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Problem Formulation

max
u

E

[∫ T

0

F (t, Xt, ut)dt + Φ(XT )

]
subject to

dXt = µ (t, Xt, ut) dt + σ (t, Xt, ut) dWt

X0 = x0,

ut ∈ U(t, Xt), ∀t.

We will only consider feedback control laws, i.e.
controls of the form

ut = u(t, Xt)

Terminology:

X = state variable

u = control variable

U = control constraint

Note: No state space constraints.
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Main idea

• Embedd the problem above in a family of problems
indexed by starting point in time and space.

• Tie all these problems together by a PDE–the
Hamilton Jacobi Bellman equation.

• The control problem is reduced to the problem of
solving the deterministic HJB equation.
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Some notation

• For any fixed vector u ∈ Rk, the functions µu, σu

and Cu are defined by

µu(t, x) = µ(t, x, u),

σu(t, x) = σ(t, x, u),

Cu(t, x) = σ(t, x, u)σ(t, x, u)′.

• For any control law u, the functions µu, σu, Cu(t, x)
and F u(t, x) are defined by

µu(t, x) = µ(t, x,u(t, x)),

σu(t, x) = σ(t, x,u(t, x)),

Cu(t, x) = σ(t, x,u(t, x))σ(t, x,u(t, x))′,

F u(t, x) = F (t, x,u(t, x)).
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More notation

• For any fixed vector u ∈ Rk, the partial differential
operator Au is defined by

Au =
n∑

i=1

µu
i (t, x)

∂

∂xi
+

1
2

n∑
i,j=1

Cu
ij(t, x)

∂2

∂xi∂xj
.

• For any control law u, the partial differential
operator Au is defined by

Au =
n∑

i=1

µu
i (t, x)

∂

∂xi
+

1
2

n∑
i,j=1

Cu
ij(t, x)

∂2

∂xi∂xj
.

• For any control law u, the process Xu is the solution
of the SDE

dXu
t = µ (t, Xu

t ,ut) dt + σ (t, Xu
t ,ut) dWt,

where
ut = u(t, Xu

t )
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Embedding the problem

For every fixed (t, x) the control problem P(t, x) is
defined as the problem to maximize

Et,x

[∫ T

t

F (s,Xu
s , us)ds + Φ (Xu

T )

]
,

given the dynamics

dXu
s = µ (s,Xu

s ,us) ds + σ (s,Xu
s ,us) dWs,

Xt = x,

and the constraints

u(s, y) ∈ U, ∀(s, y) ∈ [t, T ]×Rn.

The original problem was P(0, x0).
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The optimal value function

• The value function

J : R+ ×Rn × U → R

is defined by

J (t, x,u) = E

[∫ T

t

F (s,Xu
s ,us)ds + Φ (Xu

T )

]

given the dynamics above.

• The optimal value function

V : R+ ×Rn → R

is defined by

V (t, x) = sup
u∈U

J (t, x,u).

• We want to derive a PDE for V .
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Assumptions

We assume:

• There exists an optimal control law û.

• The optimal value function V is regular in the sense
that V ∈ C1,2.

• A number of limiting procedures in the following
arguments can be justified.
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The Bellman Optimality Principle

Dynamic programming relies heavily on the following
basic result.

Proposition: If û is optimal on the time interval [t, T ]
then it is also optimal on every subinterval [s, T ] with
t ≤ s ≤ T .

Proof: Iterated expectations.
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Basic strategy

To derive the PDE do as follows:

• Fix (t, x) ∈ (0, T )×Rn.

• Choose a real number h (interpreted as a “small”
time increment).

• Choose an arbitrary control law u.

Now define the control law u? by

u?(s, y) =
{

u(s, y), (s, y) ∈ [t, t + h]×Rn

û(s, y), (s, y) ∈ (t + h, T ]×Rn.

In other words, if we use u? then we use the arbitrary
control u during the time interval [t, t + h], and then
we switch to the optimal control law during the rest of
the time period.
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Basic idea

The whole idea of DynP boils down to the following
procedure.

• Given the point (t, x) above, we consider the
following two strategies over the time interval [t, T ]:

I: Use the optimal law û.
II: Use the control law u? defined above.

• Compute the expected utilities obtained by the
respective strategies.

• Using the obvious fact that Strategy I is least as
good as Strategy II, and letting h tend to zero, we
obtain our fundamental PDE.
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Strategy values

Expected utility for strategy I:

J (t, x, û) = V (t, x)

Expected utility for strategy II:

• The expected utility for [t, t + h) is given by

Et,x

[∫ t+h

t

F (s,Xu
s ,us) ds

]
.

• Conditional expected utility over [t + h, T ], given
(t, x):

Et,x

[
V (t + h, Xu

t+h)
]
.

• Total expected utility for Strategy II is

Et,x

[∫ t+h

t

F (s,Xu
s ,us) ds + V (t + h, Xu

t+h)

]
.
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Comparing strategies

We have trivially

V (t, x) ≥ Et,x

[∫ t+h

t

F (s,Xu
s ,us) ds + V (t + h, Xu

t+h)

]
.

Remark
We have equality above if and only if the control law
u is an optimal law û.

Now use Itô to obtain

V (t + h, Xu
t+h) = V (t, x)

+
∫ t+h

t

{
∂V

∂t
(s,Xu

s ) +AuV (s,Xu
s )
}

ds

+
∫ t+h

t

∇xV (s,Xu
s )σudWs,

and plug into the formula above.
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We obtain

Et,x

[∫ t+h

t

[
F (s,Xu

s ,us) +
∂V

∂t
(s,Xu

s ) +AuV (s,Xu
s )
]

ds

]
≤ 0.

Going to the limit:
Divide by h, move h within the expectation and let h tend to zero.
We get

F (t, x, u) +
∂V

∂t
(t, x) +AuV (t, x) ≤ 0,
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Recall

F (t, x, u) +
∂V

∂t
(t, x) +AuV (t, x) ≤ 0,

This holds for all u = u(t, x), with equality if and only
if u = û.

