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The OU-process

In the physical model x(t) describes the position of a Brownian particle at time
t > 0. It is assumed that the velocity dx

dt = v exists and satisfies the Langevin
equation.

Mathematically the two ordinary differential equations combine to the initial
value problem:

dxt = vt dt

dvt = −βvtdt + βK(xt)dt + dBt,
(1)

with initial value (x0, v0) = (x(0), v(0)), where Bt, t ≥ 0, is mathematical
Brownian motion on the real line and β > 0 is a constant which physically
represents the inverse relaxation time between two successive collisions.
K(x, t) is an external field of force.

Moreover sufficient conditions for the existence of a unique solution of (1) can
be found in e.g. [Applebaum] and in [Kolokoltsov, Schilling, Tyukov].
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The OU-process

For the physical Ornstein Uhlenbeck theory of motion, given by a second
order SDE on IRd, the solution of the corresponding system on the cotangent
bundle (IR2) is given by:

vt = e−βtv0 + β

∫ t

0
e−β(t−u)K(xu)du +

∫ t

0
e−β(t−u)dBu,

which is called Ornstein-Uhlenbeck velocity process, and

xt = x0 +
∫ t

0
e−βsv0ds + β

∫ t

0

∫ s

0
e−β(s−u)K(xu)duds +

∫ t

0

∫ s

0
e−βseβudBuds, (2)

which is called Ornstein-Uhlenbeck position process. The initial values are
given by (x0, v0) = (x(0), v(0)) and t ≥ 0.

Remark We introduce this physical notation for the Ornstein-Uhlenbeck
process since it is more adequate for our studies than the mathematical one.
In Nelson’s notation the noise B is Gaussian with variance 2β2D with
2β2D = 2βkT

m and physical constants k, T, m in order to match
Smolouchwsky’s constants.
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OU-process with drift

Let us modify the Ornstein-Uhlenbeck process (2) as
in [Al-Talibi, Hilbert, Kolokoltsov].
We introduce a stochastic Newton equation driven by βXt, where {Xt}t≥0 is an
α-stable Lévy process, with 0 < α < 2 and β is a scaling parameter.
Sufficient conditions for the existence of a unique solution may be found
in [Applebaum] and [Kolokoltsov, Schilling, Tyukov]. In this case the solution of
this stochastic differential equation can be represented as given in the
proposition below.

Proposition
Assume A : IR → IR is linear. Furthermore, let X be a Lévy process on IR. Let
f : [0,∞] → IR be a continuous function. Then the solution of the stochastic
differential equation

dxt = Axtdt + f (t)dt + dXt, t ≥ 0

with initial value x(0) = x0, is

xt = eAtx0 +
∫ t

0
eA(t−s)f (s)ds +

∫ t

0
eA(t−s)dXs.
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OU-process with drift

Proof.
The equation in question has a unique solution, [Applebaum]. We can verify
the solution using integration by parts respectively Itô formula, i.e.

e−Atxt = x0 +
∫ t

0
xs

(
−Ae−As) ds +

∫ t

0
e−Asdxs,

and inserting for dxt = Axtdt + f (t)dt + dXt we obtain

e−Atxt = x0 +
∫ t

0
e−Asf (s)ds +

∫ t

0
e−AsdXs,

and we are done.

DFM LNU 6 / 21 Haidar Al-Talibi



The Nelson Limit

Let (x, v) be the solution of the system

dx(t) = v(t)dt, x(0) = x0,

dv(t) = −βv(t)dt + βK(x(t), t)dt + dBt, v(0) = v0 .

where the noise B is Gaussian with variance β2 on IR`.

Theorem 10.1 Let (x, v) satisfy the equation above and assume that K is a
function in IR` satisfying a global Lipschitz condition. Moreover assume that
B is standard BM and y solves the equation

dy(t) = K(y(t), t)dt + dB(t) y(0) = v0 .

Then for all v0 with probability one

lim
β→∞

x(t) = y(t),

uniformly for t in compact subintervals of [0,∞).
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Modified OU-process

Here we introduce a modified Ornstein-Uhlenbeck position process driven by
βXt, where {Xt}t≥0 is an α-stable Lévy process, 0 < α < 2 and β > 0 is a
scaling parameter as above. Let us focus on the position process {xt}t≥0.
Due to Proposition 1, the solution has the form

xt = x0 +
∫ t

0
e−βsv0ds + β

∫ t

0

∫ s

0
e−β(s−u)K(xu)duds +

∫ t

0

∫ s

0
βe−βseβudXuds, (3)

where K satisfies sufficient conditions to guarantee existenc and uniqueness
of solutions see e.g. [Applebaum] and [Kolokoltsov, Schilling, Tyukov].
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Modified OU-process

For arbitrary Lévy processes Y the characteristic function is of the form
φYt(u) = etη(u) for each u ∈ IR, t ≥ 0, η being the Lévy-symbol of Y(1).

