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I We want to calculate E [g(XT )] using Monte Carlo, when Xt

is some infinite activity Lévy process.

I Problem: We can only simulate an approximate finite activity
process X t .



Questions:

I How do we choose X t?

I What is the model error:

E = E [g(XT )]− E [g(XT )] ?
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Motivation

Infinite activity Lévy processes are becoming increasingly popular
in option pricing.
They have many desirable properties, such as heavy tails,
discontinuous trajectories and good ability to reproduce observed
option prices.



Setup

I In this talk we assume, for notational ease, that all processes
are 1 dimensional. All results extend to higher dimensions.



Recall

I Associated to a Lévy process Xt is a jump measure ν.

I The quantity
ν(A), A ⊂ R

is the expected number of jumps of size A.

I If ν(R) <∞ then Xt is said to have finite activity.



Recall

A finite activity Lévy process Xt is a compound poisson process
with added diffusion:

Xt = γt + σWt +
Nt∑
i=1

Ji

where

I γ is the drift, Wt standard Brownian motion.

I The Ji are i.i.d. with law ν(dx)/ν(R).

I Nt is Poisson with parameter tν(R).

I ν(R) the jump intensity.



Definition
The work of simulating Xt is the expected number of jumps:

Work (Xt) = E [Nt ] = t ν(R)



If Xt is an infinite activity Lévy process, ν(R) =∞, then for every
ε > 0

Xt = X ε
t + Rε

t

where

I X ε
t has finite activity with jump measure νε = 1|x |>εν:

X ε
t = γεt + σWt +

Nt∑
Ji1|J|>ε.

I Rε
t is a pure jump process with jump measure 1|x |<εν and

E [Rε
t ] = 0.



First approximation

Fix an infinite activity Lévy process Xt and some ε > 0.

Xt ≈ X ε
t i.e. Rε

t ≈ 0

Note that
Work (X ε

t ) = t ν(|x | > ε)



Theorem (Jensen’s inequality)

If |g ′(x)| ≤ C then

E =
∣∣∣E [g(XT )]− E [g(X ε

T )]
∣∣∣ ≤ Cσ(ε)

√
T

where

σ2(ε) =

∫
|x |<ε

x2ν(dx)

= Var Rε
T/T



Second approximation

[Assmussen & Rosinski ’01] If there are ”enough” jumps, then

Rε
t /σ(ε)→Wt

as ε→ 0, in distribution.

Definition
For some fixed ε > 0 we define

X t = X ε
t + σ(ε)Wt

that is, we approximate: Rε
t ≈ σ(ε)Wt .



Theorem (Berry-Essen type result)

If |g ′(x)| ≤ C then

E =
∣∣∣E [g(XT )]− E [g(XT )]

∣∣∣ ≤ 16.5C

∫
|x |<ε
|x |3ν(dx)/σ2(ε).



Problems with classical results

I Many contracts have payoff with unbounded derivative,
e.g. digital options

g(x) =

{
1 if x > 0
0 if x < 0

I These error estimates are independent of the initial value of
Xt . It is reasonable to assume that an option far into the
money is less sensitive to approximations then an option at
the money.



Results

Let Xt be a Lévy process such that there is a β ∈ (0, 2) such that∫
|x |<ε

x2ν(dx) = O(εβ) as ε→ 0,

then

Theorem (K. & Tempone)

The model error can be expressed as

E = E [g(XT )]− E [g(XT )]

=
T

6

∫
|x |<ε

x3ν(dx)E [g (3)(XT )] +O(ε2+ε).



Example

Suppose that Xt is a pure jump process with E [Xt ] = 0 and jump
measure given by

ν(dx) =
1

x2
10<x<1.

Suppose further that the payoff g(x) is given by

g(x) =

{
1 if x > 0
0 if x < 0

From the above Theorem:

E ≈ T

12
ε2E [δ′′(XT )].



I To first order, E [δ′′(XT )] is independent of the choice of ε.

I To estimate E [δ′′(XT )] we let ε = 1, i.e. all jumps have been
replaced by diffusion.

I δ′′(x) is approximated with a difference quotient.

I Note that the work of simulating XT is equal to

Work (XT ) = T
(1

ε
− 1
)
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Figure: Here the leading order error term is compared with the true error,
estimated with Monte Carlo and a small value of ε. In this picture the
true error is displayed with a dashed line. The solid line represents the
error estimated from the leading term. The dotted lines represent bounds
of the statistical error corresponding to one standard deviation.



More results

We can also derive error estimates for

I Barrier options.

I Adaptive schemes.



The goal of an adaptive scheme is to achieve same level of
accuracy with less work.



A simple adaptive scheme

I Recall that the model error is proportional to E [g (3)(XT )].

I Fix a critical region L ⊂ R.

I Fix ε1 > ε2 > 0.

I Define the adaptive approximation X
(a)
T of XT by:

X
(a)
T =


X ε1

T + σ(ε1)WT if X ε1
T /∈ L

X ε2
T + σ(ε2)WT if X ε1

T ∈ L



Error estimates & work

Theorem (K. & Tempone)

The model error is

E = E [g(XT )]− E [g(X
(a)
T )]

=
T

6

(∫
|x |<ε1

x3ν(dx)E
[
1X

ε1
T /∈Lg

(3)(XT )
]

+

∫
|x |<ε2

x3ν(dx)E
[
1X

ε1
T ∈Lg

(3)(XT )
])



The work of simulating the adaptive approximation becomes:

Work (X
(a)
T ) = T

(
ν(|x | > ε1) + P(X ε1

T ∈ L)ν(ε2 < |x | < ε1)
)



Adaptive vs. standard approximation, an example

I Assume same setup as before, i.e. pure jump process Xt with
jump measure 1/x21x>0. We let the contract be a digital
option.

I We compare a particular choice of the adaptive approximation
with the non-adaptive approximation by, for each tolerance
TOL, comparing the work.



Work comparison adaptive vs. non–adaptive
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Work as function of tolerance, adaptive and non−adaptive approximations

 

 