We thus obtain the HJB equation

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0.
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The HJB equation

Theorem:
Under suitable regularity assumptions the follwing hold:

I: V satisfies the Hamilton–Jacobi–Bellman equation

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0,

V (T, x) = Φ(x),

II: For each (t, x) ∈ [0, T ] × Rn the supremum in the
HJB equation above is attained by u = û(t, x).
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Logic and problem

Note: We have shown that if V is the optimal value
function, and if V is regular enough, then V satisfies
the HJB equation. The HJB eqn is thus derived as
a necessary condition, and requires strong ad hoc
regularity assumptions.

Problem: Suppose we have solved the HJB equation.
Have we then found the optimal value function and
the optimal control law?

Answer: Yes! This follows from the Verification
tehorem.
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The Verification Theorem

Suppose that we have two functions H(t, x) and g(t, x), such

that

• H is sufficiently integrable, and solves the HJB equation8><>:
∂H

∂t
(t, x) + sup

u∈U
{F (t, x, u) +Au

H(t, x)} = 0,

H(T, x) = Φ(x),

• For each fixed (t, x), the supremum in the expression

sup
u∈U

{F (t, x, u) +Au
H(t, x)}

is attained by the choice u = g(t, x).

Then the following hold.

1. The optimal value function V to the control problem is given

by

V (t, x) = H(t, x).

2. There exists an optimal control law û, and in fact

û(t, x) = g(t, x)

.
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Handling the HJB equation

1. Consider the HJB equation for V .

2. Fix (t, x) ∈ [0, T ] × Rn and solve, the static optimization

problem

max
u∈U

[F (t, x, u) +Au
V (t, x)] .

Here u is the only variable, whereas t and x are fixed

parameters. The functions F , µ, σ and V are considered as

given.

3. The optimal û, will depend on t and x, and on the function

V and its partial derivatives. We thus write û as

û = û (t, x; V ) . (1)

4. The function û (t, x; V ) is our candidate for the optimal

control law, but since we do not know V this description is

incomplete. Therefore we substitute the expression for û into

the PDE , giving us the PDE

∂V

∂t
(t, x) + F

û
(t, x) +Aû

(t, x) V (t, x) = 0,

V (T, x) = Φ(x).

5. Now we solve the PDE above! Then we put the solution V

into expression (1). Using the verification theorem we can

identify V as the optimal value function, and û as the optimal

control law.
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Making an Ansatz

• The hard work of dynamic programming consists in
solving the highly nonlinear HJB equation

• There are no general analytic methods available
for this, so the number of known optimal control
problems with an analytic solution is very small
indeed.

• In an actual case one usually tries to guess a
solution, i.e. we typically make a parameterized
Ansatz for V then use the PDE in order to identify
the parameters.

• Hint: V often inherits some structural properties
from the boundary function Φ as well as from the
instantaneous utility function F .

• Most of the known solved control problems have,
to some extent, been “rigged” in order to be
analytically solvable.
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The Linear Quadratic Regulator

min
u∈Rk

E

[∫ T

0

{X ′
tQXt + u′tRut} dt + X ′

THXT

]
,

with dynamics

dXt = {AXt + But} dt + CdWt.

We want to control a vehicle in such a way that it stays
close to the origin (the terms x′Qx and x′Hx) while
at the same time keeping the “energy” u′Ru small.

Here Xt ∈ Rn and ut ∈ Rk, and we impose no control
constraints on u.

The matrices Q, R, H, A, B and C are assumed to be
known. We may WLOG assume that Q, R and H are
symmetric, and we assume that R is positive definite
(and thus invertible).
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Handling the Problem

The HJB equation becomes
∂V

∂t
(t, x) + infu∈Rk {x′Qx + u′Ru + [∇xV ](t, x) [Ax + Bu]}

+ 1
2

∑
i,j

∂2V
∂xi∂xj

(t, x) [CC ′]i,j = 0,

V (T, x) = x′Hx.

For each fixed choice of (t, x) we now have to solve the static unconstrained
optimization problem to minimize

u′Ru + [∇xV ](t, x) [Ax + Bu] .
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The problem was:

min
u

u′Ru + [∇xV ](t, x) [Ax + Bu] .

Since R > 0 we set the gradient to zero and obtain

2u′R = −(∇xV )B,

which gives us the optimal u as

û = −1
2
R−1B′(∇xV )′.

Note: This is our candidate of optimal control law,
but it depends on the unkown function V .

We now make an educated guess about the shape of
V .
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From the boundary function x′Hx and the term x′Qx
in the cost function we make the Ansatz

V (t, x) = x′P (t)x + q(t),

where P (t) is a symmetric matrix function, and q(t) is
a scalar function.

With this trial solution we have,

∂V

∂t
(t, x) = x′Ṗ x + q̇,

∇xV (t, x) = 2x′P,

∇xxV (t, x) = 2P

û = −R−1B′Px.

Inserting these expressions into the HJB equation we
get

x′
{

Ṗ + Q− PBR−1B′P + A′P + PA
}

x

+q̇ + tr[C ′PC] = 0.
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We thus get the following matrix ODE for P{
Ṗ = PBR−1B′P −A′P − PA−Q,

P (T ) = H.

and we can integrate directly for q:{
q̇ = −tr[C ′PC],

q(T ) = 0.

The matrix equation is a Riccati equation. The
equation for q can then be integrated directly.

Final Result for LQ:

V (t, x) = x′P (t)x +
∫ T

t

tr[C ′P (s)C]ds,

û(t, x) = −R−1B′P (t)x.
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2. Portfolio Theory

• Problem formulation.

• An extension of HJB.

• The simplest consutmption-investment problem.

• The Merton fund separation results.
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Recap of Basic Facts

We consider a market with n assets.

Si
t = price of asset No i,

hi
t = units of asset No i in portfolio

wi
t = portfolio weight on asset No i

Xt = portfolio value

ct = consumption rate

We have the relations

Xt =
n∑

i=1

hi
tS

i
t, wi

t =
hi

tS
i
t

Xt
,

n∑
i=1

ui
t = 1.

Basic equation:
Dynamics of self financing portfolio in terms of relative
weights

dXt = Xt

n∑
i=1

wi
t

dSi
t

Si
t

− ctdt
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Simplest model
Assume a scalar risky asset and a constant short rate.

dSt = αStdt + σStdWt

dBt = rBtdt

We want to maximize expected utility over time

max
w0,w1,c

E

[∫ T

0

F (t, ct)dt + Φ(XT )

]
Dynamics

dXt = Xt

[
u0

tr + w1
t α
]
dt− ctdt + w1

t σXtdWt,

Constraints

ct ≥ 0, ∀t ≥ 0,

w0
t + w1

t = 1, ∀t ≥ 0.

