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Let {&;};cz be a stationary sequence, and {a;; j € Z} be real num-

bers.

Moving-average sequence (linear process) is defined by

Xk: L= Z ak_]fj
JEZL
If
El¢gl <o and > aj| <oo or
JEZL
{&}jezareiid., E&p=0, E&<oo, and > af <oo,

then (1) is well defined.

(1)
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1. Mixing conditions

2. CLT for the sequence {g(Xy)}r>1, Where g(z) is a non-linear
function.

3. Limit theorem for canonical U-statistics.



Mixing conditions
[Rosenblatt, 1956] A stationary sequence {Xj}.c7 is called strong
mixing, or a-mixing, if a(m) — 0 as m — oo where
a(m) = sup P(BNA)—P(B)P(A)|, (4)

AeFO__, BEF

[Ibragimov, 1962] uniformly strong mixing or o-mixing:
o(m) — 0 as m — oo where

AeFO | Bergy, P(A)
P(A)#£0

where FO_ = o{X:,j <0} and FX = o{X;,j > m}.

(5)

[Ibragimov, Linnik, 1965] If {§;} is i.i.d Gaussian sequence then -
mixing is equivalent to the finitness of Ag .= {j € Z : a; # 0}.



[Rosenblatt 1980, Andrews 1984] Let {; be independent Bernoulli
random variables |p| < 1. Then the sequence X, = > 520 pjgk_j is
not a-mixing.

Theorem 1. Let {&;; j € Z} be nondegenerated independent descrete random
variables. Moreover, let 0 < d < A < oo be such constants that distance between
any two atoms of ¢; is not less than ¢ and is not greater than A. Finally, let the
series (2) be convergent for each k and one of the following two conditions be
fulfilled

1) ajzaqu| if j <0 and a; = apa’ if j > 0, where ag #0,0<¢< 1, 0<a<
o/(A +9);

2) 0 < lag,,| < laglé/(A+95) for all j > 0, where {a; j > O} are non-zero
coefficients a; ordered by their absolute values.

Then the the sequence { X} does not satisfy a-mixing.

If there are only strong inequalities for a and a;, in conditions 1) and 2) then

proposition is true when §; are arbitrary dependent.



Theorem 2. Let {&;; j € Z} be independent bounded random
variables. Let set

A7 :={j<0:a; #0}
be infinite and X ;czla;| < oo. Then the sequence {Xj} does not
satisfy ¢-mixing condition.

Theorem 3. Let {§;; j € Z} be independent bounded random
variables with density p(x), A~ be finite and for some C > 0

/R p(y + ) — p(y)|dy < Clxz| for all z € R.
> dlaj] < oo,
JEL
lag,| > Y laj| for some ko.
JFko
Then {X,} satisfies po-mixing condition.



Theorem 4. Let {¢;; j € Z} be independent nondegenerated random variables,
a; > 0 for all j, and the following conditions be fulfilled

1) for some positive constants xq, co, c1, ¢, integers j1 > 0 and jo

SUPy>z, % < cre %Y for all y > 0,
P& > x) < cre @® for all © > xo, if |j] < j1,
P(& > x) < coP (&), > x) for all x > xo, if [j| > j1;

2) inequality holds
inf
JEL @jt1

and one of the following conditions is fulfilled

> 0;

3) inequalities hold

. ay
Eaj|n|j|<oo and inf *L >0 or
, JEL  ay
j70

3") for some § >0, c3 >0

Zaj|j|5 <oco and Yt |7| > ¢z for all j such that |j| is greate enough.

JEZ J

Then the corresponding sequence {X;} does not satisfy ¢-mixing condition.



CLT for functions of moving averages

Results for g(Xy) = h({§k—;}jez)- Let g(z) be a Lipschitz function
and {{;} be i.i.d.

Ibragimov, Linnik, 1965, Billingsley, 1968

i ( Z a%)1/2<oo (10)

n=1 " |k|>n
Ibragimov, Linnik, 1965

- 250,38
E|X{|77° < oo, )| (E‘ > akﬁ—k‘1+5> < 00, (11)
n=1 |k|>n
or
00
| X1| < C, Z E' Z akf_k' < 0. (12)

n=1 " |k|>n



Hall, Heyde, 1975.

i:: < Z I%I)2 < o0, (13)

|k|>n

Conditions (10)—(13) imply
Z a;| < oo. (14)
JEZ
Conditions (10), (13) are stronger than (14). Also if £; are Gaussian
then conditions (11), (12) imply (10).

