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1. Dynamic Programming
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Problem Formulation

T
max F / F(t, X;,u)dt + @(X7)
v 0
subject to
dXt = U (t, Xt, ut) dt + 0o (t, Xt, ut) th
XO — Zo,

uy € U(t, Xt>, Vt.

We will only consider feedback control laws, i.e.
controls of the form

U — ll(t, Xt)
Terminology:
X = state variable
u = control variable
U = control constraint

Note: No state space constraints.
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Main idea

e Embedd the problem above in a family of problems
indexed by starting point in time and space.

e Tie all these problems together by a PDE-the
Hamilton Jacobi Bellman equation.

e The control problem is reduced to the problem of
solving the deterministic HJB equation.

Tomas Bjork, 2010 5



Some notation

e For any fixed vector u € RE. the functions u, o
and C'" are defined by

Witx) =tz u),
c“(t,x) = o(t,x,u),
C*(t,z) = o(t,z,u)o(t,z,u).

e For any control law u, the functions p*, o*, C(t, x)
and F(t,x) are defined by

pi(t,e) = plt z,ua(t ),
c'(t,z) = o(t,z,u(t,x)),
C%t,z) = o(t,z,ut,z))o(t,z,ult,z)),
F%t,z) = F(t,z,u(t,x)).

Tomas Bjork, 2010 6



More notation

e For any fixed vector u € R¥, the partial differential
operator A" is defined by

Z,uz tx— ZC (¢, x) 8%0%'

i,J=1

e For any control law wu, the partial differential
operator A" is defined by

u 0’
Z,uzta;—nL ZC’ t:caxiaxj.

1,=1

e For any control law u, the process X" is the solution
of the SDE

ClX;l = U (t, X;l, ut) dt + 0o (t, Xtu, ut) th,

where
u; = u(t, X}
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Embedding the problem

For every fixed (t,z) the control problem P(t,x) is
defined as the problem to maximize

T
I / Fs, X ug)ds + & (X2 |
t

t,x

given the dynamics

dXY = p(s, X% us)ds+o(s, X, us)dWs,
Xt - I,

and the constraints

u(s,y) e U, V(s,y) € l[t,T] x R".

The original problem was P (0, zg).
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The optimal value function

e [he value function
J:Ri xR"XU— R

is defined by

T
T(tzu)=E / F(s, XU u,)ds + @ (X2)
t

given the dynamics above.
e The optimal value function
V:R. xR"— R
is defined by

V(t,x) =sup J(t,z,u).
ueld

e \We want to derive a PDE for V.
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Assumptions

We assume:

e There exists an optimal control law 1.

e The optimal value function V' is regular in the sense
that V e C12.

e A number of limiting procedures in the following
arguments can be justified.
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The Bellman Optimality Principle

Dynamic programming relies heavily on the following
basic result.

Proposition: If 11 is optimal on the time interval [t, T
then it is also optimal on every subinterval [s,T] with

t<s<T.

Proof: lterated expectations.
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Basic strategy

To derive the PDE do as follows:

e Fix (t,z) € (0,T) x R".

e Choose a real number h (interpreted as a “small”
time increment).

e Choose an arbitrary control law u.

Now define the control law u* by

. | u(s,y), (s,y) € [t,t+ h] x R"
““W”‘{ﬁ@w% (.)€ (t+ h,T] x R™

In other words, if we use u* then we use the arbitrary
control u during the time interval [t,¢ + h], and then
we switch to the optimal control law during the rest of

the time period.
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Basic idea

The whole idea of DynP boils down to the following
procedure.

e Given the point (t,x) above, we consider the
following two strategies over the time interval [t, T':

I: Use the optimal law 1.

Il: Use the control law u* defined above.

e Compute the expected utilities obtained by the
respective strategies.

e Using the obvious fact that Strategy | is least as
good as Strategy |l, and letting h tend to zero, we
obtain our fundamental PDE.

Tomas Bjork, 2010 13



Strategy values

Expected utility for strategy I:

J(t,x,0) =V(t, x)

Expected utility for strategy Il:

e The expected utility for [t,t + h) is given by

t+h
E / F (s, X" u,)ds
t

t,x

e Conditional expected utility over [t + h,T], given

(t,x):
E, . [V(t+h X))

e Total expected utility for Strategy Il is

E

t,x

t+h
/ F (s, X us)ds+ V(t+h, X;‘Jrh)] :
t
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Comparing strategies

We have trivially

Vit,x) > F

- “t,x

t+h
/ F(s,X],us)ds+V(t+h, X})
¢

Remark

We have equality above if and only if the control law
u is an optimal law u.

Now use |to to obtain

V(t + h) X;l—i—h) — V(ta .Clj)
t+h
+/ {%—‘;(S, X7+ AV (s, X;l)} ds
t

t+h
+ / V.V (s, X dWs,
t

and plug into the formula above.
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We obtain

E

t,x

ot

Going to the limit:
Divide by i, move h within the expectation and let h tend to zero.
We get

F(t,x,u) + aa—‘t/(t, z)+ AV (t,z) <0,
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Recall
F(t,x,u) + aa—‘t/(t, z)+ A"V (t,x) <0,

This holds for all ©w = u(¢, x), with equality if and only
if u=n1.