Nonsense!
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What are the problems?

• We can obtain umlimited uttility by simply
consuming arbitrary large amounts.

• The wealth will go negative, but there is nothing in
the problem formulations which prohibits this.

• We would like to impose a constratin of type Xt ≥ 0
but this is a state constraint and DynP does not
allow this.

Good News:
DynP can be generalized to handle (some) problems
of this kind.
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Generalized problem

Let D be a nice open subset of [0, T ]×Rn and consider
the following problem.

max
u∈U

E

[∫ τ

0

F (s,Xu
s ,us)ds + Φ (τ,Xu

τ )
]

.

Dynamics:

dXt = µ (t, Xt, ut) dt + σ (t, Xt, ut) dWt,

X0 = x0,

The stopping time τ is defined by

τ = inf {t ≥ 0 |(t, Xt) ∈ ∂D} ∧ T.
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Generalized HJB

Theorem: Given enough regularity the follwing hold.

1. The optimal value function satisfies
∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0, ∀(t, x) ∈ D

V (t, x) = Φ(t, x), ∀(t, x) ∈ ∂D.

2. We have an obvious verification theorem.
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Reformulated problem

max
c≥0, w∈R

E

[∫ τ

0

F (t, ct)dt + Φ(XT )
]

where
τ = inf {t ≥ 0 |Xt = 0} ∧ T.

with notation:

w1 = w,

w0 = 1− w

Thus no constraint on w.

Dynamics

dXt = wt [α− r]Xtdt + (rXt − ct) dt + wσXtdWt,
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HJB Equation

∂V

∂t
+ sup

c≥0,w∈R

(
F (t, c) + wx(α− r)

∂V

∂x
+ (rx− c)

∂V

∂x
+

1

2
x

2
w

2
σ

2∂2V

∂x2

)
= 0,

V (T, x) = 0,

V (t, 0) = 0.

We now specialize (why?) to

F (t, c) = e
−δt

c
γ
,

so we have to maximize

e
−δt

c
γ
+ wx(α− r)

∂V

∂x
+ (rx− c)

∂V

∂x
+

1

2
x

2
w

2
σ

2∂2V

∂x2
,
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Analysis of the HJB Equation

In the embedde static problem we maximize, over c
and w,

e−δtcγ +wx(α− r)
∂V

∂x
+(rx− c)

∂V

∂x
+

1
2
x2w2σ2∂

2V

∂x2
,

First order conditions:

γcγ−1 = eδtVx,

w =
−Vx

x · Vxx
· α− r

σ2
,

Ansatz:
V (t, x) = e−δth(t)xγ,

Because of the boundary conditions, we must demand
that

h(T ) = 0. (2)
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Given a V of this form we have (using · to denote the
time derivative)

∂V

∂t
= e−δtḣxγ − δe−δthxγ,

∂V

∂x
= γe−δthxγ−1,

∂2V

∂x2
= γ(γ − 1)e−δthxγ−2.

giving us

ŵ(t, x) =
α− r

σ2(1− γ)
,

ĉ(t, x) = xh(t)−1/(1−γ).

Plug all this into HJB!
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After rearrangements we obtain

xγ
{

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ)
}

= 0,

where the constants A and B are given by

A =
γ(α− r)2

σ2(1− γ)
+ rγ − 1

2
γ(α− r)2

σ2(1− γ)
− δ

B = 1− γ.

If this equation is to hold for all x and all t, then we
see that h must solve the ODE

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ) = 0,

h(T ) = 0.

An equation of this kind is known as a Bernoulli
equation, and it can be solved explicitly.

We are done.
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Merton’s Mutal Fund Theorems

1. The case with no risk free asset

We consider n risky assets with dynamics

dSi = Siαidt + SiσidW, i = 1, . . . , n

where W is Wiener in Rk. On vector form:

dS = D(S)αdt + D(S)σdW.

where

α =

 α1
...

αn

 σ =

 σ1
...

σn


D(S) is the diagonal matrix

D(S) = diag[S1, . . . , Sn].

Wealth dynamics

dX = Xw′αdt− cdt + Xw′σdW.
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Formal problem

max
c,w

E

[∫ τ

0

F (t, ct)dt

]
given the dynamics

dX = Xw′αdt− cdt + Xw′σdW.

and constraints

e′w = 1, c ≥ 0.

Assumptions:

• The vector α and the matrix σ are constant and
deterministic.

• The volatility matrix σ has full rank so σσ′ is positive
definite and invertible.

Note: S does not turn up in the X-dynamics so V is
of the form

V (t, x, s) = V (t, x)
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The HJB equation is
∂V

∂t
(t, x) + sup

e′w=1, c≥0

{F (t, c) +Ac,wV (t, x)} = 0,

V (T, x) = 0,

V (t, 0) = 0.

where

Ac,wV = xw′α
∂V

∂x
− c

∂V

∂x
+

1
2
x2w′Σw

∂2V

∂x2
,

and where the matrix Σ is given by

Σ = σσ′.
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The HJB equation is8>>>><>>>>:
Vt(t, x) + sup

w′e=1, c≥0


F (t, c) + (xw

′
α− c)Vx(t, x) +

1

2
x

2
w
′
ΣwVxx(t, x)

ff
= 0,

V (T, x) = 0,

V (t, 0) = 0.

where Σ = σσ′.

If we relax the constraint w′e = 1, the Lagrange function for the static
optimization problem is given by

L = F (t, c) + (xw′α− c)Vx(t, x) +
1
2
x2w′ΣwVxx(t, x) + λ (1− w′e) .
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L = F (t, c) + (xw′α− c)Vx(t, x)

+
1
2
x2w′ΣwVxx(t, x) + λ (1− w′e) .

The first order condition for c is

∂F

∂c
(t, c) = Vx(t, x).

The first order condition for w is

xα′Vx + x2Vxxw′Σ = λe′,

so we can solve for w in order to obtain

ŵ = Σ−1

[
λ

x2Vxx
e− xVx

x2Vxx
α

]
.

