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Part 1

The Mathematics of
Counting Processes






Chapter 1

Counting Processes

1.1 Generalities and the Poisson process

Good textbooks on point processes are [2] and [3]. The simplest type of a point
process is a counting process, and the formal definition is as follows.

Definition 1.1.1 A random process {N;; t € Ry} is a counting process if
it satisfies the following conditions.

1. The trajectories of N are, with probability one, right continuous and piece-
wise constant.

2. The process starts at zero, so

N = 0.

3. For each t
ANt == 0, or ANt =1

with probability one. Here AN; denotes the jump size of N at time t, or
more formally
ANt = Nt - Nt,.

In more pedestrian terms, the process IV starts at Ny = 0 and stays at the level
0 until some random time 77 when it jumps to Ny, = 1. It then stays at level
1 until the another random time 7% when it jumps to the value Nz, = 2 etc.
We will refer to the random times {T5,; n=1,2,...} as the jump times of
N. Counting processes are often used to model situations where some sort of
well specified events are occurring randomly in time. A typical example of an
event could be the arrival of a new customer to a queue, an earthquake in a well
specified geographical area, or a company going bankrupt. The interpretation
is then that N; denotes the number of events that has occurred in the time
interval [0,¢]. Thus N, could be the number of customer which have arrived to

7



8 CHAPTER 1. COUNTING PROCESSES

a certain queue during the interval [0, ¢] etc. With this interpretation, the jump
times {T,; n=1,2,...} are often also referred to as the event times of the
process N.

Before we go on to the general theory of counting processes, we will study the
Poisson process in some detail. The Poisson process is the single most impor-
tant of all counting processes, and among counting processes it has very much
the same position that the Wiener processes has among the diffusion processes.
We start with some elementary facts concerning the Poisson distribution.

Definition 1.1.2 A random variable X is said to have a Poisson distribu-
tion with parameter « if it takes values among the natural numbers, and the
probability distribution has the form

P(X=n) =" n=012,...
n!

We will often write this as X ~ Po(a).

We recall that, for any random variable X, its characteristic function ¢ x is
defined by

ox(u)=F [ei“X] , u€R,

where ¢ is the imaginary unit. We also recall that the distribution of X is
completely determined by ¢x. We will need the following well known result
concerning the Poisson distribution.

Proposition 1.1.1 Let X be Po(a). Then the characteristic function is given

by .
px(u) = (")

The mean and variance are given by

EX]=a, Var(X)=o.

Proof. This is left as an exercise. |

We now leave the Poisson distribution and go on to the Poisson process.

Definition 1.1.3 Let (2, F, P) be a probability space with a given filtration
F = {F,}1>0, and let A be a nonnegative real number. A counting process N is
a Poisson process with intensity A with respect to the filtration F if it
satisfies the following conditions.

1. N is adapted to F.

2. For all s <t the random variable Ny — Ny is independent of F.
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3. For all s < t, the conditional distribution of the increment Ny — Ny is
given by

e A(t—s) A (t—s)

P(N,— N, =n|F,) = =

, n=0,1,2,... (1.1)
In this definition we encounter the somewhat forbidding looking formula (1.1).
As it turns out, there is another way of characterizing the Poisson process, which
is much easier to handle than distributional specification above. This alternative
characterization is done in terms of the “infinitesimal characteristics” of the
process, and we now go on to discuss this.

1.2 Infinitesimal characteristics

One of the main ideas in modern process theory is that the “true nature” of a
process is revealed by its “infinitesimal characteristics”. For a diffusion process
the infinitesimal characteristics are the drift and the diffusion terms. For a
counting process, the natural infinitesimal object is the “predictable conditional
jump probability per unit time”, and informally we define this as

P(dN; = 1|F,_)
dt

The increment process dN is defined as

dNy = Ny — Ny = Ny — Ny_ay,

and the sigma algebra F;_ is defined by

Foo=\ F (1.2)

0<s<t

The reason why we define dN; as Ny — Ny_g4; instead of Ny — Nyyg; is that we
want the increment process dN to be adapted. The term “predictable” will be
very important later on in the text, and will be given a precise mathematical
definition. We also note that the increment dN; only takes two possible values,
namely dN; = 0 or dN; = 1 depending on whether or not an event has occurred
at time t. We can thus write the conditional jump probability as an expected
value, namely as
P(dN; =1|F;_) = EP [dNy| F_] .

Suppose now that N is a Poisson process with intensity A, and that A is a
small real number. According to the definition we then have

P(Ny— Ny_p =1|Fi_p) = e MAh.
Expanding the exponential we thus have

S A
P(Ny = Ny =1|Fpn) =AY %

n=0
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As h becomes “infinitesimally small” the higher order terms can be neglected
and as a formal limit when h — dt we obtain

P(dNy = 1|F—) = Adt, (1.3)
or equivalently
EP [dN,| Fi—] = AdL. (1.4)

This entire discussion has obviously been very informal, but nevertheless
the formula (1.4) has a great intuitive value. It says that we can interpret the
parameter A as the conditional jump intensity. In other words, A is the
(conditional) expected number of jumps per unit of time. The point of this is
twofold.

e The concept of a conditional jump intensity is easy to interpret intuitively,
and it can also easily be generalized to a large class of counting processes.

e As we will see below, the distribution of a counting process is completely
determined by its conditional jump intensity, and equation (1.4) is much
simpler than that equation (1.1).

The main project of this text is to develop a mathematically rigorous theory
of counting processes, building on the intuitively appealing concept of a con-
ditional jump intensity. As the archetypical example we will of course use the
Poisson process, and to start with we need to reformulate the nice but very in-
formal relation (1.4) to something more mathematically precise. To do this we
start by noting (again informally) that if we subtract the conditional expected
number of jumps Adt from the actual number of jumps dNV; then the result

dNy — Adt,

should have zero conditional mean. The implication of this is that we are led
to conjecture that if we define the process M by

AM, = dN, — \dt,
MO = 07

or, equivalently, on integrated form as
My = Ny — Mt
then M should be a martingale. This conjecture is in fact true.

Proposition 1.2.1 Assume that N is an F- Poisson process with intensity .
Then the process M, defined by

M, = N, — Xt (1.5)

is an F martingale.
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Proof. The proof is easy and left to the reader. I

This somewhat trivial result is much more important than it looks like at
first sight. It is in fact the natural starting point of the “martingale approach” to
counting processes. As we will see below, the martingale property of M above,
is not only a consequence of the fact that NV is a Poisson process but, in fact,
the martingale property characterizes the Poisson process within the class of
counting processes. More precisely, we will show below that if N is a arbitrary
counting process and if the process M, defined as above is a martingale, then
this implies that N must be Poisson with intensity A. This is a huge technical
step forward in the theory of counting processes, the reason being that it is often
relatively easy to check the martingale property of M, whereas it is typically a
very hard task to check that the conditional distribution of the increments of
N is given by (1.1).

It also turns out that a very big class of counting processes can be charac-
terized by a corresponding martingale property and this fact, coupled with a
(very simple form of)) stochastic differential calculus for counting processes, will
provide us with a very powerful tool box for a fairly advanced study of counting
processes on filtered probability spaces.

To develop this theory we need to carry out the following program.

1. Assuming that a process A is of bounded variation, we need to develop a
theory of stochastic integrals of the form

t
/ hsdAs,
0

where the integrand h should be required have some nice measurability
property.

2. In particular, if M is a martingale of bounded variation, we would like to
under what conditions a process X of the form

t
Xt:/ hsdMs,
0

is a martingale. Is it for example enough that h is adapted? (Compare
the Wiener case).

3. Develop a differential calculus for stochastic integrals of the type above.
In particular we would like to derive an extension of the It6 formula to
the counting process case.

4. Use the theory developed in the previous items to study general counting
processes in terms of their martingale properties.

5. Given a Wiener process W, we recall that there exists a powerful martin-
gale representation theorem which says that (for the internal filtration)
every martingale X can be written as X; = Xg + f; hsdWs. Does there
exist a corresponding theory for counting processes?
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6. Study how the conditional jump intensity will change under an absolutely
continuous change of measure. Does there exist a Girsanov theory for
counting processes?

7. Finally we want to apply the theory above in order to study more concrete
problems, like queuing theory, and arbitrage theory for economies where
asset prices are driven by jump diffusions.

1.3 Exercises

Exercise 1.1 Prove Proposition 1.1.1.

Exercise 1.2 Prove Proposition 1.2.1.



Chapter 2

Stochastic Integrals and
Differentials

2.1 Integrators of bounded variation

In this section,the main object is to develop a stochastic integration theory for
integrals of the form
ot
/ hsdAs,
0

where A is a process of bounded variation. In a typical application, the inte-
grator A could for example be given by

Ay =N, — M,

where N is a Poisson process with intensity A, and in particular we will inves-
tigate under what conditions the process X defined by

t
Xf:/i%MN;—A@L
0

is a martingale. Apart from this, we also need to develop a stochastic differential
calculus for processes of this kind, and to study stochastic differential equations,
driven by counting processes.

Before we embark on this program,the following two points are worth men-
tioning.

e Compared to the definition of the usual It6 integral for Wiener processes,
the integration theory for point processes is quite simple. Since all in-
tegrators will be of bounded variation, the integrals can be defined path
wise, as opposed to the Ito integral which has to be defined as an L? limit.

e On the other hand, compare to the It6 integral, where the natural re-
quirement is that the integrands are adapted, the point process integra-
tion theory requires much more delicate measurability properties of the

13
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integrands. In particular we need to understand the fundamental concept
of a predictable process.

In order to get a feeling for the predictability concept, and its relation to mar-
tingale theory, we will start by giving a brief recapitulation of discrete time
stochastic integration theory.

2.2 Discrete time stochastic integrals

In this section we discuss briefly the simplest type of stochastic integration,
namely integration of discrete time processes. This will thus serve as an intro-
duction to the more complicated continuous time theory later on, and it is also
important in its own right. We start by defining the discrete stochastic integral.

Definition 2.2.1 Consider a probability space (2, F, P), equipped with a dis-
crete time, filtration F = {F,}>~_,.

e For any random process X, the increment process AX is defined by
(AX), =X, — X1, (2.1)

with the convention X_1 = 0. For simplicity of notation we will sometimes
denote (AX),, by AX,.

e For any two processes X and 'Y , the discrete stochastic integral pro-
cess X xY is defined by

(X *Y) = Xp(AY)y. (2.2)
k=0

Instead of (X *Y'),, we will sometimes write fon X dYs.

The reason why we define AX by “backward increments” above, is that in this
way the process AX is adapted, whenever X is adapted.