We thus obtain the HJB equation

V. (1 2) + sup {F(t, 2 u) + A"V (t,5)} = 0.
at uwelU
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The HJB equation

Theorem:
Under suitable regularity assumptions the follwing hold:

|: V' satisfies the Hamilton—Jacobi—Bellman equation

W (t,2) + sup {F(ta,u) + AV (E2)} = 0,
ot uelU

V(T,x)

O(z),

Il: For each (t,x) € [0,T] x R™ the supremum in the
HJB equation above is attained by u = n(t, x).
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Logic and problem

Note: We have shown that if V' is the optimal value
function, and if V is regular enough, then V satisfies
the HJB equation. The HJB eqgn is thus derived as
a necessary condition, and requires strong ad hoc
regularity assumptions.

Problem: Suppose we have solved the HJB equation.
Have we then found the optimal value function and
the optimal control law?

Answer: Yes! This follows from the Verification
tehorem.
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The Verification Theorem

Suppose that we have two functions H (¢, x) and g(t, ), such
that

e H is sufficiently integrable, and solves the HJB equation

oOH
—(t7$) -+ sup {F(t7$7u) +AuH(t7$>} = 0,
ot uelU

H(T,z) = &(x),

e For each fixed (t, x), the supremum in the expression

sup{F(t,z,u) + A"H(t,z)}
uclU

is attained by the choice u = g(t, x).
Then the following hold.
1. The optimal value function V' to the control problem is given

by
V(t,z) = H(t, ).

2. There exists an optimal control law 1, and in fact

u(t,z) = g(t, )
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Handling the HJB equation

1. Consider the HJB equation for V.
2. Fix (t,z) € [0, T] x R"™ and solve, the static optimization
problem

max [F(t,z,u) + AV (¢, x)].

Here w is the only variable, whereas ¢ and x are fixed
parameters. The functions F', i, o and V' are considered as
given.

3. The optimal i, will depend on t and x, and on the function
V' and its partial derivatives. We thus write @ as

a=u(t,z; V). (1)

4. The function u (t,x; V) is our candidate for the optimal
control law, but since we do not know V' this description is

incomplete. Therefore we substitute the expression for 4 into
the PDE , giving us the PDE

aa—‘;(t,x)—I—Fﬁ(t,w)-l—Aﬁ(tax)V(t,iU) = 0,
V(T,z) = &(x).

5. Now we solve the PDE above! Then we put the solution V'
into expression (1). Using the verification theorem we can
identify V' as the optimal value function, and 4 as the optimal
control law.
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Making an Ansatz

e The hard work of dynamic programming consists in
solving the highly nonlinear HJB equation

e There are no general analytic methods available
for this, so the number of known optimal control

problems with an analytic solution is very small
indeed.

e In an actual case one usually tries to guess a
solution, i.e. we typically make a parameterized
Ansatz for V' then use the PDE in order to identify
the parameters.

e Hint: V often inherits some structural properties
from the boundary function ® as well as from the
instantaneous utility function F'.

e Most of the known solved control problems have,
to some extent, been “rigged” in order to be
analytically solvable.
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The Linear Quadratic Regulator

min F

T
min /0 {X,QX; + u,Rus} dt + X HX 7|,

with dynamics

We want to control a vehicle in such a way that it stays
close to the origin (the terms x'Qx and z'Hz) while
at the same time keeping the “energy” «'Ru small.

Here X; € R™ and u; € R*, and we impose no control
constraints on u.

The matrices ), R, H, A, B and C are assumed to be
known. We may WLOG assume that ), R and H are
symmetric, and we assume that R is positive definite
(and thus invertible).
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Handling the Problem

The HJB equation becomes

(v
T6w) + infep (2'Qa +u/Ru + [VaV](t, ) [Ar + Bul}
2
< LY (L) O, =0,
\ V(T,aj) = z2'Hzx.

For each fixed choice of (¢, x) we now have to solve the static unconstrained
optimization problem to minimize

v Ru + [V V](t,z) [Ax + Bu].
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The problem was:

min  u Ru + [V, V](t, z) [Az + Bu).

u

Since R > 0 we set the gradient to zero and obtain
2u'R = —(V,V)B,
which gives us the optimal u as
5 11 /
U = _iR B (V,V)".

Note: This is our candidate of optimal control law,
but it depends on the unkown function V.

We now make an educated guess about the shape of
V.
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From the boundary function 2’ Hz and the term 2'Qx
In the cost function we make the Ansatz

V(t,z) = 2'P(t)x + q(t),

where P(t) is a symmetric matrix function, and ¢(t) is
a scalar function.

With this trial solution we have,

8V(t, r) = a'Px+q,
V(t,r) = 22'P,
VmV( ,x) = 2P
@ = —R 'B'Pux.

Inserting these expressions into the HJB equation we
get

2! {P +Q—PBR 'BP+AP+ PA} z
+q¢ + tr[C'PC] = 0.
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We thus get the following matrix ODE for P

P = PBRB'P-—AP—-PA-Q,
P(T) = H.

and we can integrate directly for g:

¢ = —tr[C'PC],
q(T) = 0.