Using the relation e′w = 1 this gives λ as

λ =
x2Vxx + xVxe′Σ−1α

e′Σ−1e
,
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Inserting λ gives us, after some manipulation,

ŵ =
1

e′Σ−1e
Σ−1e +

Vx

xVxx
Σ−1

[
e′Σ−1α

e′Σ−1e
e− α

]
.

We can write this as

ŵ(t) = g + Y (t)h,

where the fixed vectors g and h are given by

g =
1

e′Σ−1e
Σ−1e,

h = Σ−1

[
e′Σ−1α

e′Σ−1e
e− α

]
,

whereas Y is given by

Y (t) =
Vx(t, X(t))

X(t)Vxx(t, X(t))
.
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We had
ŵ(t) = g + Y (t)h,

Thus we see that the optimal portfolio is moving
stochastically along the one-dimensional “optimal
portfolio line”

g + sh,

in the (n − 1)-dimensional “portfolio hyperplane” ∆,
where

∆ = {w ∈ Rn |e′w = 1} .

If we fix two points on the optimal portfolio line, say
wa = g + ah and wb = g + bh, then any point w on
the line can be written as an affine combination of the
basis points wa and wb. An easy calculation shows
that if ws = g + sh then we can write

ws = µwa + (1− µ)wb,

where

µ =
s− b

a− b
.

Tomas Björk, 2010 45



Mutual Fund Theorem

There exists a family of mutual funds, given by
ws = g + sh, such that

1. For each fixed s the portfolio ws stays fixed over
time.

2. For fixed a, b with a 6= b the optimal portfolio ŵ(t)
is, obtained by allocating all resources between the
fixed funds wa and wb, i.e.

ŵ(t) = µa(t)wa + µb(t)wb,

3. The relative proportions (µa, µb) of wealth allocated
to wa and wbare given by

µa(t) =
Y (t)− b

a− b
,

µb(t) =
a− Y (t)

a− b
.
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The case with a risk free asset

Again we consider the standard model

dS = D(S)αdt + D(S)σdW (t),

We also assume the risk free asset B with dynamics

dB = rBdt.

We denote B = S0 and consider portfolio weights
(w0, w1, . . . , wn)′ where

∑n
0 wi = 1. We then

eliminate w0 by the relation

w0 = 1−
n∑
1

wi,

and use the letter w to denote the portfolio weight
vector for the risky assets only. Thus we use the
notation

w = (w1, . . . , wn)′,

Note: w ∈ Rn without constraints.
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HJB

We obtain

dX = X · w′(α− re)dt + (rX − c)dt + X · w′σdW,

where e = (1, 1, . . . , 1)′.

The HJB equation now becomes
Vt(t, x) + sup

c≥0,w∈Rn
{F (t, c) +Ac,wV (t, x)} = 0,

V (T, x) = 0,

V (t, 0) = 0,

where

AcV = xw′(α− re)Vx(t, x) + (rx− c)Vx(t, x)

+
1
2
x2w′ΣwVxx(t, x).
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First order conditions

We maximize

F (t, c) + xw′(α− re)Vx + (rx− c)Vx +
1
2
x2w′ΣwVxx

with c ≥ 0 and w ∈ Rn.

The first order conditions are

∂F

∂c
(t, c) = Vx(t, x),

ŵ = − Vx

xVxx
Σ−1(α− re),

with geometrically obvious economic interpretation.
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Mutual Fund Separation Theorem

1. The optimal portfolio consists of an allocation
between two fixed mutual funds w0 and wf .

2. The fund w0 consists only of the risk free asset.

3. The fund wf consists only of the risky assets, and
is given by

wf = Σ−1(α− re).

4. At each t the optimal relative allocation of wealth
between the funds is given by

µf(t) = − Vx(t, X(t))
X(t)Vxx(t, X(t))

,

µ0(t) = 1− µf(t).
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3. The Martingale Approach

• Decoupling the wealth profile from the portfolio
choice.

• Lagrange relaxation.

• Solving the general wealth problem.

• Example: Log utility.

• Example: The numeraire portfolio.

• Computing the optimal portfolio.

• The Merton fund separation theorems from a
martingale perspective..
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Problem Formulation

Standard model with internal filtration

dSt = D(St)αtdt + D(St)σtdWt,

dBt = rBtdt.

Assumptions:

• Drift and diffusion terms are allowed to be arbitrary
adapted processes.

• The market is complete.

• We have a given initial wealth x0

Problem:
max
h∈H

EP [Φ(XT )]

where
H = {self financing portfolios}

given the initial wealth X0 = x0.
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Some observations

• In a complete market, there is a unique martingale
measure Q.

• Every claim Z satisfying the budget constraint

e−rTEQ [Z] = x0,

is attainable by an h ∈ H and vice versa.

• We can thus write our problem as

max
Z

EP [Φ(Z)]

subject to the constraint

e−rTEQ [Z] = x0.

• We can forget the wealth dynamics!
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Basic Ideas

Our problem was

max
Z

EP [Φ(Z)]

subject to
e−rTEQ [Z] = x0.

Idea I:

We can decouple the optimal portfolio problem:

• Finding the optimal wealth profile Ẑ.

• Given Ẑ, find the replicating portfolio.

Idea II:

• Rewrite the constraint under the measure P .

• Use Lagrangian techniques to relax the constraint.

Tomas Björk, 2010 54



Lagrange formulation

Problem:
max

Z
EP [Φ(Z)]

subject to
e−rTEP [LTZ] = x0.

Here L is the likelihood process, i.e.

LT =
dQ

dP
, on FT

The Lagrangian of this is

L = EP [Φ(Z)] + λ
{
x0 − e−rTEP [LTZ]

}
i.e.

L = EP
[
Φ(Z)− λe−rTLTZ

]
+ λx0
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The optimal wealth profile

Given enough convexity and regularity we now expect,
given the dual variable λ, to find the optimal Z by
maximizing

L = EP
[
Φ(Z)− λe−rTLTZ

]
+ λx0

over unconstrained Z, i.e. to maximize∫
Ω

{
Φ(Z(ω))− λe−rTLT (ω)Z(ω)

}
dP (ω)

This is a trivial problem!

