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Best-choice problem

• N i.i.d. random variables from a known distribution function F (x) are observed
sequantially with the object of choosing the largest.

• At the each stage observer should decide either to accept or to reject the variable.

• Variable rejected cannot be considered later.

• The aim is to maximize the expected value of the accepted variable.

Let F (x) is uniform on [0, 1].

The threshold strategy satisfies the equation (Mozer’s equation):

vi =
1 + v2

i+1

2
, i = 1, 2, ..., N − 1, vN = 1/2.



Optimal stopping problem:
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Game-theoretic approach:

M. Sakaguchi

V. Baston and A. Garnaev (2005)

A. Garnaev and A. Solovyev (2005)

M. Sakaguchi and V. Mazalov

K. Szajowski (1992)
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G. Sofronov, J. Keith, D. Kroese (2006)

M. Sakaguchi (2003)
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m-person best-choice game with one stop

• Each of m companies (players) wants to employ a secretary among N applicants.

• Each player observes the value of applicant’s quality and decides either to accept
or to reject the applicant.

• Applicants’ qualities have uniform distribution on [0,1].

• If the player j accepts an applicant then there is probability pj that the applicant
rejects the proposal, j = 1, 2, ..., m.

• If player j employs a secretary then he leaves the game. The payoff of the player
is equal to the expected quality’s value of selected secretary.

• Applicant rejected by player cannot be considered later.

• The shortfall of a player not employing an applicant is C, C ∈ [0, 1].

• Each player aims to maximize his expected payoff.



One player

p̄1 = 1− p1.

v1
i (p1) – expected payoff of the player at the stage i, i = 1, 2, ..., N .

v1
N(p1) =

1∫
0

p1x dx +

1∫
0

p̄1(−C)dx =
p1

2
− p̄1C.

The player accepts the i-th applicant with quality value x if x ≥ v1
i+1(p1).

v1
i (p1) = E(max

{
p1x + p̄1v1

i+1(p1); v1
i+1(p1)

}
)

= p1

2
(1− v1

i+1(p1))2 + v1
i+1(p1),

v1
N+1(p1) = −C, i = 1, 2, ..., N.

Table 1. Optimal thresholds for N = 10, p1 = 0, C = 0.

i 1 2 3 4 5 6 7 8 9 10

v1
i+1(p1) 0.850 0.836 0.820 0.800 0.775 0.742 0.695 0.625 0.5 0



Two players (A. Garnaev, A. Solovyev, 2005)

The expected payoff of the j-th player at the stage i is v2,j
i , j = 1, 2, i = 1, ..., N.

v2,j
N = v1

N(pj), j = 1, 2.

At the stage N − 1 the matrix of the game is following:

M2
N−1(x) =

( A2 R2

A1

(
m1

11, m2
11

) (
m1

12, m2
12

)
R1

(
m1

21, m2
21

) (
m1

22, m2
22

)),

where
m1

11 = p1x+v1
N(p1) +p2v1

N(p1) +(1− p1 − p2)v2,1
N ;

m2
11 = p2x + p1v1

N(p2) + (1− p1 − p2)v2,2
N ;

m1
12 = p1x + v2,1

N + (1− p1)v2,1
N ;

m2
12 = p1v1

N(p2) + p̄1v2,2
N ;

m1
21 = p2v1

N(p1) + p̄2v2,1
N ;

m2
21 = p2x + p̄2v2,2

N ;
m1

22 = v2,1
N ;

m2
22 = v2,2

N .

v2,j
i =

v2,j

i+1∫
0

v1
i+1 dx +

1∫
v2,j

i+1

(pjx + p̄jv
2,j
i+1) dx = v1

i (pj); j = 1, 2.



m players

The expected payoff of the j-th player at the stage i is vm,j
i , j = 1, 2, ..., m, i = 1, ..., N.

The player j accepts the i-th applicant with quality value x if

x ≥ vm,j
i+1, i = 1, 2, ..., N − 1.

Theorem 1 In the m-person best-choice game each player uses an optimal strategy
as if the other players were not there, that is, vm,j

i = v1
i (pj), j = 1, 2, ..., m; i =

1, ..., N − 1; v1
N(pj) = pj

2
+ p̄jC for every m.



m-person best-choice game with two stops

• Each of m companies (players) wants to employ two secretaries among N ap-
plicants.

• Each player observes the value of applicant’s quality and decides either to accept
or to reject the applicant.