The matrix equation is a Riccati equation. The
equation for ¢ can then be integrated directly.

Final Result for LQ:

V(t,x) = a:’P(t)er/Tt?“[C”P(s)C]ds,

i(t,z) = —R 'B'P(t)z.
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2. Portfolio Theory

e Problem formulation.
e An extension of HJB.
e The simplest consutmption-investment problem.

e The Merton fund separation results.

Tomas Bjork, 2010
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Recap of Basic Facts

We consider a market with n assets.

S! = price of asset No 1,

h! = units of asset No 7 in portfolio
w! = portfolio weight on asset No i
X; = portfolio value

c; = consumption rate

We have the relations

Xo=dnsi wi=tE S ui-t
=1 )

Basic equation:
Dynamics of self financing portfolio in terms of relative
weights

— ,dS]
dXt Xt Z ’LUt— — Ctdt
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Simplest model

Assume a scalar risky asset and a constant short rate.

dSt — OéStdt -+ O'Stth
dBt = TBtdt

We want to maximize expected utility over time

/ ) F(t,c;)dt + ®(X7)

Dynamics

dXt = Xt [UST —+ UJ%OZ] dt — Ctdt + ng'Xtth,

Constraints

Ct > O, VtZO,
wi +wy = 1, Vt > 0.

Nonsense!
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What are the problems?

e We can obtain umlimited uttility by simply
consuming arbitrary large amounts.

e The wealth will go negative, but there is nothing in
the problem formulations which prohibits this.

e We would like to impose a constratin of type X; > 0
but this is a state constraint and DynP does not
allow this.

Good News:

DynP can be generalized to handle (some) problems
of this kind.
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Generalized problem

Let D be a nice open subset of [0, T x R™ and consider
the following problem.

max E[/ F(s, X}, us)ds+ @ (1, X})| .

Dynamics:
dXt = ,U(t,Xt,’UJt) dt—|— O'(t,Xt,ut) th,
XO — JZo,

The stopping time 7 is defined by

r=inf{t >0 |(t, Xy) € 0D} AN T.
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Generalized HJB

Theorem: Given enough regularity the follwing hold.

1. The optimal value function satisfies

8_V(t7 z) + sup {F(t,z,u) + A“V(t,x)}
ot uelU

0, V(t,x) € D

Vit,e) = ®(t,x), Y(t,z) € dD.

2. We have an obvious verification theorem.
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Reformulated problem

max K [/ F(t,c))dt + ®(X7)
CZO, weR 0

where
T=1inf{t >0 |X; =0} AT.

with notation:

Thus no constraint on w.

Dynamics

dXt — Wt [Oz — T] Xtdt + (TXt — Ct) dt + waXtth,
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HJB Equation

8V+ F(t. o) + wa )av+( )8V+122282V
— su , C wr(a —r)— re —c)— + -z w’o = ,
ot cZO,wpeR Ox or 2 Ox?2
V(T,z) = 0,
V(t,0) = 0.
We now specialize (why?) to
F(t,c) =e ¢,
so we have to maximize
oV ov 1 O*V
e 0t + wx(a — ’I")a + (rez — c)a + 5:13210202 EyE
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Analysis of the HJB Equation

In the embedde static problem we maximize, over c
and w,

oV ov 1 0°V
e fwa(a—r)—=— + (rz — ¢)=— + —2*w?o’——

ox oxr 2 Ox?’

First order conditions:

707_1 — e&Vx,

-V, a-—r
w = :
x -V, 02

Ansatz:
V(t,xz) = e °th(t)a?,

Because of the boundary conditions, we must demand
that
h(T) = 0. (2)
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Given a V of this form we have (using - to denote the
time derivative)

8—‘/ = e %hxY — e ha",
ot
g—‘; = ~e Otha T,
0%V bty y—2
2 v(y —1)e™ "ha? ™=
giving us
a—r
< (4 B
W(to) = e
&(t,x) = zh(t)"VE7),

Plug all this into HJB!
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After rearrangements we obtain
Y {h(t) + Ah(t) + Bh(t)—7/<1—7>} =0,

where the constants A and B are given by

 yla—r1) Iy(a—r)*
B ) R Tl (e R
B = 1-—~.

If this equation is to hold for all = and all ¢, then we
see that h must solve the ODE

h(t) + Ah(t) + Bh(t)/1=7) = o,
WT) = 0.

An equation of this kind is known as a Bernoulli
equation, and it can be solved explicitly.

We are done.
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Merton’s Mutal Fund Theorems

1. The case with no risk free asset

We consider n risky assets with dynamics
dS; = S;o;dt + S;o,dW, 1=1,...,n
where W is Wiener in R*. On vector form:
dS = D(S)adt + D(S)odW.

where

D(S) is the diagonal matrix

D(S) = diag|Sy, ..., Syl

Wealth dynamics

dX = Xw'adt — cdt + Xw'odW.
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Formal problem

max E[/ F(t,ct)dt]
c,w 0

given the dynamics
dX = Xw'adt — cdt + Xw' odW.
and constraints
dw=1, ¢>0.