From standard It6 integration theory we recall that if W is a Wiener process
and if h is a square integrable adapted process the integral process Z, given by

t
Zt:/ hsdWs
0

is a martingale. It is therefore natural to expect that a similar result holds for
the discrete time integral, but this is not the case. As we will see below, the
correct measurability concept is that of a predictable process rather than
that of an adapted process.

Definition 2.2.2

o A random process X is F-adapted if, for each n, X, is F, measurable.
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e A random process X is F-predictable if, for each n, X,, is F,_1 mea-
surable. Here we use the convention F_1 = Fy.

We note that a predictable process is “known one step ahead in time”.
The main result for stochastic integrals is that when you integrate a pre-
dictable process X w.r.t. a martingale M, then the result is a new martingale.

Proposition 2.2.1 Assume that the space (0, F, P,F) carries the processes X
and M where X is predictable, M is a martingale, and X,,(AM),, € L* for each
n. Then the stochastic integral X = M is a martingale.

Proof. We recall that in discrete time, a process Z is a martingale if and only
if it satisfies the following condition.

E[AZ,|Fn-1]=0, n=0,1,...
Defining Z as

Zn =Y XpAM.
k=0
it is clear that
AZ, = X,,AM,

and we obtain
E[AZ,|Fn-1) = B[ X, AM,| Fr—1) = X, E [AM,| F,—1] = 0.

In the second equality we used the fact that X is predictable, and in the third
equality we used the martingale property of M. I

2.3 Stochastic integrals in continuous time

We now go back to continuous time and assume that we are given a filtered
probability space (Q,F, P,F). Before going on to define the new stochastic
integral we need to define a number of measurability properties for random
processes, and in particular we need to define the continuous time version of the
predictability concept.

Definition 2.3.1

e A random process X is said to be cadlag (continu a droite, limites a
gauche) if the trajectories are right continuous with left hand limits, with
probability one.
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o The class of adapted cadlag processes A with Ag = 0, such that the trajec-
tories of A are of finite variation on the interval [0,T]is denoted by Vr.
Such a process is said to be of finite variation on [0,T], and will thus

satisfy the condition
T
0

o We denote by Ar the class of processes in Vp such that

T
/ ldA,|
0

Such a process is said to be of integrable variation on [0,7].

FE < 0.

o The class of processes belonging to Vr for all T < 0 and is denoted by V.
Such a process is said to be of finite variation.

e The class of processes belonging to Ar for all T < 0 and is denoted by A.
Such a process is said to be of integrable variation.

Remark 2.3.1 Note that the cadlag property, as well as the property of being
adapted is built into the definition of Vr and Ar.

We now come to the two main measurability properties of random processes.
before we go on to the definitions, we recall that a random process X on the
time interval R is a mapping

X:Qx R, —R,

where the value of X at time ¢, for the elementary outcome w € €2 is denoted
by either X (¢,w) or by X;(w).

Definition 2.3.2 The optional o-algebra on Ry x Q is generated by all pro-
cesses Y of the form
Yi(w) = Z(w)I{r <t < s}, (2.3)

where I is the indicator function, v and s are fized real numbers, and Z is
an Fs measurable random variable. A process X which, viewed as a mapping
X : Qx Ry — R, is measurable w.r.t the optional o-algebra is said to be an
optional process.

The definition above is perhaps somewhat forbidding when you meet it the
first time. Note however, that every generator process Y above is adapted and
cadlag, and we have in fact the following result, the proof of which is nontrivial
and omitted.

Proposition 2.3.1 The optional o algebra is generated by the class of adapted
cadlag processes.
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In particular it is clear that every process of finite variation, and every
adapted process with continuous trajectories is optional. The optional mea-
surability concept is in fact “the correct one” instead of the usual concept of
a process being adapted. The difference between an adapted process and an
optional one is that optionality for a process X implies a joint measurabil-
ity property in (¢,w), whereas X being adapted only implies that the mapping
X : Q — Ris F; measurable in w for each fixed ¢t. For “practical” purposes, the
difference between an adapted process and an optional process is very small and
the reader may, without great risk, interpret the term “optional” as “adapted”.
The main point of the optionality property is the following result, which shows
that optionality is preserved under stochastic integration.

Proposition 2.3.2 Assume that A is of finite variation and that h is an op-
tional process satisfying the condition

t
/ |hs]|dAs| < 00,  for all t.
0
Then the following hold.
e The process X = h* A defined, for each w, by
t
Xi(w) = / hs(w)dAs(w),
0
is well defined, for almost each w, as a Lebesque Stieltjes integral.

o The process X is cadlag and optional, so in particular it is adapted.

e If h also satisfies the condition

t
E {/ hs||dAs|} < oo, forallt.
0

then X is of integrable variation.

Proof. The proposition is easy to prove if h is generator process of the form
(2.3). The general case can then be proved by approximating h by a linear
combination of generator processes. I

Remark 2.3.2 Note again that since A is of finite variation it is, by definition,
also optional. If we only require that h is adapted and A of finite variation (and
thus adapted), then this would not guarantee that X is adapted.
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2.4 Stochastic integrals and martingales

Suppose that M is a martingale of integrable variation. We now turn to the
question under which conditions on the integrand h, a stochastic process of the
form

t
th/ hsdMs,
0

is itself a martingale. With the Wiener theory in fresh memory, one is perhaps
led to conjecture that it is enough to require that h (apart from obvious integra-
bility properties) is adapted, or perhaps optional. This conjecture is, however,
not correct and it is easy to construct a counter example.

Example 2.4.1 Let Z be a nontrivial random variable with
E[Z] =0, E[Z°] <o,

and define the process M by

0, 0<t<1,
Mt{ Z, t>1.

If we define the filtration F by Fy = 0 {Ms; s < t}, then il is easy to see that
M is a martingale of integrable variation. In particular, M is optional, so let
us define the integrand h as h = M. If we now define the process X by

t
X = / hsdM;,
0

then it is clear that the integrator M has a point mass of size Z att = 1. In
particular we have X1 = hiAM; = Z2, and we immediately obtain

0, 0<t<1,
Xt_{ Z? t>1

From this it is clear that X is a mon decreasing process, so in particular it is
not a martingale.

Note, however, that if we define h as hy = My_ then X will be a martingale
(why?). As we will see, it is not a coincidence that this choice of h is left
continuous.

It is clear from this example that we must demand more than mere option-
ality from the integrand h in order to ensure that that the stochastic integral
h x M is a martingale. From the discrete time theory we recall that if M is a
martingale and if A is predictable, then h x M is a martingale. We also recall
that predictability of h in discrete time means that h, € F,,_; and the question
is how to generalize this concept to continuous time.

The obvious idea is of course to say that a continuous time process h is
predictable if hy € F,_ for all t € R, and in order to see if this is a good idea
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we now give some informal and heuristic arguments. Let us thus assume that
M is a martingale of bounded variation, that h; € F;_ for all t € R, and that
all necessary integrability conditions are satisfied. We define the process X by

t
Xt:/ hsdMs,
0

and we now want to check if X is a martingale. Loosely speaking, and comparing
with discrete time theory, we expect the process X to be a martingale if and
only if

EdX:| Fi-] =0,

for all t. By definition we have
dX; = hydM;,

so we obtain
E [dXt|ft,} = E [htht|ft7] .

Since hy € F;_, we can pull this term outside the expectation, and since M is
a martingale we have F [dX;| F;_] = 0, so we obtain

E [dXt|.7:t7] - htE [th| ]:t,] = 0,

thus “proving” that X is a martingale.

This very informal argument is very encouraging, but it turns out that the
requirement h; € F;_ is not quite good enough for our purposes, the main
reason being that, for each fixed ¢, it is a measurability argument in the w
variable only. In particular the requirement h; € F;_ has the weakness that it
does not guarantee that X is adapted. We thus need to refine the simple idea
above, and it turns out that the following definition is exactly what we need.

Definition 2.4.1 Given a filtered probability space (Q, F, P,F), we define the
F-predictable o-algebra Xp on Ry x Q as the o-algebra generated by all pro-
cesses Y of the form

Yi(w) = Z(w)I{r <t<s}, (2.4)

where v and s are real numbers and the random variable Z is F,- measurable.
A process X which is measurable w.r.t. the predictable o-algebra is said to be
an F-predictable process.

This definition is the natural generalization of the predictability concept
from discrete time theory, and it is extremely important to notice that all the
generator processes Y above are left continuous and adapted. It is also possible
to show the following result, the proof of which is omitted.

Proposition 2.4.1 The predictable o-algebra is also generated by the class of
left continuous adapted processes.
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In particular, this result implies that every adapted left continuous process
is predictable, and a very important special case of a predictable process is
obtained if we start with an adapted cadlag process X and then define a new
process Y by

Y, = X

Since Y is left continuous and adapted it will certainly be predictable, and most
of the predictable processes that we will meet in “practice” are in fact of this
form.

Remark 2.4.1 The working mathematician can, without great risk, interpret
the term “predictable” as either “adapted and left continuous” or as “Fy_-
adapted”.

We can now state the main results of this section.

Proposition 2.4.2 Assume that M is a martingale of bounded variation and
that h is a predictable process satisfying the condition

B [/Othsndw <od] (25)

for all t > 0. Then the process X defined by

t
Xt:/ hed M,
0

is a martingale.

Proof. It is very easy to show that if h is a generator process of the form
(2.4) then X is a martingale. The general result then follows by a (non trivial)
approximation argument. [

We will also need the following result, which shows how the predictability
property is inherited by stochastic integration.

Proposition 2.4.3 Let A be a predictable process of bounded variation (so in
particular A is cadlag) and let h be a predictable process satisfying

B [/Otmsuw <oc) (2.

for allt > 0. Then the integral process

t
Xt:/ hsdAsg
0

is predictable.
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Proof. The result is obvious when h is a generator process of the form (2.4).
The general result follows by an approximation argument. §i

‘We finish this section with a useful lemma.

Lemma 2.4.1 Assume that X is optional and cadlag, and define the process Y
by Yy = Xy—. Then'Y is predictable and for any optional process h we have

t t
/ hsXds = / hsYsds,
0 0

Proof. The predictability follows from the fact that Y 1is left continuous and
adapted. Since X is cadlag, X andY will (for a fized trajectory) only differ on
a finite number of points, and since we are integrating w.r.t. Lebesque measure
the integrals will coincide. I

for allt > 0.

2.5 The Ito formula

Given the standard setting of a filtered probability space, let us consider an
optional cadlag process X. If X can be represented on the form

t
X = Xo + A +/ osdWs, t€ Ry, (2.7)
0

where the process, A, is of bounded variation, W is a Wiener process, and o is
an optional process, then we say that X has a stochastic differential and we
write

dXt = dAt + O'tth. (28)

In our applications, the process A will always be of the form
dAt = ,LLtdt + htht, (29)

where p and h are predictable and N is a counting process, but in principle
we allow A to an arbitrary process of bounded variation (and thus cadlag and
adapted). As in the pure Wiener case, it is important to note that the differential
expression (2.8) is, by definition, nothing else than a shorthand notation for the
integral expression (2.7).

