U = BV , and

f(ω, x, u) = k(ω, x, u) + δD(ω)(x) + δC(ω)(dx + du),

where (and similarly for δC(ω))

δD(ω)(x) =

{

0 if x ∈ D(ω)

+∞ otherwise,

and

C(ω) = {x ∈ BV | (dx/|dx|)t ∈ C(ω, t) ∀t},

D(ω) = {x ∈ BV |xt ∈ D(ω, t) ∀t},

and k is a normal integrand which gives the criterion one wants to
minimize/maximize (e.g. utility).
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Example (Convex market models). Let U = BV , and

f(ω, x, u) = k(ω, x, u) + δD(ω)(x) + δC(ω)(dx + du),

where (and similarly for δC(ω))

δD(ω)(x) =

{

0 if x ∈ D(ω)

+∞ otherwise,

and

C(ω) = {x ∈ BV | (dx/|dx|)t ∈ C(ω, t) ∀t},

D(ω) = {x ∈ BV |xt ∈ D(ω, t) ∀t},

and k is a normal integrand which gives the criterion one wants to
minimize/maximize (e.g. utility). In this case u ∈ Lp(Ω; U) can be
interpreted as a claim process or a consumption process.
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Let Y be a separable Banach space and U be its dual space. The pairing
〈u, y〉 = E〈u(ω), y(ω)〉 is finite for all u ∈ Lp(Ω; U) and y ∈ Lq(Ω; Y ).
We equip these spaces with weak topologies induced by the pairing.
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Let Y be a separable Banach space and U be its dual space. The pairing
〈u, y〉 = E〈u(ω), y(ω)〉 is finite for all u ∈ Lp(Ω; U) and y ∈ Lq(Ω; Y ).
We equip these spaces with weak topologies induced by the pairing.

The convex conjugate of φ : Lp(Ω; U) → R ∪ {±∞} is defined by

φ∗(y) = sup
u∈Lp(Ω;U)

{〈u, y〉 − φ(u)},

which is a convex lower semicontinuous function on Lq(Ω; Y ).
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Let Y be a separable Banach space and U be its dual space. The pairing
〈u, y〉 = E〈u(ω), y(ω)〉 is finite for all u ∈ Lp(Ω; U) and y ∈ Lq(Ω; Y ).
We equip these spaces with weak topologies induced by the pairing.

The convex conjugate of φ : Lp(Ω; U) → R ∪ {±∞} is defined by

φ∗(y) = sup
u∈Lp(Ω;U)

{〈u, y〉 − φ(u)},

which is a convex lower semicontinuous function on Lq(Ω; Y ).

The biconjugate satisfies φ∗∗ = cl coφ, where

cl φ =

{

−∞ if lsc φ(u) = −∞ for some u,

lsc φ otherwise.

In particular, if φ is convex and closed, then φ = φ∗∗ (the dual
representation).
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Recall the value function φ : Lp(Ω; U) → R ∪ {±∞} was given by

φ(u) = inf
x∈N

Ef(x(ω), u(ω)),

which is a convex function on U (if F is convex, which we assume).
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Recall the value function φ : Lp(Ω; U) → R ∪ {±∞} was given by

φ(u) = inf
x∈N

Ef(x(ω), u(ω)),

which is a convex function on U (if F is convex, which we assume).

Define the dual objective by

g(y) = −φ∗(y),

which is a concave upper semicontinuous function on Y . If φ is lower
semicontinuous and proper, then φ has the dual representation

φ(u) = sup
y∈Lq(Ω;Y )

{〈u, y〉 + g(y)}.
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φ(u) = inf
x∈N

Ef(ω, x(ω), u(ω)).

✔ Calculating the dual objective g = −φ∗ is based on conjugacy of
integral functionals and theory of normal-integrands. Adaptiveness
constraints lead to stochastic analysis; also the dual problem may
not be a pure integral functional anymore.
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φ(u) = inf
x∈N

Ef(ω, x(ω), u(ω)).

✔ Calculating the dual objective g = −φ∗ is based on conjugacy of
integral functionals and theory of normal-integrands. Adaptiveness
constraints lead to stochastic analysis; also the dual problem may
not be a pure integral functional anymore.

✔ In convex analysis there exists a lot of results for the lower
semicontinuity of φ. These are based on LCTVS structure of the
strategy space and compactness type arguments.
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φ(u) = inf
x∈N

Ef(ω, x(ω), u(ω)).

✔ Calculating the dual objective g = −φ∗ is based on conjugacy of
integral functionals and theory of normal-integrands. Adaptiveness
constraints lead to stochastic analysis; also the dual problem may
not be a pure integral functional anymore.

✔ In convex analysis there exists a lot of results for the lower
semicontinuity of φ. These are based on LCTVS structure of the
strategy space and compactness type arguments.

✔ N is not LCTVS. In mathematical finance there exists results for
lower semicontinuity of φ in this case, but only when f(ω, x, u) is an
indicator function or of some other very restrictive form.
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One of our contributions has been to extend the arguments used in
convex analysis and mathematical finance to obtain lower semicontinuity
of φ in more general cases.
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One of our contributions has been to extend the arguments used in
convex analysis and mathematical finance to obtain lower semicontinuity
of φ in more general cases.

Example. Assume there exists (v, y) such that Ef∗(ω, v(ω), y(ω)) < ∞,
v is a martingale, and

{x ∈ X| ∃u ∈ B(ω), f(ω, x, u(ω)) − 〈x, v(ω)〉 ≤ β(ω)}

is compact almost surely for some β ∈ L0(Ω; R), where B(ω) is a
neighborhood of the origin almost surely. Then the value function φ is
lower semicontinuous at the origin.
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One of our contributions has been to extend the arguments used in
convex analysis and mathematical finance to obtain lower semicontinuity
of φ in more general cases.

Example. Assume there exists (v, y) such that Ef∗(ω, v(ω), y(ω)) < ∞,
v is a martingale, and

{x ∈ X| ∃u ∈ B(ω), f(ω, x, u(ω)) − 〈x, v(ω)〉 ≤ β(ω)}

is compact almost surely for some β ∈ L0(Ω; R), where B(ω) is a
neighborhood of the origin almost surely. Then the value function φ is
lower semicontinuous at the origin.

Remark. The path spaces X, U, Y can be generalized to Souslin
LCTVS, and perturbation space Lp(Ω; U) can be generalized to LCTVS.
Banach space structure shown in the slides was just an example.
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And back to introduction: many convex stochastic optimization problems
are covered by this duality framework.

✔ Stochastic LP duality, linear quadratic control and calculus of
variations

✔ Stochastic problems of Bolza, shadow price of information and
optimal stopping

✔ Illiquid convex market models
✔ Super-hedging and pricing, utility maximization and optimal

consumption
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