• Applicants’ qualities have uniform distribution on [0,1].

• If player j accepts an applicant then there is probability pj that the applicant
rejects the proposal j = 1, 2, ..., m.

• If player j employs two secretaries then he leaves the game. The payoff of the
player is equal to sum of the expected quality values of selected secretaries.

• Applicant rejected by player cannot be considered later.

• The shortfall of a player not employing any applicant is C, C ∈ [0, 1].

• Each player aims to maximize his expected payoff.



One player

v1
i (pj) — expected payoff of the player at the stage i

v1
i,r(pj) — expected payoff of the player at the stage r on condition he has already

employed a secretary at the stage i

The expected player’s payoff if he stays in the game alone is following

v1
i (pj)=E

(
max

{
pj(Xi+v1

i,i+1(pj))+p̄jv1
i+1(pj); v1

i+1(pj)
})

, i = 1, 2, ..., N,

v1
N+1(pj) = −C;

v1
i,r(pj) = E

(
max

{
pjXr + p̄jv1

i,r+1(pj); v1
i,r+1(pj)

})
, r = i + 1, ..., N,

v1
i,N+1(pj) = −C.

If the player has already employed an applicant at the stage i, he accepts another
applicant if x ≥ v1

i,r+1(pj).

The first applicant would be accepted at the stage i if x ≥ v1
i+1(pj)− v1

i,i+1(pj).



v1
i = v1

i,i+1+
v1

i+1−v1
i,i+1∫

0

(v1
i+1 − v1

i,i+1)dx+
1∫

v1
i+1−v1

i,i+1

(pjx+p̄j(v1
i+1−v1

i,i+1))dx

=v1
i+1+ pj

2
(1−(v1

i+1−v1
i,i+1))2;

v1
i,r =

v1
i,r+1∫
0

v1
i,r+1dx+

1∫
v1

i,r+1

(pjx + (1− pj)v1
i,r+1)dx=v1

i,r+1+ pj

2
(1− v1

i,r+1)2;

v1
i,N = pj

2
− p̄jC;

v1
i,r = v1

i,r(pj); v1
i = v1

i (pj), i = 1, ..., N − 1, r = i + 1, ..., N.

Table 2. Optimal thresholds for N = 10, pj = 0, C = 0

i 1 2 3 4 5 6 7 8 9 10

v1
i+1 − v1

i,i+1 0.757 0.735 0.708 0.676 0.634 0.579 0.5 0.375 0 0

v1
i,i+1 0.850 0.836 0.820 0.800 0.775 0.742 0.695 0.625 0.5 0



Two players

v2,j
i — expected payoff of the j-th player at the stage i

v2,j
i,r , j = 1, 2 — expected payoff of the j-th player at the stage r on condition he has

already employed a secretary at the stage i

At the stage N − 2 if the first player hasn’t employed a secretary and the second
player selected one, the matrix of the game is as following:

M2
N−2(x) =

( A2 R2

A1

(
m1

11, m2
11

) (
m1

12, m2
12

)
R1

(
m1

21, m2
21

) (
m1

22, m2
22

)),

where
m1

11 = p1(x+v2,1
N−2,N−1) +p2v1

N−1(p1) +(1− p1 − p2)v2,1
N−1;

m2
11 = p2x + p1v2,2

i,N−1 + (1− p1 − p2)v2,2
i,N−1;

m1
12 = p1(x + v2,1

N−2,N−1) + (1− p1)v2,1
N−1;

m2
12 = p1v1

i,N−1(p2) + p̄1v2,2
i,N−1;

m1
21 = p2v1

N−1(p1) + p̄2v2,1
N−1;

m2
21 = p2x + p̄2v2,2

i,N−1;

m1
22 = v2,1

N−1;

m2
22 = v2,2

i,N−1.



m-person game

vm,j
i , j = 1, 2, ..., m — expected payoff of the j-th player at the stage i

vm,j
i,r , j = 1, 2, ..., m — expected payoff of the j-th player at the stage r on condition

he has already employed a secretary at the stage i

Theorem 2 in the m-person best-choice game each player uses an optimal strategy
as if the other players were not there, that is, vm,j

i = v1
i (pj), i = 1, ..., N − 1;

vm,j
i,r = v1

i,r(pj), r = i + 1, ..., N ; v1
i,N(pj) = pj

2
+ p̄jC, j = 1, 2, ..., m.
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