We concentrate on α-stable Lévy processes with Lévy-symbol for α 6= 1:

η(u) = −σα|u|α
[
1− iγsgn (u) tan

(πα
2

)]
(4a)

and for α = 1 is:

η1(u) = −σ|u|
[

1 + iγ
2
π

sgn (u) log (|u|)
]

(4b)

for constant γ.
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Time change

Proposition (Lukacs)
Assume that Y is an α-stable Lévy process, 0 < α < 2, and g is a continuous
function on the interval [s, t] ⊂ T  IR.
Let η be the Lévy symbol of Y1 and
ξ be the Lévy symbol of ψ(t) =

∫ t
s g(r) dYr.

Then we have

ξ(u) =
∫ t

s
η(ug(r)) dr .

For g(`) = eβ(`−t), ` ≥ 0 and the α-stable process X in (3) the symbol of
Zt =

∫ t
s eβ(r−t) dXr is:

ξ(u) =

{ ∫ t
s eαβ(r−t) dr · η(u) for 0 < α < 2, α 6= 1∫ t
s eαβ(r−t) dr · η1(u) for α = 1

with η, η1 as in (4a) and (4b), respectively, and 0 ≤ s ≤ t.

DFM LNU 10 / 21 Haidar Al-Talibi



Time change Time Change - α-stable case

For g(`) = eβ(`−t), ` ≥ 0 and the α-stable process X in (3) the symbol of
Zt =

∫ t
s eβ(r−t) dXr is:

ξ(u) =

{ ∫ t
s eαβ(r−t) dr · η(u) for 0 < α < 2, α 6= 1∫ t
s eαβ(r−t) dr · η1(u) for α = 1

with η, η1 as in (4a) and (4b), respectively, and 0 ≤ s ≤ t.

We are thus lead to introduce the time change τ−1(t) where

τ(t) =
∫ t

0
e−αβteαβudu =

1
αβ

(
1− e−αβt) (5)

which is actually deterministic.

This means that Xt and Zτ−1(t) have the same distribution.
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Approximation Theorem

Theorem
Let t1 < t2, t1, t2 ∈ T, and T a compact subset of [0,∞). Then there are N1 and
N2 satisfying:

(i) t2 − t1 ≥
N1

β
and (ii) βα ≥ N2vα

0 , (6)

with 0 < α < 2. Furthermore let

dyt = K(yt)dt + dXt, (7)

with y(0) = x0 and K : Rd → Rd satisfy a global Lipschitz condition, then

lim
β→∞

xt = yt,

for any t ∈ T where {xt}t≥0 is the Ornstein-Uhlenbeck position process (3) and
{yt}t≥0 is the solution of (7) with {Xt}t≥0 as its driving α-stable Lévy noise.
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Approximation Theorem

For the increment of the OU position process

xt2 − xt1 =
∫ t2

t1
e−βsv0ds + β

∫ t2

t1

∫ s

0
e−β(s−u)K(xu)duds +

∫ t2

t1

∫ s

0
e−β(s−u)βdXuds.

(8)

The first integral of (8) is
∫ t2

t1
e−βsv0ds = v0

β

(
e−βt1 − e−βt2

)
.

Taking the latter expression to the power α, where 0 < α < 2 and taking into
account that e−βt1 − e−βt2 ≤ 1 we obtain that

vα
0

βα

∣∣e−βt1 − e−βt2
∣∣α ≤ 1

N2
e−αN1

∣∣−(1− e−N1)
∣∣α .