The first question to ask is whether there exists an It6 formula for processes
of this kind. In other words, let X have a stochastic differential of the form
(2.8), let F(t,z) be a given a smooth function, and define the process Z by

Zy = F(t, Xy). (2.10)

The question is now whether Z has a stochastic differential and, if so, what it
looks like. This questions is answered within general semi martingale theory,
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but since that theory is outside the scope of the present text we will only discuss
the simpler case when X has the differential

dXt = /,Ltdt + O'tth + htht. (211)
Now, between the jumps of N the process X will have the dynamics
dXt == ,Ll,tdt + O'tth,

and this is of course handled by the standard It6 formula

oF oF 1 ,0°F OF
dZ; = —(t, X;) + = (t, X;) + af (t, X¢) ¢ dt + op——(t, Xy )dW,.
ot oz Ox? ox
On the other hand, at a jump time ¢, the process N has a jump size of
AN; = N; — N;_ = 1 which implies that the process X will have a jump of size
AXt == htANt =

Since Z; = F(t, X¢), the induced jump of Z is given by
AZy = F(t, Xy) — F(t—, Xi-),
and since X; = X;_ + AX; = X;_ + h; we obtain
AZy =F(t, Xi— +hy) — F(t—, X)),
and since F' is assumed to be smooth we can also write this as
AZ, =F(t, X + hy) — F(t, X¢-).

If we note that dN; = 1 at a jump time and that dN; = 0 at times of no
jumps, we can summarize our findings as follows, where the extension to a
multi dimensional Wiener process is obvious.

Proposition 2.5.1 Assume that X has dynamics of the form
dXt = Mtdt + O'tth + htht, (212)

where u, o, and h are predictable, and W is a Wiener process. Let F be a C1?
function. Then the following Ité formula holds.

oF oF 1 ,0°F
dF(t,Xt) = { ot (t Xt) +Mt o (t Xt) + Ut o 3 (t,Xt)} dt
OF
+ Ut%(t,Xt)th

+ {F(t Xo— + hy) — F(t, X,_)} dN,. (2.13)
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We see that this is just the standard It6 formula, with the added term
{F(t,Xi— +hs) — F(t, X3 )} dN;

If ¢ is not a jump time of IV, then dN; = 0 so the jump term disappears. If,
on the other hand, N has a jump at time ¢, then dN; = 1 and the jump term
F(t, Xt_ + h,t) — F(t, Xt_) is added.

We can now compare this version of the It6 formula to what we get by doing
a naive and straightforward Taylor expansion at t—. The first order terms are

oF oF
—(t—, Xy )dt + —(t—, X )dX
3t( ) t ) + 81'( ) t ) ty
which by smoothness of F' and Lemma 2.4.1can be written as
F F
0 —(t, Xp)dt + — 0 (t, Xt—)dX;.
ot Ox
By substituting (2.12) we obtain
oF oF
5 —(t, Xp)dt + — oz (t, X;—)dX;
oF oF oF 23

t, X )AX
or (& Oz oz (b Xe-)AKe,
where we have used the fact that h;dN; = AX;. Comparing this expres-
sion to the Itd formula above, and writing {F (¢, X;— + hy) — F (¢, X¢—)} dN; =
AF(t, X;) we can write the It6 formula as

(23 (23 1 282F

+ {AF(t,Xt) - gi(t,Xt_)AXt} .

oF oF oF oF
{ t Xt) + pe = o (t Xt)} dt + Ot— (t Xt)th + —

(t, X,)dt

This result does in fact hold in great generality, and we formulate it as a
proposition.

Theorem 2.5.1 Assume that X has the dynamics
dXt = dAt + Utth + h,tht, (214)

where A is of bounded variation, and the other terms as above. Assume further-
more that F is a C%? function. Then the following holds.

oF oF 1 ,0%°F

dF(t, X)) = ot X0dt+ 5 (8. X,)dX, + 50f = Q(t,Xt)dt
(2.15)
oF
+ {AF(t,Xt)ax(t,Xt_)AXt}. (2.16)



24 CHAPTER 2. STOCHASTIC INTEGRALS AND DIFFERENTIALS

Remark 2.5.1 Note the evaluation of X at X;_ in the term %—f(t,Xt,)dXt.
This implies that the process %—?(t,Xt,) is predictable, and thus that any
martingale component in X will be integrated to a new martingale.

Remark 2.5.2 The Various forms of the Ité formula above generalize in the
obvious way to the multi dimensional case.

There is one important special case of the It6 formula for processes of
bounded variation.

Proposition 2.5.2 Assume that X and Y are processes of bounded variation
(i.e. with no Wiener component). Then the following holds

d(X,Y;) = X,_dY, + Yi_dX, + AX,AY,. (2.17)

Proof. The proof is left to the reader. i

Again the reason for the evaluation at t— in X; dY and Y;_dX; is that
this implies predictability of the integrands, and thus implies that martingale
components of Y and X will be integrated to new martingales.

2.6 Stochastic differential equations

In this section we will apply the It6 formula in order to study stochastic dif-
ferential equations driven by a counting process. This turns out to be a bit
delicate, and there are some serious potential dangers, so let us start with a
simple example without a driving Wiener process. Let us thus consider a count-
ing process N, a real number zg, and two real valued functions p: R — R and
0:R— R.

A first question is now to investigate under what conditions on p and (3 the
SDE

{dXt = u(Xo)dt + B(Xy)dNy, (2.18)

Xo = o,

has an adapted cadlag solution. A very natural, but naive, conjecture is that
(2.18)-(?7?) will always possess a solution, as long as p and 3 are n“nice enough” (such
as for example Lipschitz and linear growth). This, however, is wrong, and it is
very important to understand the following fact.

The SDE (2.18) is fundamentally ill posed.

To understand why this is so, let us consider the dynamics of X at a jump
time ¢ of the counting process N. Suppose therefore that N has a jump at time
t. The X dynamics then says that

AXy = X; — X, = B(X,)dN; = B(Xy), (2.19)
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which we can write as

X, = X, + B(X,). (2.20)

The problem with this formula is that it describes a non-causal dynamic. The
natural way of modeling the X dynamics is of course to model it as being
generated “causally” by the N process, in the sense that at a jump time ¢, the
jump size AX; should be uniquely determined by X;_ and by dN;. In (2.19)
however, we see that if we are standing at t—, the jump size AX; , is determined
by X; i.e. by the value of X after the jump. In particular we see that at a
jump time ¢, the value of X; (given X;_) is being implicitly determined by the
non linear equation (2.20).

By writing down a seemingly innocent expression like (2.18), one may in
fact easily end up with completely nonsensical equations for which there is no
solution. Consider for example the simple case when a = 0, 8(z) = z, and
2o = 1. We then have the SDE

dXt = Xtht7
X, = 1.

This does not look particularly strange, but at a jump time ¢, equation (2.20)
will now have the form

X=X + Xy,
which implies that
th =0.
This however, is inconsistent with the initial condition Xy = 1 (why?) so the

SDE does not have a solution.
From the discussion above it should be clear that the correct way of writing
an SDE driven by a counting process is to formulate it as

dXt = /,L(Xt,)dt—i-ﬁ(Xt,)dNt,
Xo

Zo,

where of course p(X;—) can be replaced by u(X;) in the dt term. In fact, we
have the following result.

Proposition 2.6.1 Assume that the ODE

e
— = X
dt ,U’( t)a

Xo = o,

has a unique global solution for every choice of xoy and let 5 : R — R be an
arbitrarily chosen function. Then the SDE

dXt = /L(th)dt-f—,@(th)dNt,
Xo = o,

has a unique global solution.
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Proof. We have the following concrete algorithm.
1. Denote the jump times of N by 711,75, . ...
2. For every fixed w, solve the ODE

dX;

== (X
dt lu‘( t)?
XO = Xy,

on the half open interval [0,71). In particular we have now determined
the value of X, _.

3. Calculate the value of X7, by the formula
XT1 = XTI_ + B(XT1—)'

4. Given X7, from the previous step, solve the ODE

dXy
— = (X,
on the interval [T, Ty). This will give us Xr,_.

5. Compute X7, by the formula
XT2 = XTQ— + ﬂ(XTz—)'

6. Continue by induction. i

We illustrate this methodology by solving a concrete SDE, namely the count-
ing process analogue to geometrical Brownian motion

dXt = O{Xt_dt—FﬁXt_dNt,
(2.21)

Xo = o,
where o and 3 are real numbers.

To solve this SDE we note that up to the first jump time 77 we have the
ODE

dX,
— = akX,
dt K
Xo = wo,
with the exponential solution
X, = %z,
so in particular we have X7, = e*Tixg. The jump size at T} is given by

AXp = f(Xrp -,
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so we have
Xr, = Xy - + X, = (1+8) X, = (1+B)e* "z

We now solve the ODE

dx
& = °Xo
XT1 = (1+ﬂ)eaTlea

on the interval [T, Ts) to obtain
Xt _ ea(thl (1 +ﬂ) aTl _ eat(l +ﬂ)l‘0

and in particular
X, = (1+ B)e* Pz

As before, the the jump condition gives us
X1, = X1ye + BX1,— = (14 B)X7— = (14 8)%e" 2ag.
Continuing in this way we see that the solution is given by the formula
X, = xo(1 + B)Neet,
We may in fact generalize this result as follows.
Proposition 2.6.2 Assume that X satisfies the SDE
dX: = aXi_dt + B Xi—dNy,
{ Xo = o,
where o and B are predictable processes. Then X can be represented as
X = foefotasds H (1+Br,)
T, <t

or equivalently as

t t
X, = Ioefo agds—i-fo In(1+4)dNs

2.7 The Watanabe Theorem

The object of this section is to prove the Watanabe Characterization Theorem
for the Poisson process. Before we do this, we make a slight extension of the
definition of a Poisson process.

Definition 2.7.1 Let (2, F,P) be a probability space with a given filtration
F = {Fi}i>0, and let t — X\ be a deterministic function of time. A counting
process N is a Poisson process with intensity function A with respect
to the filtration F if it satisfies the following conditions.
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1. N is adapted to F.
2. For all s <t the random variable Ny — Ny is independent of F.

3. For all s < t, the conditional distribution of the increment Ny — Ny is

given by
Ag )"
P(Nt—NS:n\fs):e’A='=t( f) , n=0,1,2,... (2.22)
n!
where ,
Asi = / Audu. (2.23)

We have the following easy result concerning the characteristic function for
a Poisson process.