We can simply maximize Z(ω) for each ω separately.

max
z

{
Φ(z)− λe−rTLTz

}
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The optimal wealth profile

Our problem:

max
z

{
Φ(z)− λe−rTLTz

}
First order condition

Φ′(z) = λe−rTLT

The optimal Z is thus given by

Ẑ = G
(
λe−rTLT

)
where

G(y) = [Φ′]−1 (y).

The dual varaiable λ is determined by the constraint

e−rTEP
[
LT Ẑ

]
= x0.
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Example – log utility

Assume that
Φ(x) = ln(x)

Then

g(y) =
1
y

Thus

Ẑ = G
(
λe−rTLT

)
=

1
λ
erTL−1

T

Finally λ is determined by

e−rTEP
[
LT Ẑ

]
= x0.

i.e.

e−rTEP

[
LT

1
λ
erTL−1

T

]
= x0.

so λ = x−1
0 and

Ẑ = x0e
rTL−1

T
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The optimal wealth process

From general theory we know that the normalized
optimal wealth process

e−rtX̂t

is a Q-martingale. We thus have

e−rtX̂t = EQ
[
e−rT Ẑ

∣∣∣Ft

]
so

Xt = e−r(T−t)x−1
0 erTEQ

[
L−1

T

∣∣Ft

]
Since L = dQ/dP , we have L−1 = dP/dQ so L−1 is
a Q martingale. We thus obtain

X̂t = x−1
0 ertL−1

t
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Log utility is myopic

Recall
X̂t = x−1

0 ertL−1
t

This shows that the optimal portfolio for log utility
does not depend on the choice of time horizon T . This
portfolio is also known as the growth optimal portfolio.

Definition:
The growth optimal portfolio (GOP) is the portfolio
which is optimal for log utility (for arbitrary terminal
date T ).
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The Numeraire Portfolio

Standard approach:

• Choose a fixed numeraire (portfolio) N .

• Find the corresponding martingale measure, i.e. find QN s.t.

B

N
, and

S

N

are QN -martingales.

Alternative approach:

• Choose a fixed measure Q.

• Find numeraire N such that Q = QN .

Special case:

• Set Q = P

• Find numeraire N such that QN = P i.e. such that

B

N
, and

S

N

are QN -martingales under the objective measure P .

• This N is the numeraire portfolio.
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Log utility and the numeraire portfolio

Theorem:
Assume that X is GOP. Then X is the numeraire
portfolio.

Proof:
We have to show that for an arbitrary asset price
process S the process

Yt =
St

Xt

is a P martingale. From above we know that

Xt = x−1
0 ertL−1

t

Thus

St

Xt
= x−1

0 e−rtStLt

which is a P martingale, since x−1
0 e−rtSt is a Q

martingale (use Bayes’ formula).
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Back to general case: Computing LT

We recall
Ẑ = G

(
λe−rTLT

)
.

The likelihood process L is computed by using
Girsanov. We recall

dSt = D(St)αtdt + D(St)σtdWt,

We know from Girsanov that

dLt = Ltϕ
?
tdWt

so
dWt = ϕtdt + dWQ

t

where WQ is Q-Wiener.

Thus

dSt = D(St) {αt + σtϕt} dt + D(St)σtdWQ
t ,
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Computing LT , continued

Recall

dSt = D(St) {αt + σtϕt} dt + D(St)σtdWQ
t ,

The kernel ϕ is determined by the martingale measure
condition

αt + σtϕt = r
where

r =

 r
...
r


Market completeness implies that σt is invertible so

ϕt = σ−1
t {r− αt}

and

LT = exp

(∫ T

0

ϕtdWt −
1
2

∫ T

0

‖ϕt‖2dt

)
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Finding the optimal portfolio

• We can easily compute the optimal wealth profile.

• How do we compute the optimal portfolio?

Recall:

dSt = D(St)αtdt + D(St)σtdWt,

wealth dynamics

dXt = hB
t dBt + hS

t dSt

or
dXt = Xtu

B
t rdt + Xtu

S
t D(St)−1dSt

where

hS = (h1, . . . , hn), uS = (u1, . . . , un)
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We recall:

• e−rtXt is a Q martingale.

• XT = Ẑ

Thus the optimal wealth process is determined by

Xt = e−r(T−t)EQ
[
Ẑ
∣∣∣Ft

]
We can write this as

Xt = e−r(T−t)Mt

where the Q-martingale M is defined by

Mt = EQ
[
Ẑ
∣∣∣Ft

]
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Recall
Mt = EQ

[
Ẑ
∣∣∣Ft

]
The martingale representation theorem gives us

dMt = ξtdWQ
t ,

which gives us the Q-dynamics of X as

dXt = rXtdt + e−r(T−t)dMt

so
dXt = rXtdt + e−r(T−t)ξtdWQ

t .

On the other hand we have

dXt = rXtdt + Xtu
S
t σtdWQ

t

dXt = rXtdt + hS
t D(St)σtdWQ

t

Thus uS and hS
t are determined by

uS
t =

e−r(T−t)

Xt
ξtσ

−1
t

hS
t = e−r(T−t)ξtσ

−1
t D(St)−1.
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and
uB

t = 1− uS
t e, hB

t = Xt − hS
t St
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How do we find ξ?

Recall

Xt = e−r(T−t)EQ
[
Ẑ
∣∣∣Ft

]
dXt = rXtdt + e−r(T−t)ξtdWQ

t .

We need to compute ξ.

In a Markovian framework this follows direcetly from
the Itô formula.

Recall
Ẑ = H(LT ) = G (λLT )

where
G = [Φ′]−1

and

dLt = Ltϕ
?
tdWt,

dW = ϕdt + dWQ
t

so
dLt = Lt‖ϕt‖2dt + Ltϕ

?
tdWQ

t
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Finding ξ

If the model is Markovian we have

αt = α(St), σt = σ(St), ϕt = σ(St)−1 {α(St)− r}

so

Xt = e−r(T−t)EQ [H(LT )| Ft]

dSt = D(St)σ(St)dWQ
t ,

dLt = Lt‖ϕ(St)‖2dt + Ltϕ(St)?dWQ
t

Thus we have

Xt = F (t, St, Lt)

where F is given as the solution to the Kolmogorov
backward equation.
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Kolmogorov

Recall

Xt = F (t, St, Lt =)e−r(T−t)EQ [H(LT )| Ft]

dSt = D(St)rdt + D(St)σ(St)dWQ
t ,

dLt = Lt‖ϕ(St)‖2dt + Ltϕ(St)?dWQ
t

Ft + L‖ϕ‖2FL +
1
2
L2‖ϕ‖2FLL + FSD(s)r +

1
2
tr {C(s)} − rF = 0,

F (T, s, L) = H(L)

where
C(s) = σ?(s)D(s)FssD(s)σ(s)
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Finding ξ, contd.