Assumptions:

e [he vector ¢ and the matrix o are constant and
deterministic.

e The volatility matrix o has full rank so oo’ is positive
definite and invertible.

Note: S does not turn up in the X-dynamics so V is
of the form
Vt,z,s) =V(t,x)
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The HJB equation is

oV
—(ta 33) + Sup {F(ta C) + Ac,wv(ta :C)} = 0,
ot e'w=1, ¢>0
< V(T,z) = 0,
\ V(t,0) = 0.
where oV oV 1 02V
c,w _ 2
A V = ZE’UJ/@% — Ca—gj —+ 533 wlzww,

and where the matrix X is given by

Y. =00 .

Tomas Bjork, 2010
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The HIJB equation is

( 1
Vi(t,z) + sup {F(t, c) 4+ (zw'a — )V, (t, x) + Ewa/Zme(t, ac)} = 0,
w’e=1, ¢>0
< V(T,z) = 0,
\ V(t,0) =

where ¥ = oo’.

If we relax the constraint w’e = 1, the Lagrange function for the static
optimization problem is given by

1
L=PF(tc)+ (zw'a—c)V,(t,z) + iwa'Zme(t, z)+ A1 —w'e).
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L = F(tc)+ (zw'a—c)V,(t, x)

1
— §x2w’2wvm(t, z)+ A1 —w'e).

The first order condition for c is

OF
%(t, C) = Vx(t, ZC)

The first order condition for w is
ra'V, + 22V, w'y = e,

so we can solve for w in order to obtain

A xV,
e _

. —1
W = X
22V, 22V, o

| .

Using the relation ¢’w = 1 this gives A as

) — 22V + 2V.e'X 1o

e/~ le

Tomas Bjork, 2010 43



Inserting A\ gives us, after some manipulation,

) 1 4 Ve 1 1€ ta
w:e’E_lez e—l—meZ [e’E‘lee_a '

We can write this as
w(t) =g+ Y(t)h,

where the fixed vectors g and h are given by

1

_ —1
I = 6’2_162 ©
NN —1
L o €Y@
ho= 2 [e’E‘lee_a] ’
whereas Y is given by
Va(t, X(t))
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We had

w(t) =g+ Y(t)h,
Thus we see that the optimal portfolio is moving
stochastically along the one-dimensional “optimal

portfolio line”
g + sh,

in the (n — 1)-dimensional “portfolio hyperplane” A,
where
A={weR"|w=1}.

If we fix two points on the optimal portfolio line, say
w® = g+ ah and w® = g + bh, then any point w on

the line can be written as an affine combination of the

basis points w® and w®. An easy calculation shows

that if w® = g 4+ sh then we can write

w® = pw® + (1 — p)w®,

where
_s—b
SR
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Mutual Fund Theorem

There exists a family of mutual funds, given by
w® = g + sh, such that

1. For each fixed s the portfolio w?® stays fixed over
time.

2. For fixed a, b with a # b the optimal portfolio w(t)
is, obtained by allocating all resources between the
fixed funds w® and w?, i.e.

w(t) = pt(t)w? + p°(t)w’,

3. The relative proportions (u®, u®) of wealth allocated
to w® and wbare given by

ui(t) = Yc(f)_; g
pi(t) = a;f[it)-
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The case with a risk free asset

Again we consider the standard model
dS = D(S)adt + D(S)adW (t),
We also assume the risk free asset B with dynamics

dB = rBdt.

We denote B = Sy and consider portfolio weights
(wo, w1, ..., wy)" where > gw; = 1.  We then
eliminate wq by the relation

n
’w():l— E Wwj,
1

and use the letter w to denote the portfolio weight
vector for the risky assets only. Thus we use the
notation

w = (wi,...,w,),

Note: w € R™ without constraints.
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HJB

We obtain
dX = X -w'(a—re)dt + (rX — ¢)dt + X - w'odW,

where e = (1,1,...,1)".

The HJB equation now becomes

( Vi(t,z)+ sup {F(t,c) + A“"“V(t,z)} = 0,
c>0,we R™

< V(T,z) = 0,

\ V(t,0) = 0,

where

AV = aw'(a—re)Vi(t,x) + (rz — c)Vy(t, z)

1
— §x2w’Zme(t, 7).
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First order conditions

We maximize
1
F(t,c) +zw'(a —re)Vy + (re — )V, + §x2w’2wvxaz

with ¢ > 0 and w € R™.

The first order conditions are

F
%—c(t’ c) = V.(t,x),
W= —x“zxil_l(a—re),

with geometrically obvious economic interpretation.
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Mutual Fund Separation Theorem

1. The optimal portfolio consists of an allocation
between two fixed mutual funds w® and w/.

2. The fund w" consists only of the risk free asset.

3. The fund w/ consists only of the risky assets, and
is given by
w! =" a —re).

4. At each t the optimal relative allocation of wealth
between the funds is given by

VLX)
WO = VX @)
pOt) = 1—pl ().
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3. The Martingale Approach

e Decoupling the wealth profile from the portfolio
choice.

e Lagrange relaxation.

e Solving the general wealth problem.
e Example: Log utility.

e Example: The numeraire portfolio.
e Computing the optimal portfolio.

e The Merton fund separation theorems from a
martingale perspective..
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Problem Formulation

Standard model with internal filtration

dSt = D(St)()étdt + D(St)O'tth,
dBt = TBtdt.