Lemma 2.7.1 For a Poisson process as above, the following hold for all s <t

E {em(N,,—NS

.7:8} = ehor(e™ 1) (2.24)

With the definition above it is easy to see that the process X defined by

T
Nt - / )\st,
0

is an F martingale. The Watanabe Theorem says that this martingale property
of X is not only a consequence of, but in fact characterizes the Poisson process
among the class of counting processes.

Theorem 2.7.1 (The Watanabe Characterization) Assume that N is a
counting process and that t — X\; is a deterministic function. Assume fur-
thermore that the process M, defined by

t
Mt = Nt — / )\SdS, (225)
0

is an F martingale. Then N is Poisson w.r.t. F with intensity function \.

Proof. Using a slight extension of Proposition 1.1.1, it is enough to show that

E {eiu(NﬁNs)

Fo] = exp {Aua (e = 1)}, (2.26)

with A as in (2.23). We start by proving this for the simpler case when s = 0.
We thus want to show that

E [ei"N*] = exp {Aoﬂg (ei” — 1)} ,
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It is now natural to define the process Z by
Zt _ eiuNt,
and an application of the It6 formula of Proposition 2.5.1 immediately gives us
dZy = { e Nt N L N, = N {1} N,

We now use the relation
dNy = \dt + dM;,

where the martingale M is defined by (2.25) to obtain
dZy = Z;_ {e™ — 1} Ndt + Zy— {™ — 1} dM,.

Integrating this over [0, ] we obtain (using the fact that Zy = 1)

t t
Zy =1+ {e™ - 1}/ Zo_Agds + {e™ — 1}/ Zg_Nsd M.
0 0

Since M is a martingale and the integrand Z,_ is predictable (left continuity!)
the dM integral is also a martingale so, after taking expectations, we obtain

E[Zt] =14 {eiu — 1}/1‘E[Zs])\sd8

Let us now, for a fixed u, define the deterministic function y by
yr = E [e"N] = E[Z)].
We thus have .
Yy =1+ {ei“ — 1}/ Ys_AsdS,
0

and since we are integrating over Lebesgue measure we can (why?) write this
as

t
ye =1+ {ei“ — 1} / YsAsdS.
0

Taking the derivative w.r.t t we obtain the ODE

d )
B e,
Yo = 17

with the solution ) .
Yo = e(ew—1)f0 Asds

This proves (2.26) for the special case when s = 0. For the general case, it is
clearly enough to show (why?) that

E IAem(NFNS)} = E [La]exp {Asy (€™ = 1)},
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for every event A € F,. To do this we now define, for fixed s, v and A, the
process Z on the time interval [s, 00) by

Zt _ ]’Aeiu(]\/'tfl\/'s)7

and basically copy the argument above. I

2.8 Exercises

Exercise 2.1 Show that the SDE
dX; = aXidt+ BdN;
{ Xo = x9
where a, B, and xo are real numbers, and N is a counting process, has the

solution .
X; = ez + ﬁ/ e t=5) N,
0

Exercise 2.2 Consider the SDE of the previous exercise, and assume that N
is Poisson with constant intensity A. Compute E [X4].

Exercise 2.3 Consider the following SDEs, where N® and NY are counting
processes without common jumps, and where the parameters ax, oy, Bx, By are
known constants.

dX, = axXdt+ Bx X, dNF,
dY; = oayYidt+ fyYi—dNY,

Define the process Z by Zy = X1Yy. Then Z will satisfy an SDE. Find this SDE,
and compute E [Z;] in the case when N* and NY are Poisson with intensities
Az and Ay

Exercise 2.4 Consider the SDFEs of the previous exercise. Define the process
Z by Zy = X4/Y;. Then Z will satisfy an SDE. Find this SDE, and compute
E [Z,] in the case when N and NV are Poisson with intensities Ay and Ay .

Exercise 2.5 Consider two discrete time processes X andY . Prove the product
formula

AXY)y = Xp 1A, 4+ V1 AX, + AX,AY,,.

Exercise 2.6 Consider two continuous time processes X and Y which are both
of bounded variation (i.e. they have no driving Wiener process). Use the Ité
formula to prove the product formula

d(XY); = X;_dY: + Vi dX, + AXAY;.
As usual, AX,, = X,, — X,,_1 etc.



Chapter 3

Counting Processes with
Stochastic Intensities

In this section we will generalize the concept of an intensity from the Poisson
case to the case of a fairly general counting process. We consider a filtered
probability space (Q, F, P,F) carrying an optional counting process N.

3.1 Definition of stochastic intensity

Definition 3.1.1 Consider an optional counting process N on the filtered space
(Q,F,P,F). Let A be a non negative optional random process such that

¢
/ Asds < oo, forallt>0. (3.1)
0

E [/OOC ht)\tdt} - F [/000 htht} (3.2)

for every mon negative predictable process h, then we say that N has the F-
intensity A.

If the condition

At first sight, this definition may look rather forbidding, but the intuitive
interpretation is that, modulo integrability, it says that the difference d\N; — \;dt
is a martingale increment. This is clear from the following result.

Proposition 3.1.1 Assume that N has the F intensity A and that N is inte-
grable, in the sense that

E[Ny] < 00, forallt>0. (3.3)
Then the process M defined by

t
Mt :Nt_/ Ast
0

31
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is an F martingale.

Proof. Fix s and ¢t with s < ¢, and choose an arbitrary event A € F,. If we
now define the process h by

hy(w) = Ta(w)I {s <u <t}

then h is non negative and predictable (why?). With this choice of h, the relation
(3.2) becomes

E [IA /: )\udu] = E[I4 (N, — N,)].

Because of (3.3) we may now subtract the left hand side from the right hand
side without any risk of expressions of the type +00 — co. The result is

E 14 (M; — M)] =0,

which shows that M is a martingale. i

Remark 3.1.1 The reason why we define the intensity concept by the condition
(8.2), rather than by the martingale property of M above, is that (3.2) also covers
the case when E [Ny] = co.

We now have a number of obvious questions to answer.
e Does every counting process have an intensity?

e Is the intensity unique?

e How does the intensity depend on the filtration F?

e What is the intuitive interpretation of A7

3.2 Existence

The existence of an intensity is a technically non trivial problem which is outside
the scope of this text. Roughly speaking, the story is as follows.

For every counting process N there will always exist an increasing predictable
process A, called the compensator process with the property that the process
M defined by

My = Ny — Ay,

is a martingale. This is in fact a special case of a very general results known as
the “Doob-Meyer decomposition of a submartingale of class D”.

If we assume that the compensator A is absolutely continuous w.r.t. Lebesgue
measure, then we can write A as

Y
At:/ Asds,
0
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for some process A, and this A is of course our intensity. We thus see that only
those counting processes for which the compensator is absolutely continuous
will possess an intensity. Furthermore one can show that if a counting process
has an intensity, then the distribution of every jump time will have a density
w.r.t Lebesgue measure. This implies that if we restrict ourselves (as we will
do for the rest of the text) to counting processes with intensities then we are
basically excluding counting processes with jumps at predetermined points in
time.

3.3 Uniqueness

From Definition 3.1.1 is should be clear that we can not expect the intensity
process A to be unique. Suppose for example that A is an intensity for N and
that A is cadlag. If we now define the process u by

Ht = At—7

0 0

so u is also an intensity. If, however, we require predictability, then we have
uniqueness.

then it is clear that

Proposition 3.3.1 Assume that N has an F intensity \*. The N will also
possess an F predictable intensity \. Furthermore, A is unique in the sense
that if p is another predictable intensity, then we have

ut(w) = M(w), dPdAN; — a.e.

Proof. The formal proof is rather technical and left out. The intuitive idea
behind the proof is however very easy to understand. We simply define the
process A by the prescription

A= E [N Fi],

and since \; is clearly F;_-measurable for each t, we see that A is predictable,
thus proving the existence of a predictable intensity.

This is in fact, where the formal proof gets technical since A defined above
is not really defined as a bona fide random process. Instead we have defined
A¢ as an equivalence class of random variables for each ¢, and the problem is to
show that we can choose one member of each equivalence class and “glue” these
together in such a way as to obtain a predictable process.

To show uniqueness, it enough to show that for every predictable non nega-
tive process h we have

(o) oo
FE |:/ htAtht] =F |:/ htﬂtht:| .
0 0
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If, in the left hand side, we use the assumption that N has the intensity p and
on the right hand side use the fact that N has the intensity A we see that both

sides equal
0

3.4 Interpretation

We now go on the intuitive interpretation of the intensity concept. Let us thus
assume that N has the predictable intensity process A. Modulo integrability,
this implies that

dNy — \dt

is a martingale increment, and heuristically we will thus have
E [dN; — Mdt| F;—] = 0.

Since A is predictable we have \; € F;_ so we can move A\ dt outside the

expectation and obtain
E [dNy| Fi—] = \dt.

We thus see that the predictable intensity A has the interpretation that \; is the
conditionally expected number of jumps per unit of time. Since we know that
the predictable intensity is unique, we can summarize the moral of this section
so far in the following slogan:

The natural description of the dynamics for a counting process N is
in terms of its predictable intensity A, with the interpretation

E[dNy| Fo_] = Adt. (3.4)

3.5 Dependence on the filtration

It is important to note that the intensity concept is tied to a particular choice of
filtration. If we have two different filtrations F and G, and a counting process
which is optional w.r.t. to both F and G, then there is no reason to believe
that the F intensity AF will coincide with the G intensity A®. In the general
case there are no interesting relations between A\F and A%, but in the special
case when G is a sub filtration of F, we have a very precise result.

Proposition 3.5.1 Assume that N has the predictable F intensity \¥, and
assume that we are given a filtration G such that

G: CF, forallt>0.
Then there exists a predictable G intensity A& with the property that
AP =E[N]G-].
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Proof. Using the intuitive interpretation (3.4) the result follows at once from
the calculation

A6 = E[dN)|G,_] = E[E [dNy| Fi_)|Gi_] = E [/\tF| Gi—] .

A more formal proof is as follows. Let h be an arbitrary non negative G pre-
dictable process. Then h will also be F predictable (why?) and we have

E{/Ooohtdjvt] = E{/Oooht/\fdt}:E[/OOOE[ht/\ﬂQt_]dt]

E Uoo ME [Af]Gi-] dt] =F Uoo htA?dt} ,
0 0

which shows that A€ is the predictable G intensity of N. I
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Chapter 4

Martingale Representation

In the next two chapters we present the two main theoretical workhorses for
counting process theory: the Martingale Representation Theorem and the Gir-
sanov Theorem. These results will be used over and over again in connection
with general counting process theory, and they are fundamental for the analysis
of arbitrage free capital markets.

