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Let {ξj}j∈Z be a stationary sequence, and {aj; j ∈ Z} be real num-

bers.

Moving-average sequence (linear process) is defined by

Xk :=
∑
j∈Z

ak−jξj. (1)

If

E|ξ0| < ∞ and
∑
j∈Z

|aj| < ∞ or (2)

{ξj}j∈Z are i.i.d., Eξ0 = 0, Eξ20 < ∞, and
∑
j∈Z

a2
j < ∞, (3)

then (1) is well defined.
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Mixing conditions

[Rosenblatt, 1956] A stationary sequence {Xk}k∈Z is called strong

mixing, or a-mixing, if α(m) → 0 as m →∞ where

α(m) = sup
A∈F0

−∞, B∈F∞m
|P(B ∩A)−P(B)P(A)|, (4)

[Ibragimov, 1962] uniformly strong mixing or ϕ-mixing:

ϕ(m) → 0 as m →∞ where

ϕ(m) = sup
A∈F0

−∞, B∈F∞m ,

P(A) 6=0

|P(B ∩A)−P(B)P(A)|
P(A)

(5)

where F0
−∞ = σ{Xj, j ≤ 0} and F∞m = σ{Xj, j ≥ m}.

[Ibragimov, Linnik, 1965] If {ξj} is i.i.d Gaussian sequence then ϕ-

mixing is equivalent to the finitness of A0 := {j ∈ Z : aj 6= 0}.



[Rosenblatt 1980, Andrews 1984] Let ξj be independent Bernoulli

random variables |ρ| < 1. Then the sequence Xk =
∑∞

j=0 ρjξk−j is

not α-mixing.

Theorem 1. Let {ξj; j ∈ Z} be nondegenerated independent descrete random
variables. Moreover, let 0 < δ ≤ ∆ < ∞ be such constants that distance between
any two atoms of ξj is not less than δ and is not greater than ∆. Finally, let the
series (2) be convergent for each k and one of the following two conditions be
fulfilled

1) aj = a0q|j| if j < 0 and aj = a0aj if j ≥ 0, where a0 6= 0, 0 < q < 1, 0 < a ≤
δ/(∆ + δ);

2) 0 < |akj+1
| ≤ |akj

|δ/(∆ + δ) for all j ≥ 0, where {akj
; j ≥ 0} are non-zero

coefficients aj ordered by their absolute values.

Then the the sequence {Xk} does not satisfy α-mixing.

If there are only strong inequalities for a and akj
in conditions 1) and 2) then

proposition is true when ξj are arbitrary dependent.



Theorem 2. Let {ξj; j ∈ Z} be independent bounded random

variables. Let set

A− := {j < 0 : aj 6= 0}

be infinite and
∑

j∈Z |aj| < ∞. Then the sequence {Xk} does not

satisfy ϕ-mixing condition.

Theorem 3. Let {ξj; j ∈ Z} be independent bounded random

variables with density p(x), A− be finite and for some C > 0∫
R
|p(y + x)− p(y)| dy ≤ C|x| for all x ∈ R.

∑
j∈Z

j|aj| < ∞,

|ak0
| >

∑
j 6=k0

|aj| for some k0.

Then {Xk} satisfies ϕ-mixing condition.



Theorem 4. Let {ξj; j ∈ Z} be independent nondegenerated random variables,
aj > 0 for all j, and the following conditions be fulfilled

1) for some positive constants x0, c0, c1, c2, integers j1 > 0 and j0

supx≥x0

P(ξj0≥x+y)
P(ξj0≥x)

≤ c1e−c2y for all y ≥ 0,

P(ξj ≥ x) ≤ c1e−c2x for all x ≥ x0, if |j| < j1,

P(ξj ≥ x) ≤ c0P(ξj0 ≥ x) for all x ≥ x0, if |j| ≥ j1;

2) inequality holds

inf
j∈Z

aj

aj+1
> 0;

and one of the following conditions is fulfilled

3) inequalities hold ∑
j 6=0

aj ln |j| < ∞ and inf
j∈Z

aj+1

aj
> 0 or

3′) for some δ > 0, c3 > 0∑
j∈Z

aj|j|δ < ∞ and
aj+1

aj
ln |j| ≥ c3 for all j such that |j| is greate enough.

Then the corresponding sequence {Xk} does not satisfy ϕ-mixing condition.



CLT for functions of moving averages

Results for g(Xk) = h({ξk−j}j∈Z). Let g(x) be a Lipschitz function

and {ξj} be i.i.d.

Ibragimov, Linnik, 1965, Billingsley, 1968

∞∑
n=1

( ∑
|k|≥n

a2
k

)1/2
< ∞ (10)

Ibragimov, Linnik, 1965

E|X1|2+δ < ∞,
∞∑

n=1

(
E

∣∣∣ ∑
|k|≥n

akξ−k

∣∣∣2+δ
1+δ

)1+δ
2+δ

< ∞, (11)

or

|X1| < C,
∞∑

n=1

E
∣∣∣∣ ∑
|k|≥n

akξ−k

∣∣∣∣ < ∞. (12)



Hall, Heyde, 1975.
∞∑

n=1

( ∞∑
|k|≥n

|ak|
)2

< ∞, (13)

Conditions (10)–(13) imply ∑
j∈Z

|aj| < ∞. (14)

Conditions (10), (13) are stronger than (14). Also if ξj are Gaussian
then conditions (11), (12) imply (10).