Assumptions:

e Drift and diffusion terms are allowed to be arbitrary
adapted processes.

e The market is complete.

e \We have a given initial wealth z

Problem:

max EY [®(X1)]

where
H = {self financing portfolios}

given the initial wealth Xy = xg.
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Some observations

e In a complete market, there is a unique martingale
measure ().

e Every claim Z satisfying the budget constraint
e "TEC[Z] = xy,
is attainable by an h € 'H and vice versa.
e \We can thus write our problem as

max EY [®(2)]

subject to the constraint

e "TEQ [Z] = x.
e We can forget the wealth dynamics!

Tomas Bjork, 2010 53



Basic ldeas
Our problem was

max EY [®(2)]

subject to e "TEQ[Z] = x,.

Idea |:

We can decouple the optimal portfolio problem:

e Finding the optimal wealth profile Z.

e Given Z, find the replicating portfolio.

Idea |I:

e Rewrite the constraint under the measure P.

e Use Lagrangian techniques to relax the constraint.

Tomas Bjork, 2010 54



Lagrange formulation

Problem:
max EY [®(2)]
subject to o—rT P Ly Z] = a0,

Here L is the likelihood process, i.e.

dQ

L =
T dP’

on fT

The Lagrangian of this is

L=E"[®2)]+ N xo—e ""E" [LrZ]}

L=E"[®(Z)— X e ""LrZ] + Axo
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The optimal wealth profile

Given enough convexity and regularity we now expect,
given the dual variable A\, to find the optimal Z by
maximizing

L=E"[®(Z) - e " LrZ] + Axo

over unconstrained Z, i.e. to maximize

/Q {#(Z(w)) = AT Lr(w)Z(w) } dP(w)

This is a trivial problem!

We can simply maximize Z(w) for each w separately.

max {®(z) — Ae " Lrz}

A
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The optimal wealth profile

Our problem:

max {®(z) — Ae " Lrz}

z

First order condition
®'(2) = e ™ Ly
The optimal Z is thus given by

Z =G e ""Lr)

where

G(y) = [®'] ().

The dual varaiable A is determined by the constraint

G_TTEP {LTZ} = Xy.
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Example — log utility

Assume that

Then

Thus

A

Finally A is determined by

G_TTEP {LTZA}

1
e TTEP [LTXeTTL

so A = x5 "' and

/= x()BTTL

Tomas Bjork, 2010
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The Numeraire Portfolio

Standard approach:
e Choose a fixed numeraire (portfolio) IN.

e Find the corresponding martingale measure, i.e. find Q¥ s.t.

B S

—, and —

N N
are QY -martingales.

Alternative approach:
e Choose a fixed measure (.
e Find numeraire N such that Q = QV.

Special case:
o Set Q = P
e Find numeraire N such that Q% = P i.e. such that

B S
—, and —
N N

are QY -martingales under the objective measure P.

e This N is the numeraire portfolio.

Tomas Bjork, 2010
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Log utility and the numeraire portfolio

Definition:

The growth optimal portfolio (GOP) is the portfolio
which is optimal for log utility (for arbitrary terminal
date T.

Theorem:
Assume that X is GOP. Then X is the numeraire
portfolio.

Proof:
We have to show that the process
St
Y, = —
LT,

is a P martingale. From above we know that
X7 = xoeTTL;l.
We also have (why?)

XpLr
Ly

Xt _ e—T(T—t)EQ [XT‘ Ft] _ G—T(T—t)EP [

.
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Thus

Xt _ e—T(T—t)EP

o (T—) Q xoe™ L

as expected.

Thus

S 1y
yi =, le=mtS, L,

which is a P martingale, since xo_le_”’St s a @
martingale.
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Back to general case: Computing L

We recall

A

Z=G(Ne""Ly).

The likelihood process L is computed by using
Girsanov. We recall

dSt == D(St)Oétdt -+ D(St)O'tth,
We know from Girsanov that
st — LtQO:th

SO
AW, = @udt + dW

where W€ is Q-Wiener.
Thus

dSt — D(St) {Ozt —|— O'tQOt} dt —+ D(St)O'tthQ,
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Computing L, continued

Recall
dSt = D(St) {Oét -+ O'tQOt} dt -+ D(St>0'tthQ,

The kernel ¢ is determined by the martingale measure
condition
Ot + Oy =T

where L
r

r

Market completeness implies that o; is invertible so

pr =0y ' {r — oy}

and
T 1 T
Ly = exp / ord Wy — / oo |2t
0 2 0
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Finding the optimal portfolio

e \We can easily compute the optimal wealth profile.

e How do we compute the optimal portfolio?