4.1 The Martingale Representation Theorem

Assume that we are given a filtered space (2, F, P,F) carrying an integrable
adapted point process N with F-intensity A\. From Propositions 2.4.2 and 3.1.1
we know that, for every choice of a predictable (and sufficiently integrable)
process h the process X defined by

T
X, = / hy [AN, — Ayds) (4.1)
0

will be an F-martingale. An interesting question is now to ask whether also
the converse statement also is true, i.e. to ask if every F-martingale X can be
represented on the form (4.1). That this cannot possible be the case is clear
from the following counter example.

Assume for simplicity that N is Poisson with constant intensity, and assume
that the space also carries an independent F-Wiener process W. Then, setting
X =W, it is clear that X is an F-martingale, but it is also clear that X cannot
have the representation (4.1). The reason is of course that X has continuous
trajectories, whereas a stochastic integral w.r.t. the compensated N process,
will have trajectories with jumps. The more informal reason is of course that
the Wiener process W “has nothing at all to do with the point process N”.
In order to have any chance of obtaining a positive result we therefore have
to guarantee that the space carries “nothing else than the process N itself”.
The natural condition is given in the following fundamental result, which is the

37
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point process analogue of the corresponding martingale representation result for
Wiener processes.

Theorem 4.1.1 Assume that N is an integrable point process with intensity \,
and that the filtration is the internal one, generated by N, i.e.

Fi=FN. (4.2)

Then, for every F-martingale X there will exist a predictable process h such that
T
X, = Xo + / hy [AN, — Aods] . (4.3)
0

Furthermore, the process h is unique dP(w)dNi(w) — a.e..

Proof. This is a deep and difficult result and the reader is referred to the
specialist literature for a proof. i

Remark 4.1.1 We remark that this is an abstract existence result. There is
generally no concrete characterization of the integrand h.

The result above generalizes immediately to the multi dimensional setting,
and we can also include a finite number of driving Wiener processes.

Theorem 4.1.2 Let (0, F, P,F) be a filtered probability space carrying k count-

ing processes N', ..., N¥, as well as a standard d-dimensional Wiener process

Wt ...,W? Assume that the filtration F is the internal one, i.e.
Fo=c{NL,Wili=1,..k j=1,...,....d; s<t} (4.4)

S

Assume furthermore that N® has the predictable intensity N fori = 1,...,k.
Then, for every F-martingale X, there will exist predictable processes h',. .., h¥
and g%, ..., g% such that

k d t
X;=Xo+ Z hi [dNE— Xids| + Z/ gldwi. (4.5)
i=1 j=170



Chapter 5

Girsanov Transformations

In this chapter we will study how the intensity A of a counting process N
changes when we transform the original measure P to a new measure @Q << P.
As a result we will obtain a counting process version of the standard Girsanov
Theorem for Wiener processes. At the end of the chapter we apply the theory
to maximum likelihood estimation and we also define and prove the existence
of Cox processes.

5.1 The Girsanov Theorem

To set the scene we consider a given filtered space (Q,F, P,F) carrying an
adapted counting process N with F-predictable P-intensity A. We study the
process N on a fixed time interval [0, T].

Let us now assume that we change measure form P to @), where Q << P
on Fr, and let L be the induced likelihood process, given by

Li=—, onF, 0<t<T. (5.1)

Under the new measure ), the counting process N will have a predictable
intensity A? # A and our task is to derive an expression for the Q-intensity \%.
In order to understand more clearly what is going on, we start with some
heuristics. To this end we recall that the intuitive interpretation of \? is given
by the relation
At = EQ [dN,| Fo_],

and in order to compute the expected value the obvious tool to use is the
abstract Bayes formula. Using this and the fact that the likelihood process L is
a P martingale we have

EP [LidNy| Fi_]
Modt = ECQ[AN| Fp ] = =22
t [ t| t ] EP [Lt‘ -7:157]

39
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Ly

EP[dL,dN,| F,_
EP [AN,| Fo_] + [ 2 dF]
t7

Recalling that \;dt = E¥ [dN;| F;_] we thus obtain

EP [dLdN,| F,_
Mdt = \dt + [ 2 d Fi] (5.2)
t_

At this degree of generality we are not able to go further but, as in the Wiener
case, the above expression will simplify considerably if we make some further
assumptions about L. Since we know that L is a P martingale, and since also
the compensated process

dNy — A\edt

is a martingale increment under P, it natural to investigate what will happen
if we assume that L has the particular structure

st = 0t [dNt - /\tdt] y

where g is a predictable process. Using the facts that dN;dt = 0, (dNt)2 = dNy,
and that g € Fi— (why?), we get

EP [dLidNy| Fi -] B EP g {dN; — \ydt} dNy| Fy ]
L n L

il (G0N EE B TR
= Gt L, =0t I,
B Aedt
= Gt L,

From this we see that if we now define the predictable process h by
gt
hy = —
t Lt— )

the above expression simplifies to

EP [dL,dNy| F,_]
Lo

= h\dt,

and if we plug this into (5.2) we obtain
A2dt = Nedt + hydgdt = Ny (1 + hy) dt,

or
A=\ (1+hy).

The point of these rather informal calculations is that we are able to guess
what the Girsanov Theorem will look like for a counting process. We can now
state and prove the formal result.
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Theorem 5.1.1 (The Girsanov Theorem) Let N be an optional counting
process on the filtered space (0, F, P,F) and assume that N has the predictable
intensity \. Let h be a predictable process such that

hy > -1, P —a.s. (5.3)
and define the process L by
st == Ltfht {dNt - )\tdt} 3 (54)
Ly = 1,

on the interval [0,T]. Assume furthermore that

EP [Ly] =1. (5.5)
Now define a new probability measure QQ << P on Fp by

d@Q = LpdP. (5.6)
Then N has the Q intensity A9 , given by

A=A (1+hy).

Proof. We need to show that, for every non negative predictable process g, we

have
T
/ 9tdNy
0

We start with the right hand side to obtain

E? =E9

/T giAe (14 hy) dt] . (5.7)
0

E®

T T
/ giAe (1 + hy) dt] = / E9 [gi) (1 + hy)) dt
0 0

T
= / EP [Lygih (1+ hy)] dt = EP
0

T
/ Ltgt)\t (1 + ht) dt‘|
0

— P
0

/T LtfgtAt (]. + ht) dt‘| (58)

Turning to the left hand side of (5.7) we obtain

T T
/ gtdNy LT/ gtdNy |,
0 0

and it is therefore natural to study the process Z, defined by

E° =EF

t
Zy = LYy = Lt/ gsdNj.
0
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It is clear that Z is the product of two processes of bounded variation, so from
the product rule (Proposition 2.5.2) we have

dZ;y = Li_dY; +Y;_dL; + AL;AY;
= L gdNy+Y;_dLy + Ly_gihidNg
= Lt—gt (1+hf)dNt+)/f_st

Integrating this, and recalling that A is the P intensity of IV, gives us

T
0

T
EP |Lr / G1dN,
0

T
= E” / Li—gt (14 hy) dNy
0

+ EF

T
/ Y, dL,
0

T
= EP / Lt_gt(1+ht))\tdt], (5.9)
0

where we have also used the fact that, since L is a P martingale and the process
t — Y;_ is predictable, the dL integral has zero expected value. The equality
(5.7) now follows from (5.8) and (5.9). 11

This result generalizes easily to the multi dimensional case, and we can also
include a finite number of driving Wiener processes in the obvious way.

Theorem 5.1.2 (The Girsanov Theorem) Consider the filtered probability
space (0, F, P,F) and assume that N, ..., N* are optional counting processes
with predictable intensities \',... , \F. Assume furthermore that W', ... , W¢
are standard independent (F, P)-Wiener processes. Let h',... h* be predictable
processes with

i< -1, i=1,....,k, P—a.s,
and let g%, ..., g% be optional processes. Define the process L on [0,T] by

{ dLy = LiY0 gidWi + Lo S5 hy {dNj — Nidt} 5.10)

Lo = 1,

and assume that
EP [Ly] = 1.

Define the measure Q@ on Fr by dQ = LpdP. Then the following hold

o We can write ' 4 4
AW} = gidt +dW2*, i=1,...,d,

where W1 ... W4 gre Q Wiener processes.
e The Q intensities of N*,...N* are given by
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5.2 The converse of the Girsanov Theorem

If we start with a measure P and perform a Girsanov transformation according
to (5.4)-(5.6) in order to define a new measure @, then we know that @ << P.
A natural question to ask is whether all measures () << P are obtained by the
procedure (5.4)-(5.6).

In the general case it is obvious that the answer is no. Consider for example
a case where the stochastic basis carries a Poisson process N with constant in-
tensity A as well as N0, 1] distributed random variable Z, which is independent
of N. Suppose furthermore that we change P to @) by changing the distribution
of Z from NJ[0,1] to N[5,1], while keeping the distribution fixed for N. It is
then obvious that @ ~ P, but since the Girsanov transformation (5.4)-(5.6)
is completely determined by N, and not in any way involving Z, it is intu-
itively obvious that the change form P to () can not be achieved by a Girsanov
transformation of the type (5.4)-(5.6).

From this discussion it is reasonable to assume that if we restrict ourselves
to the case when the filtration F is the internal one, generated by the counting
process NV, then we may hope for a converse of the Girsanov Theorem.

Proposition 5.2.1 (The Converse of the Girsanov Theorem) Let N be
a counting process on (Q, F, P,F) with intensity process A\, and assume that the
filtration F is the internal one, i.e. that

Fo=FN, t>o. (5.11)

Assume furthermore that there exists a measure @ such that for a fixed T,
we have QQ << P on Fr, and let L denote the corresponding likelihood process,

1.€.
d
Lt:d%, O’I'L./Tt7 OStST
Then there exists a predictable process h such that L has the dynamics
dL; = Li_hy {dN; — \dt}, (5.12)
Ly = 1,

and the Q intensity is given by
AL = X\ (1+ hy).

Proof. Defining L as a above, we know from general theory that L is a P
martingale. Since we have the internal filtration, the Martingale Representation
Theorem 4.1.1 guarantees the existence of a predictable process g such that

st = gt {dNt — )\tdt} ,
and if we define h by

gt
hy = 2
t Lt—’
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we are done. There is a potential problem when L, = 0, but also this can be
handled. §

We can of course extend this result to the case of a multidimensional counting
process and a multi dimensional Wiener process. The proof is almost identical.