Ho, Hsing (1997). a; = 0 for all j <0,
Z |aj| < Q.
JEZL

Wu (2002). a; = 0 for all j <0,

oo oo

> (X

2
ak> < OQ.
n=1 “k=n



[Dedecker J., Merlevede F., Volny D. (2007)]. If > ,c7 |a;| < oo,
{¢;} —iid, E§g =0, E£€2 < oo,
wg(h, M) S ChMa,

where a > 0, E|§0|2T2¢ < o, or

€0l < oo,

> wg(clagl, [ Xolloo) < o0,
keZ

where

wy(h, M) = sup Jg(a+b) — (@)
1t|<h,|z|<M,|z+t|I<M

Then CLT holds.



[Dedecker J., Merlevede F., Volny D. (2007)]. If ap =0, k <0, {&;}
—i.i.d, E§ =0, E€3 < oo,

lim sup <oo, and > Y af = o(sp),

n—oo |31 a4 k=1 \ i>k

1=0

where s, = /nlag+ ...+ an|, g is Lipschitz and ¢’ is contnuous then

n 2
L3 g(X) —aN(0,07),  where o2 = Ee3 (B (X0))

51 =1

[Dedecker J., Merlevede F., Volny D. (2007)]. If a =0, k <0, {&;}
—i.i.d, E¢g = 0, E&§ < oo,

©.@)
de > a? <o, Eg'(Xo)=0.

k>0 i=k-+1
g’ is Lipschitz, then CLT holds.



Theorem 5. Let ¢(Xi) = X 5XL, C = S |a;| and one of the
1>0

following conditions (a) or (ag) be fulfilled:
(o) for some 6 > 0

’

1
> 18] - 1- CYE|go| P2+ < oo,
} 1>0

o0 _0
Zoa(n)2+5 < oo, Or
\ =

(ag) & is bounded and

(Y8l 1-C < oo
>0

o0

>> a(n) < oo,
. n=0

where a(n) is a mixing coefficient for {¢;}.

Then {g(X})}r>1 satisfies CLT.



Theorem 6. Let {3} be i.i.d, 3 = 0 and E&, = 0 for all odd
numbers [,

S (S laiaal) < oo

k=0 © 1

2 Iﬁzl(z . aJ,L?)l/Q(u)l/2 (E|§|2l>1/2 < oco.

>0
Then {Q(Xk)}k21 satisfies CLT.



Limit theorem for U-statistics

Second order degenerated (canonical) U-statistics:

" 1<ki#Eko<n

where kernel f is degenerated (canonical), i.e.

Ef(t,Xk) = Ef(Xk,t) =0 for all t. (41)

Rubin H., Vitale R. A. (1980). {Xjy}r>1 are independent.

Borisov 1. S., Volodko N. V. (2008). {Xj};>1 are m-dependent or
mixing.



Let functions {e;(t) : i > 0} form an orthonormal basis in
{h : ER?(Xp) < oo},

eo(t) = 1.
Then Ee;(Xg) =0 for all i > 1, Ee?(Xp) = 1 for all 1.
Functions {e;(t1)e;(t2)}; j>0 form an orthonormal basis in

{h: ER?(X}, XT) < oo}

Let Ef2(X3, XT) < oo, then

FQ1,t2) = D figirei, (t1)ei, (t2).

11,0221

(43)



Theorem 7. Let function f be continuos, functions e; and e;e; be
Lipschitz for all 7,57 > 1,

(
> fijl(1 + Lip(e;) Lip(e;)) < oo. (45)
1,721
Then
d
Un = Z JirsioHiy io(Tig» Tig) (46)
11,1221

where {7;} is a Gaussian sequence of centered random variables with
covariations

0

o; ;= cov(T;, ;) = Z cov(e;(Xo),e;(Xg)), (47)

k=—00

H;, i, (TiyTiy) = TiyTip, fOr iy #ip, and H, (7, 7)) =77 — 1.
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