We had
Xt = F (t, St, Lt)

and Itô gives us

dXt = rXtdt + {FSD(St)σ(St) + FLLtϕ
?(St)} dWQ

t

Recall
dXt = rXtdt + e−r(T−t)ξtdWQ

t

Thus

e−r(T−t)ξt = FSD(St)σ(St) + FLLtϕ
?(St).

and we obtain uS and hS from

uS
t =

e−r(T−t)

Xt
ξtσ(St)−1

hS
t = e−r(T−t)ξtσ(St)−1D(St)−1.
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Mutual Funds – Martingale Version

We now assume constant parameters

α(s) = α, σ(s) = σ, ϕ(s) = ϕ

We recall

Xt = EQ [H(LT )| Ft]

dLt = Lt‖ϕ‖2dt + Ltϕ
?dWQ

t

Now L is Markov so we have (without any S)

Xt = F (t, Lt)

Thus

e−r(T−t)ξt = FLLtϕ
?, uS

t =
FLLt

Xt
ϕ?σ−1

and we have fund separation with the fixed risky fund
given by

w = ϕ?σ−1 = {r? − α?} {σσ?}−1
.
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4. Some stuff on Markov processes
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Contents

• The infinitesimal generator.

• The Dynkin Theorem.

• The Kolmogorov backward equation.
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The infinitesimal generator

Let X be a Markov process on Rn with internal
filtration F = FX.

Definition: The domain D is the set of bounded
continuous mappings f : Rn → R such that the limit

lim
h→0

Et,x [f(Xt+h)]− f(x)
h

exists pointwise for every (t, x).

Definition: The infinitesimal generator G is the
mapping G : D → C(R+ ×Rn) defined by

(Gf) (t, x) = lim
h→0

Et,x [f(Xt+h)]− f(x)
h
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Intuition

The infinitesimal generator gives us the “mean
derivative” of the process f(Xt). From the definition
we have

Et,x [f(Xt+h)] = f(x) + Gf(t, x)h + o(h)

which suggests the informal interpretation

Et,x [df(Xt)] = Gf(t, x)dt
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Time dependence

For a function f(t, x) which is also time dependent
and C1 in the t-variable we have

lim
h→0

Et,x [f(t + h, Xt+h)]− f(t, x)
h

=
∂f

∂t
(t, x)+Gf(t, x)

or, alternatively,

Et,x [df(t, Xt)] =
(

∂f

∂t
(t, x) + Gf(t, x)

)
dt
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The Dynkin Theorem

Theorem: Consider an arbitrary f in the domain of
G, and define the process M by

Mt = f(Xt)−
∫ t

0

Gf(Xs)ds

alternatively by

df(Xt) = Gf(Xt)dt + dMt.

Then the following hold.

• M is a martingale.

• The process f(Xt)is a martingale if and only if
Gf = 0.
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Sketch of proof

Since we have

Et,x [df(Xt)] = Gf(Xt)dt

it follows from the Markov property that we have

E [df(Xt)− Gf(Xt)dt| Ft] = 0.

Thus
df(Xt)− Gf(Xt)dt

is a martingale increment, so M is a martingale. The
second part of the statement depends on the (deep)
result that a martingale with continuous trajectories of
bounded variation must be constant.
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The Kolmogorov Backward Equation

Consider a mapping Φ : Rn → R and define the
function f(t, x) by

f(t, x) = Et,x [Φ(XT )]

Then f solves the boundary value problem

∂f

∂t
(t, x) + Gf(t, x) = 0,

f(T, x) = Φ(x)

This is the Kolmogorov Backward Equation.

Tomas Björk, 2010 81



Proof

From the definition of f and the Markov property we
have

f(t, Xt) = E [Φ(XT )|Xt] = E [Φ(XT )| Ft]

thus the process f(t, Xt) is a martingale and
Kolmogorov now follows from Dynkin.
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5. Filtering theory

• An investment problem.

• The non-linear FKK filtering equations.

• The SPDE for the conditional density.

• The Zakai equation for the unnormalized density.

• The Wonham filter.

• The Kalman filter.
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An investment problem with stochastic
rate of return

Model:

dSt = Stα(Yt)dt + StσdWt

W is scalar and Y is some factor process. We assume
that (S, Y ) is Markov and adapted to the filtration F.

Wealth dynamics

dXt = Xt [r + ut (α− r)] dt + utXtσdWt

Objective:
max

u
EP [Φ(XT )]

Information structure:

• Complete information: We observe S and Y , so
u ∈ F

• Incomplete information: We only observe S, so
u ∈ FS. We need filtering theory.
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Filtering Theory – Setup

Given some filtration F:

dXt = atdt + dMt

dZt = btdt + dWt

Here all processes are F adapted and

X = state process,

Z = observation process,

M = martingale w.r.t. F

W = Wiener w.r.t. F

We assume (for the moment) that M and W are
independent.

Problem:
Compute (recursively) the filter estimate

X̂t = Πt [X] = E
[
Xt| FZ

t

]
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Typical example

A very commen example is given by

dXt = µ(t, Xt)dt + σ(t, Xt)dVt,

dZt = b(t, Xt)dt + dWt

where W and V are Wiener.
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The innovations process

Recall:
dZt = btdt + dWt

Our best guess of bt is b̂t, so the genuinely new
information should be

dZt − b̂tdt

Definition:
The innovations process ν is defined by

νt = dZt − b̂tdt

Theorem: The process ν is FZ-Wiener.

Proof: By Levy it is enough to show that

• ν is an FZ martingale.