Proposition 5.2.2 (The Converse of the Girsanov Theorem) Consider a
filtered space (Q, F, P,F) carrying the counting processes N',..., N* with pre-
dictable intensities \', ..., \*, as well as the standard independent Wiener pro-
cesses W, ... ,We. We assume that the filtration is the internal one , gener-
ated by N and W, i.e.

Fe=F"vF".

Assume furthermore that there exists a measure QQ such that for a fized T, we
have Q << P on Fp, and let L denote the corresponding likelihood process, i.e.

dQ

Ly =—
t dPa

onFy, 0<t<T
Then there exists a k-dimensional predictable process h, and a d-dimensional
predictable process g such that L has the dynamics

{ dL, = L= Y0y hi [dNi— Nds] + L, Y0, [ gldW? (5.13)

Lo = 1,

5.3 Maximum Likelihood Estimation

In this section we give a brief introduction to maximum likelihood (ML) esti-
mation for counting processes.
We need the concept of a statistical model.

Definition 5.3.1 A dynamic statistical model over a finite time interval
[0,T] consists of the following objects.

e A measurable space (0, F).
o A filtration F.

o An indexed family of probability measures {Py; o € A}, defined on the
space (2, F), where A is some index set and where all measures are as-
sumed to be absolutely continuous on Fr w.r.t. some base measure P,,,
i.e.

P, << P,,, forallac A

In most concrete applications (see examples below) the parameter o will be
a real number or a finite dimensional vector, i.e. A will be the real line or some
finite dimensional Euclidean space. The filtration will typically be generated by
some observation process X.
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The interpretation of all this is that the probability distribution is governed
by some measure P,, but we do no know which. We do have, however, access to
a flow of information over time, and this is formalized by the filtration above,
so at time t we have the information contained in F;. Our problem is to try
to estimate a given this flow of observations, or more precisely: for every t
we want an estimate oy of a, based upon the information contained in F3, i.e.
based on the observations over the time interval [0,¢]. The last requirement is
formalized by requiring that the estimation process should be adapted to F, i.e.
that oy € .7:,5.

One of the most common techniques used in this context is that of finding,
for each ¢, the maximum likelihood estimate of «. Formally the procedure
works as follows.

e Compute, for each « the corresponding Likelihood process L* (where «
only has the role of being an index, and not a power) is defined by

0n.7:t.

e For each fixed ¢, find the value of a which maximizes the likelihood ratio
LY.

e The optimal « is denoted by @; and is called the maximum likelihood
estimate of a based on the information gathered over [0, ¢].

As the simplest possible example let us consider the problem of estimating
the constant but unknown intensity of a scalar Poisson process.

In this example we do in fact have an obvious candidate for the intensity
estimate. Indeed, if IV is Poisson with intensity A, then A is the mean number
of jumps per unit time, so the natural estimate is given by

Xt = &, t > 0.
t
To formalize our problem within the more abstract framework above, we need
to build a statistical model. To this end we consider a filtered space (2, F, P, F)
carrying a Poisson process N with unit intensity under P. The filtration is
assumed to be the internal one, i.e. F; = F}¥. For any non negative real number
A we can now define the measure Py by the Girsanov transformation

{ dL} = L} (A —1){dN, —dt}, (514

Ly = 1.

From the Girsanov Theorem, and the Watanabe Characterization Theorem it is
clear that under Pj, the process N will be Poisson with the constant intensity
A. The SDE (5.14) can easily be solved, for example by using Proposition 2.6.2,

and we obtain
LtA — Neln()—t(A-1)
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We thus have to maximize the expression
Neln(A) —t(A—1)
over A > 0 and we immediately obtain the ML estimate as

5= (5.15)
t
We see that in this example the ML estimator actually coincides with our
naive guess above. The point of using the ML technique is of course that in a
more complicated situation (see the exercises) we may have no naive candidate,
whereas the ML technique in principle is always applicable.

5.4 Cox Processes

In point process theory and its applications, such as for example in credit risk
theory, a very important role is played by a particular class of counting processes
known as “Cox processes”, or “doubly stochastic Poisson processes”. In this
section we will define the Cox process concept and then use the Girsanov theory
developed above to prove the existence of Cox processes.

The intuitive idea of a Cox process is very simple and goes roughly as follows.

1. Consider a fixed random process A on some probability space 2.

2. Fix one particular trajectory of X, say the one corresponding to the out-
come w € €.

3. For this fixed w, the mapping ¢t — A\;(w) is a deterministic function of
time.

4. Construct, again for this fixed w, a counting process N which is Poisson
with intensity function A (w).

5. Repeat this procedure for all choices of w € .

If this informal procedure can be carried out (this is not at all clear), then it
seems that it would produce a counting process N with the following property.

Conditional on the entire A-trajectory, the process N is Poisson with
that particular A-trajectory as intensity function. This is, intuitively,
the definition of a Cox process.

The construction above is of course not very precise from a mathematical point
of view, and this also holds for the statement concerning the properties of N.
For example, what exactly do we mean by the sentence “Conditional on the
entire A-trajectory, the process NV is Poisson with that particular A-trajectory
as intensity function”? We now have a small research program consisting of the
following items.
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e Define, in a mathematically precise way, the concept of a Cox process.

e Prove that, given an intensity process A, the corresponding Cox processes
exist.

The formal definition is as follows.

Definition 5.4.1 Consider a probability space (2, F, P), carrying a counting
process N as well as a non negative process A. We say that N is a Cox process
with intensity process A if the relation

E [ez‘u(N,,—Ns)

FNv ;rgo} = hee(e™ 1) (5.16)

t
Agy = / Aud.

If we compare this with Definition 2.7.1 and Lemma 2.7.1 we see that the in-
terpretation is indeed that, “conditional on the A-trajectory the process N is
Poisson with that particular A-trajectory as intensity function”.

We now go on to show that, for any given process A, there actually exists a
Cox process with A as the intensity. The formal statement is given below, and
the proof is a nice example of Girsanov technique.

holds for all s < t, where

Proposition 5.4.1 Consider a probability space (0, F, Py), carrying a non neg-
ative random process \. Assume that the space also carries a Poisson process
N, with unit intensity, and that N is independent of A\. Then there exists a
probability measure P ~ Py with the following properties.

o The distribution of A\ under P is the same as the distribution under Py.

o Under P, the counting process N is a Cox process with intensity \.

Proof. We start by defining the filtration F by
Fe=FN Vv FL,

and note that this implies that F2 C Fy. Next we define a likelihood process
L in the obvious way by

dLy = Ly (A —1){dNy; —dt},
t = e = D AN, =y (5.17)
LO = 17
and define the new measure P by
dpP
Lt = TH) on .7:75.

From the Girsanov Theorem it is clear that N has the intensity A under P but
this is not enough. Denoting, by £?(X) the distribution of a random variable
or process X under a measure (Q we have to show that
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(@) L7(N) =L (N).
(b) Under P, the process N is Cox with intensity .
Item (a) is easy. Since Lo = 1, the measures Py and P coincide on Fy, and since

o {\} = F2 is included in Fy, we conclude that £F(\) = Lo(N).
Item (b) requires a little bit of work. We need to show that

EP [eiu(Nt—Ns)

fs} = ehe(e 1) (5.18)

and the obvious idea is of course to use the Bayes formula. We then have

B EPO [eiu(Nt—Ns)Lt|]:S]

EP { iu(Ny—Ny)
e I

fs} (5.19)

where we have used the fact that Ef° [L;| F,] = Ls. In order to compute the
last conditional expectation, we choose a fixed s, and consider the process Z on
[s,00) defined by

Zt = eiu(NtiNS)Lt.

Defining the process Y by
Y, = eNe=No)

we can write

Zy = YiLy,

and since both processes are of bounded variation we can use the product rule
to obtain
dZy =Y, dL;+ L;_dY, + AY,AL,.

The differential dL; is given by (5.17), and for Y we easily obtain
4y, = (Nt Vi) NN, = Y (e - 1) dN,.
From this expression and from (5.17) we have
AY,AL; =Y, (™ —1) Li— (A — 1)dN; = Z;— (€™ — 1) (A — 1) dN,.
Denoting the Py martingale N; — t by M; we thus obtain

dZ; = Yi_Li (M —1)dM;+ LY, (e — 1) dNy + Zp— (e™ — 1) (s — 1) dN,
= Zi M (e =1)dN + Z,— (N — 1) dM
= Zy M (e —1)dt + Z,— (Ae™ — 1) dM,

Integrating this we obtain

t t
Zy = Zg +/ Zydu (e = 1) du +/ Zu— (Aue™ — 1) dM,,.
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We now note that, since ]—'Qo C Fo, we always have \; € Fy C F;_, so the process
A is in fact F predictable, implying that the dM integral is a Py martingale, Let
EP[-] denote the conditional expectation B0 [-| F,], and take E? expectations.
Using the martingale property of the dM integral and the fact that Z, = L
gives us

E(Z,) = / E [Z,M) (e — 1) du
Since F C Fy we have E? [Z,\,] = A\ E? [Z,] giving us

t
E%(Z) =L, + / Au (€™ = 1) E?[Z,] du
S

We now denote E?[Z;] by x; (suppressing the fixed s) we have the integral
equation

t
xy = Ly +/ Au (ei“ — 1) T du,
which is the integral form of the ODE
i’t = .ItAu (Giu - 1) 5
Ts = Lsa

with the solution _
:LseAS't(e _1).

We have thus shown that
EO {eiu(Nths)Lt‘fS:I — LseASvt(eiu_l)

and inserting this into (5.19) gives us (5.18). 1

5.5 Exercises

Exercise 5.1 Assume that the counting process Nhas the F predictable in-
tensity
At = ag(Ni-)

where g is a non negative known deterministic function, and ais an unknown
parameter. Show that the ML estimate of « is given by

. Ny
Qp = —4————
fo g (Ny)ds
Exercise 5.2 Assume that we can observe a process X with P dynamics given

by

dXt = ’udt + O'th + dNt
where o is a known constant, p is an unknown parameter, N is Poisson with
unknown intensity A, and W is standard Wiener. Our task is to estimate p and
A, giwven observations of X.
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(a) Define the process X under a base measure Py according to the dynamics
dX; = odWy + dN;

where W0 is Wiener and N is Poisson with unit intensity under Py. Con-
vince yourself that N and W° are observable, given the X observations,

in the sense that .
FYCF, BV CR

(b) Perform a Girsanov transformation from Py to P, such that X has the P
dynamics dX; = pdt + odWy + dNy. Write down an explicit expression
for the likelihood process L.

(¢) Maximize L w.r.t. p and A and show that the ML estimates are given by

Xy — Ny
t’ o t



Chapter 6

Connections to PIDEs

In this chapter we will study how stochastic differential equations (SDEs) driven
by counting- and Wiener processes are connected to certain types of partial
integro-differential equations (PIDEs).