Ho, Hsing (1997). aj = 0 for all j < 0,∑
j∈Z

|aj| < ∞.

Wu (2002). aj = 0 for all j < 0,

∞∑
n=1

( ∞∑
k=n

ak

)2
< ∞.



[Dedecker J., Merlevede F., Volny D. (2007)]. If
∑

j∈Z |aj| < ∞,

{ξj} – i.i.d, Eξ0 = 0, Eξ20 < ∞,

wg(h, M) ≤ ChMα,

where α ≥ 0, E|ξ0|2+2α < ∞, or

‖ξ0‖ < ∞,∑
k∈Z

wg(c|ak|, ‖X0‖∞) < ∞,

where

wg(h, M) = sup
|t|≤h,|x|≤M,|x+t|≤M

|g(x + t)− g(x)|.

Then CLT holds.



[Dedecker J., Merlevede F., Volny D. (2007)]. If ak = 0, k < 0, {ξj}
– i.i.d, Eξ0 = 0, Eξ20 < ∞,

lim sup
n→∞

∑n
i=0 |ai|

|
∑n

i=0 ai|
< ∞, and

n∑
k=1

√∑
i≥k

a2
i = o(sn),

where sn =
√

n|a0 + . . .+an|, g is Lipschitz and g′ is contnuous then

1

sn

n∑
k=1

g(Xk) →d N (0, σ2), where σ2 = Eξ20

(
Eg′(X0)

)2
.

[Dedecker J., Merlevede F., Volny D. (2007)]. If ak = 0, k < 0, {ξj}
– i.i.d, Eξ0 = 0, Eξ40 < ∞,

∑
k≥0

|ak|

√√√√ ∞∑
i=k+1

a2
i < ∞, Eg′(X0) = 0.

g′ is Lipschitz, then CLT holds.



Theorem 5. Let g(Xk) :=
∑

l≥0
βlX

l
k, C =

∑
|ai| and one of the

following conditions (α) or (α0) be fulfilled:

(α) for some δ > 0
∑

l≥0
|βl| · l · Cl

(
E|ξ0|(2+δ)l

) 1
2+δ < ∞,

∞∑
n=0

α(n)
δ

2+δ < ∞, or

(α0) ξ0 is bounded and 
∑

l≥0
|βl| · l · Cl < ∞

∞∑
n=0

α(n) < ∞,

where α(n) is a mixing coefficient for {ξj}.

Then {g(Xk)}k≥1 satisfies CLT.



Theorem 6. Let {ξj} be i.i.d, βl = 0 and Eξl
0 = 0 for all odd

numbers l, ∑
k>0

( ∑
i

|aiai+k|
)2

< ∞,

∑
l>0

|βl|
(
2

∑
i

a2
i

)l/2
(l!)1/2

(
E|ξ|2l

)1/2
< ∞.

Then {g(Xk)}k≥1 satisfies CLT.



Limit theorem for U-statistics

Second order degenerated (canonical) U-statistics:

Un =
1

n

∑
1≤k1 6=k2≤n

f(Xk1
, Xk2

) (40)

where kernel f is degenerated (canonical), i.e.

Ef(t, Xk) = Ef(Xk, t) = 0 for all t. (41)

Rubin H., Vitale R. A. (1980). {Xk}k≥1 are independent.

Borisov I. S., Volodko N. V. (2008). {Xk}k≥1 are m-dependent or

mixing.



Let functions {ei(t) : i ≥ 0} form an orthonormal basis in

{h : Eh2(X0) < ∞},

e0(t) ≡ 1.

Then Eei(X0) = 0 for all i ≥ 1, Ee2i (X0) = 1 for all i.

Functions {ei(t1)ej(t2)}i,j≥0 form an orthonormal basis in

{h : Eh2(X∗
0, X∗

1) < ∞}.

Let Ef2(X∗
0, X∗

1) < ∞, then

f(t1, t2) =
∑

i1,i2≥1

fi1,i2ei1(t1)ei2(t2). (43)



Theorem 7. Let function f be continuos, functions ei and eiej be

Lipschitz for all i, j ≥ 1, ∑
i

|ai| < ∞, (44)

∑
i,j≥1

|fi,j|(1 + Lip(ei)Lip(ej)) < ∞. (45)

Then

Un
d→

∑
i1,i2≥1

fi1,i2Hi1,i2(τi1, τi2), (46)

where {τj} is a Gaussian sequence of centered random variables with

covariations

σi,j = cov(τi, τj) =
∞∑

k=−∞
cov(ei(X0), ej(Xk)), (47)

Hi1,i2(τi1, τi2) = τi1τi2 for i1 6= i2, and Hi,i(τi, τi) = τ2
i − 1.
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