• ν2
t − t is an FZ martingale.
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I. ν is an FZ martingale:

From definition we have

dνt =
(
bt − b̂t

)
dt + dWt (3)

so

EZ
s [νt − νs] =

∫ t

s

EZ
s

[
bu − b̂u

]
du + EZ

s [Wt −Ws]

=
∫ t

s

EZ
s

[
EZ

u

[
bu − b̂u

]]
du + EZ

s [Es [Wt −Ws]] = 0

I. ν2
t − t is an FZ martingale:

From Itô we have

dν2
t = 2νtdνt + (dνt)

2

Here dν is a martingale increment and from (3) it
follows that (dνt)

2 = dt.
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Remark 1:
The innovations process gives us a Gram-Schmidt
orthogonalization of the increasing family of Hilbert
spaces

L2(FZ
t ); t ≥ 0.

Remark 2:
The use of Itô above requires general semimartingale
integration theory, since we do not know a priori that
ν is Wiener.
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Filter dynamics

From the X dynamics we guess that

dX̂t = âtdt + martingale

Definition: dmt = dX̂t − âtdt.

Proposition: m is an FZ
t martingale.

Proof:

EZ
s [mt −ms] = EZ

s

[
X̂t − X̂s

]
− EZ

s

[∫ t

s

âudu

]
= EZ

s [Xt −Xs]− EZ
s

[∫ t

s

âudu

]
= EZ

s [Mt −Ms]− EZ
s

[∫ t

s

(au − âu) du

]
= EZ

s [Es [Mt −Ms]]− EZ
s

[∫ t

s

EZ
u [au − âu] du

]
= 0

Tomas Björk, 2010 90



Filter dynamics

We now have the filter dynamics

dX̂t = âtdt + dmt

where m is an FZ
t martingale.

If the innovations hypothesis

FZ
t = Fν

t

is true, then the martingale representation theorem
would give us an FZ

t adapted process h such that

dmt = htdνt (4)

The innovations hypothesis is not generally correct but
FKK have proved that in fact (4) is always true.
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Filter dynamics

We thus have the filter dynamics

dX̂t = âtdt + htdνt

and it remains to determine the gain process h.

Proposition: The process h is given by

ht = X̂tbt − X̂tb̂t

We give a slighty heuristic proof.
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Proof sketch

From Itô we have

d (XtZt) = Xtbtdt + XtdWt + Ztatdt + ZtdMt

using
dX̂t = âtdt + htdνt

and
dZt = b̂tdt + dνt

we have

d
(
X̂tZt

)
= X̂tb̂tdt+ X̂tdνt +Ztâtdt+Zthtdνt +htdt

Formally we also should have

E
[
d (XtZt)− d

(
X̂tZt

)∣∣∣FZ
t

]
= 0

which gives us(
X̂tbt − X̂tb̂t − ht

)
dt = 0.
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The FKK filter equations

For the model

dXt = atdt + dMt

dZt = btdt + dWt

where M and W are independent, we have the Fujisaki-
Kallianpur-Kunita (FKK) non-linear filter equations

dX̂t = âtdt +
{

X̂tbt − X̂tb̂t

}
dνt

dνt = dZt − b̂tdt

Remark: It is easy to see that

ht = E
[(

Xt − X̂t

)(
bt − b̂t

)∣∣∣FZ
t

]
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The general filter equations

For the model

dXt = atdt + dMt

dZt = btdt + σtdWt

where

• The process σ is FZ
t adapted and positive.

• There is no assumption of independence between
M and W .

we have the filter

dX̂t = âtdt +
[
D̂t +

1
σt

{
X̂tbt − X̂tb̂t

}]
dνt

dνt =
1
σt

{
dZt − b̂tdt

}
dDt =

d〈M,W 〉t
dt
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Comment on 〈M,W 〉

This requires semimartingale theory but there are two
simple cases

• If M is Wiener then

d〈M,W 〉t = dMtdWt

with usual multiplication rules.

• If M is a pure jump process then

d〈M,W 〉t = 0.
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Filtering a Markov process

Assume that X is Markov with generator G. We
want to compute Πt [f(Xt)], for some nice function f .
Dynkin’s formula gives us

df(Xt) = (Gf) (Xt)dt + dMt

Assume that the observations are

dZt = b(Xt)dt + dWt

where W is independent of X.

The filter equations are now

dΠt [f ] = Πt [Gf ] dt + {Πt [fb]−Πt [f ] Πt [b]} dνt

dνt = dZt −Πt [b] dt

Remark: To obtain dΠt [f ] we need Πt [Gf ], Πt [fb],
and Πt [b]. This leads generically to an infinite
dimensional system of filter equations.
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On the filter dimension

dΠt [f ] = Πt [Gf ] dt + {Πt [fb]−Πt [f ] Πt [b]} dνt

• To obtain dΠt [f ] we need Πt [Gf ], Πt [fb], Πt [b].

• We apply the FKK equations to Gf , fb, and b.

• This leads to new filter estimates to determine and
generically to an infinite dimensional system of
filter equations.

• The filter equations are really equations for the
entire conditional distribution of X.

• You can only expect the filter to be finite
when the conditional distribution of X is finitely
parameterized.

• There are only very few examples of finite
dimensional filters.

• The most well known finite filters are the Wonham
and the Kalman filters.
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The SPDE for the conditional density

Recall the FKK equation

dΠt [f ] = Πt [Gf ] dt + {Πt [fb]−Πt [f ] Πt [b]} dνt

Now assume that X has a conditional density process
pt(x), with interpretation

pt(x)dx = E
[
Xt ∈ dx| FZ

t

]
so

Πt [f ] = E
[
f(Xt)| FZ

t

]
=
∫

Rn
f(x)pt(x)dx

Using the pairing 〈f, g〉 =
∫

f(x)g(x)dx we can write
FKK as

d〈f, pt〉 = 〈Gf, pt〉dt + {〈fb, pt〉 − 〈f, pt〉〈b, pt〉} dνt
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Recall

d〈f, pt〉 = 〈Gf, pt〉dt + {〈fb, pt〉 − 〈f, pt〉〈b, pt〉} dνt

We can now dualize this to obtain

d〈f, pt〉 = 〈f,G?pt〉dt + {〈f, bpt〉 − 〈f, pt〉〈b, pt〉} dνt

Since this holds for all test functions f we have the
following result.