6.1 SDEs and Markov processes

On a filtered space (2, F, P,F) we consider a scalar SDE of the form

dXt = ILL(t,Xt)dt+O'(t, Xt)th +ﬁ(t*,Xt_)dNt, (61)
XO = Xo-

Here we assume that u(t, z), o(t,x) and B(t, z) are given deterministic functions,
and that zg is a given real number. The Wiener process W and the counting
process N are allowed to be multi dimensional, in which case o and § are row
vectors of the proper dimensions and the products cdW and BdN are interpreted
as inner products. We need one more important assumption.

Assumption 6.1.1 We assume that the counting process N has a predictable
intensity \ of the form
Ar = A(t—, Xio). (6.3)

Here, with slight abuse of notation the A in the right hand side denotes a smooth
deterministic function of (t,x).

It is reasonable to expect that under these assumptions, the process X is
Markov, and this is in fact true.

Proposition 6.1.1 Under the assumptions above, the process X will be a Markov
process.

Proof. The proof is rather technical and therefore omitted. i

o1
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6.2 The infinitesimal generator

To every SDE of the form (6.1), and in fact to every Markov process, one can
associate a natural operator, the “infinitesimal generator” A of the process. The
infinitesimal generator is an operator on a function space, and in order to define
it, let us consider a function f : Ry x R — R. We now fix (¢,z) and consider
the difference quotient

lEm [f(t+h, Xipn) — f(t,2)].

h
The limit of this (if it exists) as h — 0 would have the interpretation of a “mean
derivative” of the composite process t — f(t,X;), and this leads us to the
following definition.

Definition 6.2.1 Let us by C, denote the space of bounded continuous map-
pings [ : Ry x R — R. The infinitesimal generator A : D — C} is defined

by
(A (2) = lim 3 By £+ B Xoen) = £(2,2)], (64

where D is the subspace of Cj, for which the limits exists for all (¢, x).

Remark 6.2.1 The domain D is obviously important in the definition, but in
the sequel we will be rather imprecise about the exact description of D, and we
will also apply A to unbounded functions. The boundedness requirement above
only serves to guarantee that the expected values are finite.

Perhaps somewhat surprisingly, it turns out that the infinitesimal generator
provides a huge amount of information about the underlying process X. We
have for example the following central result.

Proposition 6.2.1 The distribution of a Markov process X is uniquely deter-
mined by the infinitesimal generator A

We will not be able to prove this result for a general Markov process, but
we will at least make it believable for the case of a SDE like in (6.1).

We thus consider the SDE (6.1) and go on to determine the shape of the
infinitesimal generator. Fort simplicity we consider only the case when W and
N are scalar. If f € C1? we have, from the Ité formula,

0 0 0?
df(t,Xt) = {a{(t,Xt) + /J,(t, Xt)aif(t, Xt) + %0-2(157 Xt)ax'};(t,Xt)} dt
+ U(t7Xt)%(t,Xt)th + fﬁ(t—,Xt,)dNt,

where f3 is defined by
fo(t,z) = ft,x+ B(t,x)) — f(t, ). (6.5)
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We now compensate the counting process by adding and subtracting the term
MT—, X;_)dt to dNy, We then have

of
df(ta Xt) = -Af(t7 Xt)dt + O’(t, Xt) P

T

(t, X0)dW; + fa(t—, X;—)dN;,  (6.6)

where the operator A is defined by

0 0 0?
Af(t,x) = a—{(t, z) + p(t, x)ﬁ—{(t, z) + %aQ(u m)a—;;(t x) + fa(t, x)A(t, x),

and where the compensated increment dN is defined by
dN; = dN; — MN(t—, X;_)dt,

Remark 6.2.2 We note that the last term of A in (6.6) should formally be
written as
falt—, Xe )A(t—, Xio).

However, because of the assumed continuity of f, B, A, and the fact that we are
integrating w.r.t. Lebesque measure dt, we are allowed to evaluate this term at

(t, Xt).

The point of writing df as in (6.6) is that we have decomposed df in a drift
term given by the dt term, and a martingale term, given by the sum of the
dW and dN terms. Let us now fix (¢,) as initial conditions for X. We may
then integrate (6.6) to obtain

t+h

fE+h,Xern) = f(t,x)+ Af(s,Xs)ds
t

t+h af
+ /t U(S,Xs)a—x(s,Xs)dWS

t+h
+ / fg(s—,Xs_)st.
t

Here the dW integral is obviously a martingale and since N is a martingale
and the fg term is predictable (why?) we see that also the dN integral is a
martingale. Taking expectations we thus obtain

1 t+h

1E‘t,r [f(t + ha Xt+h) - f(t,lﬂ)] = Et,z E g

h

Af(s, X s)ds]
Letting h — 0 and using the fundamental theorem of calculus, we obtain

LB [F(+ B Xgn) — F(2)] = Af(57)

with A defined as above. We have thus proved the following main result.
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Proposition 6.2.2 Assume that X has the dynamics
dXt = ,u(t, Xt)dt + O'(t, Xt)th + ﬁ(t—7 Xt_)dNt7 (67)
and that the intensity of N given by A(t—, X;—). Then the following hold.

o The infinitesimal generator of X is given by

9 0 0
A7 = 2 (1,0) 4l 2) 0 1,2) + 5070 0) 9+ Fat @)A1 2), (68)

where

fﬁ(tvx) :f(t,x+ﬂ(t,x)) 7f(t7'r)' (69)

e The process f(t, X:) is a (local) martingale if and only if it satisfies the
equation
Af(t,x) =0, (t,z) € Ry XR (6.10)

Remark 6.2.3 We note that the equation (6.10) contains a number of partial
derivatives and a (degenerate) integral term (the fg term). It is thus a partial
integro-differential equation (PIDE).

Remark 6.2.4 The result extends, in the obvious way, to the case of a multi
dimensional Wiener process and a multi dimensional counting process.

We end this section by noting that the second item above can be generalized
to any Markov process. We have in fact the following general result, which in
fact holds for a Markov processes on a very general state space.

Proposition 6.2.3 (Dynkin’s Formula) Assume that X is a Markov process
with infinitesimal generator A. Then, for every f in the domain of A, the
process

t
f6.x0) ~ [ (s, X.)ds
0
is a martingale. Furthermore, the process f(t, X¢) is a martingale if and only if
Af(t,z) =0, (t,x) € Ry xR
Proof. The proof in the general case is a quite technical so we omit it. From

an intuitive point of view the result is, however, more or less obvious, and we
give an informal argument. Letting h — dt in the definition of A we obtain

E[df (t, Xo)| F) = Af(t, X, )dt

with the interpretation df (¢, X;) = f(t + dt, Xi1ar) — f(t, X;). From this it is
clear that the “conditionally detrended” difference

df (t, Xy) — Af(t, X,)dt

should be a martingale increment, and this is precisely the content of the Dynkin
formula. The second statement follows directly from the Dynkin formula. |
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6.3 The Kolmogorov backward equation
We continue to study the SDE
dXt = [L(t, Xt)dt + O'(t, Xt)th + ﬂ(t—, Xt,)dNt, (611)

where N has the intensity function A(¢,2). Let us now consider a fixed point in
time T" and a real valued function ®. The object of this section is to understand
how one can compute the expectation E [®(X7)]. In order to do this we consider
the process Z defined by

7, = B [8(X1)| FY]. (6.12)
We first note that, since X is Markov, we can write Z as
Zy = E[®(X7)| X4,
so in fact we have
Zy = f(ta Xt)v

where the deterministic function f is defined by f(t,z) = E [®(X7)| X; = 2]
or, equivalently by
f(ta (E) = Et,z [(I)(XT)} .

Secondly we note that since Z is given by the conditional expectation (6.12),
the process Z is a martingale. From Proposition 6.2.2 we thus see that f must
satisfy

Af(t,z) =0,

with the obvious boundary condition f(T,x) = ®(x). We have thus proved the
following result.

Proposition 6.3.1 (The Kolmogorov Backward Equation) Let X be the
solution of (6.7), T a fized point in time, and ® any function such that ®(Xr) €
L'. Define the function f by

f(ta 33) = Et,:c [(I)(XT)} .
Then f satisfies the Kolmogorov backward equation

{Af(t,x) = 0, (t,x)e Ry xR (6.13)
f(T,z) = ®(x), z€R

where A is given by (6.8).
Remark 6.3.1 It is clear from the discussion around the Dynkin formula that

the Kolmogorov backward equation is valid, not only for the solution to an SDE
of the form (6.7), but in fact for a general Markov process.
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In particular we may choose ®(z) = I4(x) where A C R is a Borel set in R,
and I denotes the indicator function. In this case we see that

flt,z)=P(XrecAlX;y=1).

and we see that these transition probabilities must satisfy the backward
equation with the boundary condition

f(T,x) = Ia(x).

Even more in particular, if we assume that X has transition densities p(t, z; T, z)
with the interpretation

p(t,z;T,2)dz = P(Xr €dz| Xy =)

then also these transition densities must satisfy the Kolmogorov equation in the
(t,x) variables, with boundary condition

p(T,2;T, z) = 6.(x),

where ¢, is the Dirac measure at z. We thus see that the transition probabilities,
and thus the entire distribution, of the process X are completely determined by
the infinitesimal generator A.

We can also turn the Kolmogorov equation around. Instead of starting with
an expected value and deriving a PIDE, we may start with the PIDE and derive
an expected value.

Proposition 6.3.2 (Feynman-Kac) Assume that X is as above, and assume
that a function f solves the PIDE

Af(t,z) = 0, (t,z)€e Ry xR
f(T,z) = &), z€R
where A is given by (6.8). Then we have

ftx) = By, [0(X7)] .

Proof. Assume that f satisfies the backward equation. If we consider the
process f(t, X;) then, since Af = 0, it is clear from the Dynkin formula that
f(t, X;) is a martingale. Using the Markov property and the boundary condition
we then obtain

[, X)) = E[f(T,Xr)| Fi] = E[®(Xr)[ X W

In many finance applications it is natural to consider problems with discount-
ing. A small variation of the arguments above gives us the following result.
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Proposition 6.3.3 (Feynman-Kac) Assume that X is as above, and assume
that o function f solves the PIDE

{Af(t,x)—rf(t,x) = 0, (t,x)e Ry xR
f(T,x) = ®(x), z€R

where A is given by (6.8), and r is a real number Then we have

flt,z) = e"TVE,  [@(X7)].
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Chapter 7

Portfolio Dynamics and
Martingale Measures

7.1 Portfolios

We now turn to the problem of pricing financial derivatives in models which are
driven, not only by a finite number of Wiener processes, but also by a number
of counting processes. In this chapter we recall some central concepts and result
from general arbitrage theory. For details the reader is referred to [1] or any
other standard textbook on the subject.