Recall:
dSy = D(S;)adt + D(St)ordWy,
wealth dynamics
dX; = hBdB, + h?dS,

or
dXt = XtUE’I“dt + XthD(St)_ldSt

where

o = (h',... A", u’=(ul,...,u")

Assume for simplicity that » = 0 or consider normalized
prices.
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Recall wealth dynamics
dX; = hydS,
alternatively
dX; = h? D(St)atdW

alternatively
dXt — XtufatthQ

Obvious facts:

e X is a () martingale.

o X = Z

Thus the optimal wealth process is determined by

&:EQY

A
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Recall )
X, = E@ [Z

7

Martingale representation theorem gives us
dX; = &AW,

but also

dXt = XthO'tthQ
dX, = h?D(S,)odWX

Thus u® and h? are determined by

1 _
uf = that '
hts — gtO't_lD(St)_l.

and
u? =1—ule, hP=X,—-h?S,

Tomas Bjork, 2010 66



How do we find &7

Recall

X, = E© [Z

]—"t]
dX, = &AWE,

We need to compute £.

In a Markovian framework this follows direcetly from
the 1t6 formula.

Recall )

Z = H(Ly)=G(M\L7)
where

G=[o]"

and

st — Ltgp;fdet?

dW = odt + dWZ
SO

dL; = Ly||ps||?dt + LyprdW 2
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Finding ¢
If the model is Markovian we have
o =a(Sy), o =0(Sy), @i =0(S) ' {a(S) —r}
SO

Xy = EQ [H(LT)| ft]
dS, = D(S))a(S)dWE,
dL; = Li|lo(S))|[2dt + Lup(S,)*dW 2

Thus we have
Xt — F(t, St, Lt)

where, by the Kolmogorov backward equation

1 1
Fi+ Ll|*Fo+ 5L llp*Fro + Str{oFyso™} = 0,

F(T,s,L) = H(L)
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Finding &, contd.

We had

Xt — F(ta St7 Lt)

and It0 gives us

dX, = {FsD(S,)o(S;) + FrLip*(Sy)} AW,

Thus
gt = FSD(St)O'(St) + FLLtQO*(St).
and
uf = (S
t Xt
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Mutual Funds — Martingale Version

We now assume constant parameters

We recall

X, = EC[H(Lp)|F]
dL, = Ly||o|?dt + Ly dW<

Now L is Markov so we have (without any 5)
Xt — F(tv Lt)

Thus
_FLLt *x _—1

&t :FLLtSO*a Uf — X, Y o

and we have fund separation with the fixed risky fund
given by

w=¢o = {r*—a}{oo*} "
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3. Filtering theory

e Motivational problem.

e The Innovations process.

e The non-linear FKK filtering equations.

e [he Wonham filter.

e [he Kalman filter.

Tomas Bjork, 2010
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An investment problem with stochastic
rate of return

Model:
dSt — StOé(Y;g)dt + StO'Cth

W is scalar and Y is some factor process. We assume
that (5,Y) is Markov and adapted to the filtration F.

Wealth dynamics

dXt = Xt [7“ —+ Uy (Oé — ’f’)] dt + utXtath

Objective:
max EY [®(X7)]

u

Information structure:

e Complete information: We observe S and Y, so
ueF

e Incomplete information: We only observe S, so
u € F. We need filtering theory.
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Filtering Theory — Setup

Given some filtration F:

dlft — atdt + th
dZT — btdt + th

Here all processes are F adapted and

Y = signal process,

Z = observation process,
M = martingale w.r.t. F
W = Wiener w.rt. F

We assume (for the moment) that M and W are
independent.

Problem:
Compute (recursively) the filter estimate

Y; =1L [Y] = E [V F/]
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The innovations process

Recall:
dZT — btdt + th

Our best guess of b; is b;, so the genuinely new
information should be

dZ, — bydt

The innovations process v is defined by

Vy = dZt — Btdt
Theorem: The process v is FZ-Wiener.

Proof: By Levy it is enough to show that

e v is an FZ martingale.

e v2 —tis an FZ martingale.
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l. v is an FZ martingale:

From definition we have
th = (bt — Bt) dt + th (3)

SO

l. v2 —t is an FZ martingale:

From 1t6 we have
2 2
dv; = 2uidyy + (dvy)

Here dv is a martingale increment and from (3) it
follows that (diy)” = dt.
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Remark 1:
The innovations process gives us a Gram-Schmidt
orthogonalization of the increasing family of Hilbert

spaces
LA*(F?); t>0.

Remark 2:
The use of 1t6 above requires general semimartingale
integration theory, since we do not know a priori that
v is Wiener.
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Filter dynamics
From the Y dynamics we guess that

dYt = a;dt + martingale

Definition: dm; = dY; — a.dt.
Proposition: m is an F# martingale.

Proof:

t
EZ [my; —m,] = EZ [At— AS} — E? [/ &udu]

t
= EZ[Y,-Y,] EZUa u]
A

U< - a,)dul

= E?[E,[M,— M,|]] - E? [/:Ef[au—au]du] =0

= E?[M,—M,)—FE
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Filter dynamics

We now have the filter dynamics
dY; = a,dt + dm

where m is an FZ martingale.