Theorem: The density function pt(x) satisfies
the following stochastic partial differential equation
(SPDE)

dpt(x) = G?pt(x)dt+pt(x)
{

b(x)−
∫

Rn
b(y)pt(y)dy

}
dνt

This SPDE is know as the Kushner-Stratonovic
equation.
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The Zakai equation

We consider the following model under a measure P .

dXt = a(Xt)dt + b(Xt)dVt,

dZt = h(Xt)dt + dWt

where V and W are independent Wiener processes.

The SPDE for pt(x) is quite messy. We now present
an alternative along the following lines.

• Perform a Girsanov transformation from P to Q so
that X and Z are independent under Q.

• Compute filtering estimates under Q. This should
be very easy, due to the independence.

• Transform the filter estimetes back from Q to P ,
using the abstract Bayes Formula.
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The Basic Construction
Consider a probability space (Q,F , V, Z) where V and
Z are independent Wiener processes under Q. Define
X by

dXt = a(Xt)dt + b(Xt)dVt

and define F by

Ft = FZ
t ∨ FV

∞

Define the likelihood process L by

dLt = h(Xt)LtdZt, L0 = 1

and define P by dP = LtdQ on Ft. From Girsanov
we deduce that W , defined by

dZt = h(Xt)dt + dWt

is (P,F)-Wiener. In particular it is independent of
F0 = FV

∞, so W and V are P -independent. It is
also easy to see (how?) that (X, V ) has the same
distribution under P as under Q. Under P we now
have our standard model.
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The unnormalized estimate

Define Πt [f ] as usual by

Πt [f ] = EP
[
f(Xt)| FZ

t

]
.

We then have, from Bayes,

Πt [f ] =
EQ

[
Ltf(Xt)| FZ

t

]
EQ

[
Lt| FZ

t

]
Now define σt [f ] by

σt [f ] = EQ
[
Ltf(Xt)| FZ

t

]
which gives us the Kallianpur-Striebel formula

Πt [f ] =
σt [f ]
σt [1]

We can view σt [f ] as an unnormalized filter estimate
of f(Xt), and we now define the SDE for σt [f ].
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The Zakai Equation

We have
σt [f ] = Πt [f ] · σt [1]

By FKK we already have an expression for dΠt [f ] and
one can show that

dσt [1] = Πt [h]σt [1] dZt

From Ito, and after lots of calculations, we have the
following result.

Theorem: The unnormalized filter estimate satisfies
the Zakai Equation

dσt [f ] = σt [Gf ] dt + σt [hf ] dZt
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The SPDE for the unnormalized density

Let us now assume that there exists an unnormalized
density process qt(x) with interpretation

σt [f ] =
∫

Rn
f(x)qt(x)dx

Arguing as before we then obtain the following result.

Theorem: The unnormalized density Q satisfies the
SPDE

dqt(x) = G?qt(x)dt + h(x)qt(x)dZt

This is a much nicer equation than the corresponding
equation for pt(x), since

• It is linear in qt whereas the SPDE for pt is quadratic
in pt.

• The equation for q is driven directly by the
observations process Z, rather than by the
innovations process ν.
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The Wonham filter

Assume that X is a continuous time Markov chain on
the state space {1, . . . , n} with (constant) generator
matrix H, i.e.

P (Xt+h = j |Xt = i) = Hijh + o(h),

for i 6= j and

Hii = −
∑
j 6=i

Hij

Define the indicator processes by

δi(t) = I {Xt = i} , i = 1, . . . , n.

Dynkin’s Theorem gives us

dδi
t =

∑
j

Hjiδjdt + dM i
t , i = 1, . . . , n.
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The Wonham filter

Recall

dδi
t =

∑
j

Hjiδjdt + dM i
t , i = 1, . . . , n.

Observations are

dZt = b(Xt)dt + dWt.

The filter equations are

dΠt [δi] =
∑

j

HjiΠt [δj] dt+{Πt [δib]−Πt [δi] Πt [b]} dνt

dνt = dZt −Πt [b] dt

Tomas Björk, 2010 107



We note that

b(Xt) =
∑

i

biδi(t)

so

Πt [δib] = biΠt [δi] ,

Πt [b] =
∑

j

bjΠt [δj]

We finally have the Wonham filter

dδ̂i =
∑

j

Hjiδ̂jdt +

biδ̂i − δ̂i

∑
j

bjδ̂j

 dνt,

dνt = dZt −
∑

j

bjδ̂jdt
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The Kalman filter

dXt = aXtdt + cdVt,

dZt = Xtdt + dWt

W and V are independent Wiener

FKK gives us

dΠt [X] = aΠt [X] dt +
{

Πt

[
X2
]
− (Πt [X])2

}
dνt

dνt = dZt −Πt [X] dt

We need Πt

[
X2
]
, so use Itô to get write

dX2
t =

{
2aX2

t + c2
}

dt + 2cXtdVt

From FKK:

dΠt

[
X2
]

=
{
2aΠt

[
X2
]
+ c2

}
dt

+
{
Πt

[
X3
]
−Πt

[
X2
]
Πt [X]

}
dνt

Now we need Πt

[
X3
]
! Etc!
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Define the conditional error variance by

Ht = Πt

[
(Xt −Πt [X])2

]
= Πt

[
X2
]
− (Πt [X])2

Itô gives us

d (Πt [X])2 =
[
2a (Πt [X])2 + H2

]
dt + 2Πt [X]Hdνt

and Itô again

dHt =
{
2aHt + c2 −H2

t

}
dt

+
{

Πt

[
X3
]
− 3Πt

[
X2
]
Πt [X] + 2 (Πt [X])3

}
dνt

In this particular case we know (why?) that the
distribution of X conditional on Z is Gaussian!

Thus we have

Πt

[
X3
]

= 3Πt

[
X2
]
Πt [X]− 2 (Πt [X])3

so H is deterministic (as expected).
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The Kalman filter

Model:

dXt = aXtdt + cdVt,

dZt = Xtdt + dWt

Filter:

dΠt [X] = aΠt [X] dt + Htdνt

Ḣt = 2aHt + c2 −H2
t

dνt = dZt −Πt [X] dt

Ht = Πt

[
(Πt [Xt]−Πt [X])2

]

Remark: Because of the Gaussian structure, the
conditional distribution evolves on a two dimensional
submanifold. Hence a two dimensional filter.
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