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Introduction

◮ Fractional Brownian motion (fBM) is a Gaussian process with
certain covariance structure

◮ It has become a popular model in different fields of science,
because it allows to model for dependence

◮ If no Gaussianity assumption, the covariance structure does
not define the law uniquely

◮ There are several ways of defining fractional Lévy processes as
generalisations of fBM

◮ We concentrate on defining fractional Lévy processes (fLP) by
integral transformations

◮ This means that we replace Brownian motion by more general
Lévy process in the integral representation of fBM

◮ FLP’s have the same covariance structure as fBM
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Fractional Brownian motion

◮ Fractional Brownian motion (fBM) BH with Hurst index
H ∈ (0, 1) is a zero mean Gaussian process with the following
covariance structure

EBH

t BH

s =
1

2

(

|t|2H + |s|2H − 2|t − s|2H
)

.

◮ If H = 1

2
, we are in the case of ordinary BM. For H >

1

2
the

process has long range dependence property and for H <
1

2

the increments are negatively correlated.

◮ FBM is self-similar with parameter H.

◮ FBM is not semi-martingale nor Markov process (unless
H = 1

2
)
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Integral representations of fBM

◮ A fractional Brownian motion can be represented as an
integral of a deterministic kernel w.r.t. an ordinary Brownian
motion in two ways.

◮ Mandelbrot-Van Ness representation of fBM:

(

BH

t

)

t∈R

d
=

(
∫

t

−∞

fH(t, s)dWs

)

t∈R

.

◮ Molchan-Golosov representation of fBM:

(

BH

t

)

t≥0

d
=

(
∫

t

0

zH(t, s)dWs

)

t≥0

.
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Integral representation kernels
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Figure: Mandelbrot-Van Ness kernel with H = 0.25 (left) and H = 0.75.
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Figure: Molchan-Golosov kernel with H = 0.25 (left) and H = 0.75.
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FLP’s by integral transformations

◮ The main idea is to integrate one of the fBM integral
representation kernels w.r.t. a more general square integrable
Lévy process.

◮ We call these processes fractional Lévy procesesses.

◮ These processes have the same covariance structure as fBM.

◮ However, different kernels lead to different processes
◮ Fractional Lévy processes by Mandelbrot-Van Ness

representation (fLPMvN)
◮ Fractional Lévy processes by Molchan-Golosov representation

(fLPMG)
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FLPMvN

Fractional Lévy processes by (infinitely supported) Mandelbrot-Van
Ness kernel representation are defined as

(Xt)t∈R

d
=

(
∫

t

−∞

fH(t, s)dLs

)

t∈R

.

◮ L is a zero mean square integrable Lévy process without
Gaussian component.

◮ Integral can be understood as a limit in probability of
elementary integrals, in L2 sense or pathwise.

Fractional Lévy processes by Mandelbrot-Van Ness representation
have been studied by Benassi & al (2004) and Marquardt (2006).
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FLPMG

Fractional Lévy processes by (compactly supported)
Molchan-Golosov representation are defined as

(Yt)t≥0

d
=

(
∫

t

0

zH(t, s)dLs

)

t≥0

.

◮ L is zero mean square integrable Lévy process without
Gaussian component as before

◮ Integral can be understood as a limit in probability of
elementary integrals, in L2 sense and in some cases also
pathwise.

The definition in this generality is new to the best of my
knowledge.
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Paths of different fLP’s
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Figure: Sample path of fLPMvN with H = 0.25 (left) and H = 0.75.
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Figure: Sample path of fLPMG with H = 0.25 (left) and H = 0.75.
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Properties of fLPMG

◮ Hölder continuous paths of any order γ < H − 1

2

◮ Zero quadratic variation for H >
1

2

◮ Discontinuous and unbounded paths with positive probability
when H <

1

2

◮ Inifinitely divisible law

◮ Adapted to the natural filtration of driving Lévy process

◮ Nonstationary increments in general

◮ Covariance structure of fBM

◮ Stochastic integration
◮ Wiener integrals for deterministic integrands
◮ Skorokhod type integration
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Comparison of various definitions

Property / Process fLPMvN fLPMG

Covariance structure of fBM Yes Yes

Stationarity of increments Yes No

Adapted (natural filtration) No Yes

Pathwise construction for H >
1

2
Yes Partial

result

Hölder ontinuous paths for H >
1

2
Yes Yes

Self-similarity No No

Definition does NOT need two-sided pro-
cesses

No Yes

Table: Comparison of various definitions of fractional Lévy processes.
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Connection of different fLP concepts

Y s

t =

∫

t

0

zH(t, u)dLu−s , t ∈ [0,∞),

is fLPMG with Hurst parameter H. Define the time shifted process

Z s

t = Y s

t+s − Y s

s , t ∈ [−s,∞).

Let now

Z∞
t = cHXt = cH

∫

t

−∞

fH(t, v)dLv , t ∈ R

be appropriately renormalised fLPMvN. Then we have the
following result (analogous to fBM case in Jost (2008))

Theorem
For every t ∈ R there exist constants S , C > 0 such that

E (Z s

t − Z∞
t )2 ≤ Cs2H−2

, for s > S .
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Financial application

◮ Fractional Lévy processes (by any of the two transformations)
have zero quadratic variation property when H >

1

2
.

◮ Thus we can use the results of Bender & al (2008) and obtain
a no-arbitrage theorem for mixed model where the price of an
asset is given by

St = exp (ǫWt + σZt) ,

where W is an ordinary Brownian motion and Z is either
fLPMvN or fLPMG with H >

1

2
.

◮ The model can be used for capturing random shocks in the
market that have some long term impacts
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Thanks for your attention

Is there any nice pub nearby?
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