If the innovations hypothesis
FtZ _ ftu

is true, then the martingale representation theorem
would give us an F# adapted process h such that

dmt = htht (4)

The innovations hypothesis is not generally correct but
FKK have proved that in fact (4) is always true.
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Filter dynamics

We thus have the filter dynamics
dY; = Gydt + hydu,

and it remains to determine the gain process h.

Proposition: The process h is given by

hy = Yiby, — Yib,

We give a slighty heuristic proof.

Tomas Bjork, 2010
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Proof scetch

From 1t0 we have

d (YtZt) = }/tbtdt -+ }/tth -+ ZtCLtdt + thMt

using R
dY; = audt + hydy,
and )
dZ; = bydt + duy
we have

d (2@) — Vbudt + Yidv, + Zia,dt + Zohydy, + hydt
Formally we also should have

E|d(viz) - d (V)

ftZi| — O
which gives us
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The filter equations

For the model

dlft — atdt + th
dZr = bdt + dW,

where M and W are independent, we have the FKK
non-linear filter equations

d}/}t = 5tdt+{ﬁ—ﬁ3t}dvt

th — dZt — Btdt

Remark: It is easy to see that

= [(3-7) (-5)

ftZ]
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The general filter equations

For the model

dY;; = atdt + th
dZT — btdt + O'tth

where

e The process o is FZ adapted and positive.

e There is no assumption of independence between
M and W.

we have the filter

N . 1 (—— o~~~
d}/t = atdt -+ [Dt + — {Y;gbt — Y;bt}] th

Ot
1 ~
dy, = —{dZt—btdt}
Ot
d(M, W)
dD, = AL
! dt
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Comment on (M, W)

This requires semimartingale theory but there are two
simple cases

o If M is Wiener then
d<M, W>t — thth
with usual multiplication rules.

o If M is a pure jump process then

d(M, W), = 0.
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Filtering a Markov process

Assume that Y is Markov with generator G. We
want to compute II; [ f(Y;)], for some nice function f.
Dynkin's formula gives us

df (Yy) = (Gf) (Yi)dt + dM,
Assume that the observations are

where W is independent of Y.

The filter equations are now

AT, [f) = 0 [Gf)dt + {TT [f5] — 1, [f]TL, [b]} v
dv, = dZ, —11,[b]dt

Remark: To obtain dIl; [f] we need II; [fb] and I1; [b].
This leads generically to an infinite dimensional system
of filter equations.
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On the filter dimension
dily [f] = Iy |G f] dt + {IT; [fo] — TT; [f] 1T [b]} dvy
e To obtain dll; [f] we need II; [fb] and II; [b].
e Thus we apply the FKK equations to G f and b.

e [ his leads to new filter estimates to determine and
generically to an infinite dimensional system of
filter equations.

e The filter equations are really equations for the
entire conditional distribution of Y.

e You can only expect the filter to be finite
when the conditional distribution of Y is finitely
parameterized.

e There are only very few examples of finite
dimensional filters.

e [he most well known finite filters are the Wonham
and the Kalman filters.
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The Wonham filter

Assume that Y is a continuous time Markov chain on
the state space {1,...,n} with (constant) generator

matrix H. Define the indicator processes by
0;(t) =I{Yy =14}, i=1,...,n.

Dynkin's formula gives us

doy = H(j,i)o;dt +dM{, i=1,...n.

J
Observations are

Filter equations:

dIl; (6 ZH g, )y (0] dt+{T1; [6:0] — TT, [6]

dvy = dZ; — 1, [b] dt

Tomas Bjork, 2010
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We note that

IT; [0;0] = 0()IL; [04],
IT; [b] = Zb(j)ﬂt[5j]

We finally have the Wonham filter

do; ZH], 6dt+{b )0 — i > b(y E}dut,
J

dv, = dzt—Zb(j)(sf,dt
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The Kalman filter
dY; = aYidt+ cdV;,

W and V' are independent Wiener

FKK gives us
A, [Y] = alL,[Y]dt + {Ht 2] — (I, [Y])Q} dv,
th — dZt — Ht [Y] dt

We need 11, [YQ], so use |to to get write
dYy? = {2aY? + ¢} dt + 2¢Y,dV,
From FKK:

dil; [Y?] = {2all; [Y?] + ¢} dt
+ {IL [Y°] - IL [V?| IL [Y]} dv,

Now we need II; [Y3]! Etc!
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Define the conditional error variance by

H, =11, [(Ht Y, — 11, [Y]ﬂ =11, [Y?] — (I1, [Y])?
[t6 gives us

d (1L, [Y])? = [za (IL, [Y])? + Hﬂ dt + 211, [Y] Hdw,
and Ito again

dHy = {2aH;+c —H;}dt
+ {Ht V3] — 310, [Y2] 11, [Y] + 2 (11, [Y])S} dv,

In this particular case we know (why?) that the
distribution of Y conditional on Z is Gaussian!

Thus we have
I, [Y?] = 310 [Y2] 1L, [Y] — 2 (1L, [Y])°
so H is deterministic (as expected).
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The Kalman filter

Model:
dY, = aYidt + cdV,,
dZ; = Ydt + dW,
Filter:
dHt [Y] — CLHt [Y] dt + thVt
Ht — QCLHt + C2 — Ht2
dl/t = Cth — Ht [Y] dt

Hy =11, (11, [Y] — 10, [Y])?