Where we used ((6)(i), (ii)) and the fact that e−αβt1 ≤ e−αβ∆t ≤ e−αN1 . If we
choose N1 and N2 large enough then 1

N2
e−αN1

∣∣−(1− e−N1)
∣∣α tends to zero.
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Approximation Theorem

The third part of (8) is estimated by first splitting the double integral into two
integrals. We have

β

[∫ t2

t1

∫ s

t1
e−βseβudXuds +

∫ t2

t1

∫ t1

0
e−βseβudXuds

]
. (9)

The double integral of the second part of (9) tends to zero as β and N1 tend to
infinity,

β

∫ t2

t1

∫ t1

0
e−βseβu dXuds = −Zτ(t1)

(
e−βt2 − e−βt1

)
eβt1

=
(
1− e−β∆t) Z 1

αβ (1−e−αβt1) =
1

α
√
β

(
1− e−β∆t) Z 1

α (1−e−αβt1),

where Zτ is an α-stable Lévy process. Moreover, the scaling property of Lévy
processes we used in the last step, i.e. Zγτ = γαZτ , where γ > 0, is actually a
special case of Proposition 2.
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Approximation Theorem

Using the assumption (6(i)) we obtain

e−β∆t ≤ e−N1

Thus, for large N1 and large β, the latter expression converges to zero and
Z 1

α (1−e−αβt1) converges to Z 1
α

a.e. which is almost surely finite. Hence the
product converges almost surely to zero.

Let us turn to the first part of (9) which reveals the increment of the driving
Lévy process. We use partial integration to have

β

∫ t2

t1

∫ s

t1
e−βseβudXuds = −e−βt2

∫ t2

t1
eβudXu + (Xt2 − Xt1) . (10)
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Approximation Theorem

By introducing a time change in analogy to (5) on the right hand side of (10)
we obtain

−e−βt2

∫ t2

t1
eβudXu = Z 1

αβ (1−e−αβ∆t) =
1

α
√
β

Z 1
α (1−e−αβ∆t),

where we used the scaling property of Lévy processes Zγτ = γαZτ with γ > 0.
By assumption (6(i)) we see that e−αβ∆t ≤ e−αN1 which tends to zero for large
N1 and Z 1

α (1−e−αβ∆t) converges to Z 1
α

. In analogy to the argument above the
product 1

α
√

β
Z 1

α (1−e−N1) tends to zero almost surely for N1 and β tending to
infinity.
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Approximation Theorem

The second part of (8) can be rewritten as (by using integration by parts)[
−e−βs

∫ s

0
eβuK(xu)

]t2

t1

+
∫ t2

t1
K(xs)ds =

= e−βt1

∫ t1

0
eβuK(xu)du− e−βt2

∫ t2

0
eβuK(xu)du +

∫ t2

t1
K(xs)ds. (11)

The first integral of (11) can be written as∣∣∣∣∫ t1

0
e−β(t1−u)K(xu)du

∣∣∣∣ ≤ ∫ t1

0
e−β(t1−u) |K(xu)− K(x0)| du + K(x0)

∫ t1

0
e−β(t1−u)du.

(12)
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Approximation Theorem

Let κ be the Lipschitz constant of K such that |K(x1)− K(x2)| ≤ κ|x1 − x2| for
x1, x2 ∈ IR.
Looking at the first integral in (12) we see that it is bounded by∫ t1

0
e−β(t1−u) |K(xu)− K(x0)| du ≤ t1κ sup

0≤u≤t1
|xu − x0|

∫ t1

0
e−β(t1−u)du

Now consider (3), observing that β
∫ s

0 e−β(s−u)du ≤ 1 we can write

|xt − x0| ≤ |v0|+
∫ t

0
K(xu)du +

∫ t

0
dXu (13)

The second integral of (13) is bounded in absolute value by tK(x0) + tκ|xu − x0|.
Letting tκ ≤ 1

2 and taking the supremum of (13) for all 0 ≤ t ≤ t1 we obtain
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Approximation Theorem

sup
0≤t≤t1

|xt − x0| ≤ |v0|+
1
2

sup
0≤u≤t1

|xu − x0|+
1

2κ
|K(x0)|+ sup

0≤u≤t1
|Xu − X0|

Rearranging we obtain that

sup
0≤t≤t1

|xt − x0| ≤ 2|v0|+
1
κ
|K(x0)|+ 2 sup

0≤u≤t1
|Xu − X0|.

Convergence in probability ?

Restrict 1 < α < 2?

Using induction
ζn = sup

tn≤t≤tn+1

|xt − xtn | .

is bounded for all tn ≤ t ≤ tn+1, n = 0, 1, 2, · · · , and any t ∈ [0,T].
The second integral in (11) is treated in the same manner.
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Approximation Theorem

What is left? Finally, the remaining part of (11) is the integral
∫ t2

t1
K(xs)ds and

the increments of α-stable Lévy process Xt2 − Xt1
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