Remark: Because of the Gaussian structure, the
conditional distribution evolves on a two dimensional
submanifold. Hence a two dimensional filter.
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Optimal investment with stochastic rate
of return

e A market model with a stochastic rate of return.
e Optimal portolios under complete information.

e Optimal portfolios under partial information.
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An investment problem with stochastic
rate of return

Model:
dSt = StOé(Y%)dt + StO'th

W is scalar and Y is some factor process. We assume
that (S,Y) is Markov and adapted to the filtration F'.

Wealth dynamics

dXt = Xt {7“ -+ Uy [Oé(Y;) — 7“]} dt + ’U,tXtO'th

Objective:
max EY[X]]

u

We assume that Y is a Markov process. with generator
A. We will treat several cases.
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A. Full information, Y and W
independent.

The HJB equation for F'(¢,x,y) becomes
1
Fy+sup {u la—r|xF, +raF, + §u2az202Fm}+AF —0

where G operates on the y-variable. Obvious boundary
condition

F(t,z,y) =x"

First order condition gives us:

. r—oa F,
u = :
xo? F,.
Plug into HJB:
(a —1)? B2
F — 207 T +rzF, + AF =0
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Ansatz:
F(T,z,y) =2"G(t,y)

F,=2"G,, F,=~2""'G, F,,= Y(y — 1)337_2G

Plug into HJB:

)2
VG + 5137(0420270> G 4+ ryx'G + 27 AG = 0

where 0 =~/(v —1).
Gi(t,y) + Hy)G(t,y) + AG(t,y) = 0,

G(T,y) = 1.

here

H(y) =rvy - [O‘(y’z)a; ay

Kolmogorov gives us
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B. Full information, Y and W dependent.

Now we allow for dependence but restrict Y to
dynamics of the form.

dSt — StOé(}/f)dt -+ StO'th
dXt Xt {T + Uy [Oé(}/t) — T]} dt + UtXtO'th
dY; = a(Yy)dt +b(Y;)dW,

with the same Wiener process W driving both S and
Y. The imperfectly correlated case is a bit more messy
but can also be handled.

HJB Equation for F(t,x,y):
1o
Fy + aF, + §b Fy, + rxkF,

1
+ sup {u o — r]xzF, + §u2x202Fm + umbany} = 0.
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Ansatz.

HJB:
12

1
+ sup {u la—r|zF, + §u2x202Fm + uxbany} = 0.

After a lot of thinking we make the Ansatz
F(t,z,y) =a"h' ' (t,y)

and then it is not hard to see that h satisfies a standard
parabolic PDE. (Plug Ansatz into HJB).

See Zariphopoulou for details and more complicated
cases.

Tomas Bjork, 2010 96



C. Partial information.

Model:

dSt — St(){(lft)dt + StO'th

Assumption: Y cannot be observed directly.

Reruirement: The control u must be F° adapted.
We thus have a partially observed system.

Idea: Project the S dynamics onto the smaller F7°
filtration and add filter equations in order to reduce
the problem to the completely observable case.

Set Z = InS and note (why?) that FZ = F°. We
have

1
dZ, = {oz(Yt) — 502} dt + odW;
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Projecting onto the S-filtration

1
dZ; = {a(Yt) — 502} dt + odW;

From filtering theory we know that

1
dz; = {Ht la] — 502} dt + odvy

where v is F-Wiener and
I [o] = E [a(Y2)| 7]

We thus have the following S dynamics on the S
filtration

dSt - Sth [Oé] dt + StO'th
and wealth dynamics

dXt = Xt {’r + Uy (Ht [Oé] — ’I“)} dt + ’LLtXtO'th
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Reformulated problem

We now have the problem
mEXE [ X
for Z-adapted controls given wealth dynamics
dX; = Xe {r +us (Il o] — 7) } dt + us Xyodvy

If we now can model Y such that the (linear!)
observation dynamics for Z will produce a finite filter
vector m, then we are back in the completely
observable case with Y replaced by m.and observation
equation

We neeed a finite dimensional filter!

Two choices for Y

e Linear Y dynamics. This will give us the Kalman
filter. See Brendle

e Y as a Markov chain. This will give us the Wonham
filter. See Bauerle and Rieder.
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Kalman case (Brendle)

Assume that
dS; = Y Sidt + SrodW,
with Y dynamics
dY; = aYidt 4+ cdV;

where W and V' are independent. Observations:
1,
dZt — Y;f_iO' dt‘l‘O'th

We have a standard Kalman filter.

Wealth dynamics

dXt = Xt {T + Uy (2 — T) } dt + UtXtO'th
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Kalman case, solution.

max F [ X]]

dXt = Xt {’I“—'—’U,t (i;;g —T)}dt+utXtUth
. 1,
dYy = <Y — 50 dt + H,odv,

where H is deterministic and given by a Riccatti
equation.

We are back in standard completly observable case
with state variables X and Y.

Thus the optimal value function is of the form
F(t,2,§) =« h'~7(t,9)

where h solves a parabolic PDE and can be computed
explicitly.
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