We consider a market model consisting of N + 1 financial assets (without
dividends). As usual we assume that the market is perfectly liquid, that there
is no credit risk, no bid-ask spread, and that prices are not affected by our
portfolios.

We are given a filtered probability space (Q, F, P,F), and by S! we denote
the price at time ¢ of one unit of asset No. 4, for i = 0,...,N. We let S
denote the corresponding N dimensional column vector process, and all asset
price processes are assumed to be optional. The asset S° will play a special role
below. In general the price processes are allowed to be semi martingales but the
reader can, without any loss of good ideas, think of the simpler case when the
prices are driven by finite number of Wiener and counting processes.

We now go on to define the concept of a “self financing portfolio”. Intuitively
this is a portfolio strategy whee there is no external withdrawal from, or infusion
of money to, the portfolio. It is far from trivial how this should be formalized
in continuous time, but a careful discretization argument leads to the following
formal definition.

Definition 7.1.1 A portfolio strategy is an N + 1 dimensional predictable
(row vector) process h = (h',... hV). For a given strategy h, the corresponding
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value process V" is defined by

N
V=" hiS} = S, (7.1)
or equivalently
Vi = hS;. (7.2)
The strategy is said to be self financing if
N . .
dv = " hids;, (7.3)
or equivalently
V" = h,dS;. (7.4)
For a given strategy h, the corresponding relative portfolio u = (u!,... u®)
1s defined by o
WS
uy = Vi i=0,...,N, (7.5)

and we will obviously have
N
Z ul = 1.
i=0

It is important to note the requirement of predictability for h in the definition
above. Informally this means that at ¢t — dt we decide on our portfolio A, and
we then hold this portfolio over the infinitesimal interval [t — dt, ¢].

We should, in all honesty, also require some minimal integrability properties
for our admissible portfolios, but we will suppress these and some other technical
conditions. The reader is referred to the specialist literature for details.

As in the Wiener case, it is often easier to work with the relative portfolio
u than with the portfolio h. We immediately have the following obvious result.

Proposition 7.1.1 Ifu is the relative portfolio corresponding to a self financing
portfolio h, then we have

h oy N~ S
v, :V;_Zutsi : (7.6)
i=0 t—

In most market models we have a (locally) risk free asset, and the formal
definition is as follows.

Definition 7.1.2 Suppose that one of the asset price processes, henceforth de-
noted by B, has dynamics of the form

dBt = T’tBt_dt7 (77)

where r is some predictable random process. In such a case we say that the asset
B is (locally) risk free, and we refer to B as the bank account. The process
r s referred to as the corresponding short rate.
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The term “locally risk free” is more or less obvious. If we are standing at time
t — dt then, because of predictability, we know the value of r,. We also know
B:_, which implies that already at time ¢ — dt we know the value B; of B at
time t. The asset B is thus risk free on the local (infinitesimal) time scale, even
if the short rate r is random. The interpretation is the usual, i.e. we can think
of B as the value of a bank account where we have the short rate r. Typically
we will choose B as the asset SY.

7.2 Arbitrage

The definition of arbitrage is standard.

Definition 7.2.1 A portfolio strategy h is an arbitrage strategy on the time
interval [0, T] if the following conditions are satisfied.

1. The strategy h is self financing

2. The initial cost of h is zero, i.e.
Vo' =0.
8. At time T it holds that

b

1
P(V{E>0) > o

P(Vf>0) =

An arbitrage strategy is thus a money making machine which produces pos-
itive amounts of money out of nothing. The economic interpretation is that
the existence of an arbitrage opportunity signifies a serious case of mispricing
in the market, and a minimal requirement of market efficiency is that there are
no arbitrage opportunities. The single most important result in mathematical
finance is the “first fundamental theorem” which connects absence of arbitrage
to the existence of a martingale measure.

Definition 7.2.2 Consider a market model consisting of N+1 assets S°, ..., SV,
and assume that the numeraire asset S° has the property that S? > 0 with
probability one for all t. An equivalent martingale measure is a probability
measure () with the properties that

1. Q is equivalent ot P, i.e. Q ~ P.
2. The normalized price processes Z?, ... ZY | defined by

_S

Z;'—S—?, i=0,...N,

are (local) martingales under Q.
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We can now sate the main abstract result.

Theorem 7.2.1 (The First Fundamental Theorem) The market model is
free of arbitrage possibilities if and only if there exists a martingale measure Q.

Proof. This is a very deep result, and the reader is referred to the literature
for a proof. i

We note that if there exists a martingale measure @, then it will depend
upon the choice of the numeraire asset S°, so we should really index Q as Q.
In most cases the numeraire asset will be the bank account B, and in this case
the measure @, which more precisely should be denoted by QF, is known as the
risk neutral martingale measure.

The First Fundamental Theorem above is very powerful and general result.
In some more restricted cases, especially when we use “the classical delta hedging
approach” to arbitrage free pricing below, we will not need the full force of the
First Fundamental Theorem. In these cases, the following, very easy, result will
be enough for our purposes.

Proposition 7.2.1 Assume that the self financing portfolio strategy h is such
that the corresponding value process V" has dynamics of the form

dV* = Vikydt,

where k is some adapted process. Assume furthermore that the market contains
also a bank account with short rate process r. Then we must have

ki=r, P—a.s. Vt>0,

otherwise there will exist an arbitrage opportunity.

Proof. The point of the result is that if the V' process has dynamics as above
(with no driving noise process), then V represents a (locally) risk free invest-
ment opportunity, and in order to avoid arbitrage between the portfolio and the
bank account we must have k = r. If for example r; < k; then we borrow in the
bank and invest in the portfolio, and vice versa if r; > k;. 1

7.3 DMartingale Pricing

We now study the possibility of pricing contingent claims. The formal definition
of a claim is as follows.

Definition 7.3.1 Given a a stochastic basis (Q,F, P,F) and a specified point
in time T, often referred to as “the exercise date”) a contingent T-claim is a
random variable X € Frp.



7.3. MARTINGALE PRICING 65

The interpretation is that the holder of the claim will obtain the random amount
X of money at time T. We now consider the “primary” or “underlying” market
S0, 81, ..., SN as given a priori, and we fix a T-claim X. Our task is that of
determining a “reasonable” price process II (¢; X) for X, and we assume that
the primary market is arbitrage free. A main idea is the following.

The derivative should be priced in a way that is consistent with the
prices of the underlying assets. More precisely we should demand
that the extended market IT ( ; X), 8%, S*,---, SV is free of arbitrage
possibilities.

In this approach we thus demand that there should exist a martingale mea-
sure @ for the extended market IT (X), 5%, St,--- SN, Letting Q denote such
a measure, assuming enough integrability, and applying the definition of a mar-
tingale measure we obtain

I (t; X) II(T; X) X

— 2L = Q| R =E9 | o

S9 [ S9 ! S9

where we have used the fact that, in order to avoid arbitrage at time 7" we must
have IT (T'; X) = X. We thus have the following result.

ft} (7.8)

Theorem 7.3.1 (General Pricing Formula) The arbitrage free price pro-
cess for the T-claim X is given by

X
I (t; X) = SYE@ [0 ]-"t} : (7.9)
St
where Q is the (not necessarily unique) martingale measure for the a priori given
market S0, 81, .- SN with SO as the numeraire .

Note that different choices of @@ will generically give rise to different price pro-
cesses. In particular we note that if we assume that if S° is the money account

S? _ 58 . efo r(s)ds

)

where r is the short rate, then (7.9) reduced to the familiar “risk neutral valu-
ation formula”.

Theorem 7.3.2 (Risk Neutral Valuation Formula)
Assuming the existence of a short rate, the pricing formula takes the form

I (t; X) = E° [e_ft ’”<s)dsx‘ ]—'t} : (7.10)

where Q is a (not necessarily unique) martingale measure with the money ac-
count as the numeraire.

The pricing formulas (7.9) and (7.10) are very nice, but it is clear that if there
exists more than one martingale measure (for the chosen numeraire), then the
formulas do not provide a unique arbitrage free price for a given claim X. It
is thus natural to ask under what conditions the martingale measure is unique,
and this turns out to be closely linked to the possibility of hedging contingent
claims.
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7.4 Hedging

Consider a market model S, ..., S" and a contingent T-claim X.

Definition 7.4.1 If there exists a self financing portfolio h such that the cor-
responding value process V" satisfies the condition

V=X, P-as. (7.11)

then we say that h replicates X, that h is a hedge against X, or that X is
attained by h. If, for every T, all T-claims can be replicated, then we say that
the market is complete.

Given the hedging concept, we now have a second approach to pricing. Let
let us assume that X can be replicated by h. Since the holding of the deriva-
tive contract and the holding of the replicating portfolio are equivalent from a
financial point of view, we see that price of the derivative must be given by the
formula

I X) = V', (7.12)

since otherwise there would be an arbitrage possibility (why?).
We now have two obvious problems.

e What will happen in a case when X can be replicated by two different
portfolios g and h?

e How is the formula (7.12) connected to the previous pricing formula (7.9)?

To answer these question, let us assume that the market is free of arbitrage,
and let us also assume at the T claim X is replicated by the portfolios g and
h. We choose the bank account B as the numeraire and consider a fixed mar-
tingale measure ). Since ) is a martingale measure for the underlying market
S0, ..., 8N it is easy to see that this implies that @ is also a martingale measure
for V9 and V" in the sense that V" /B and V9/B are Q martingales. Using this

we obtain ., .
Vit _polVr
B; Br

7|
and similarly for V9. Since, by assumption, we have V} = X we thus have

B
Vh=EQ | X
t |: BT

F T:| )
which will hold for any replicating portfolio and for any martingale measure Q.
Assuming absence of arbitrage we have thus proved the following.

e If X is replicated by g and h, then

V=V, t>o.
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e For an attainable claim, the value of the replicating portfolio coincides
with the risk neutral valuation formula, i.e.

T
V= E° [eft ’“Sdsx‘fT} .

From (7.10) it is obvious that every claim X will have a unique price if and
only if the martingale measure @ is unique. On the other hand, it follows from
the alternative pricing formula (7.12) that there will exist a unique price for
every claim if every claim can be replicated. The following result is therefore
not surprising.

Theorem 7.4.1 (Second Fundamental Theorem) Given a fized numeraire
SO, the corresponding martingale measure Q is unique if and only if the market
is complete.

Proof. We have already seen above that if the market is complete, then the
martingale measure is unique. The other implication is a very deep result, and
the reader is referred to the literature. i

7.5 Heuristic results

In this section we will provide a very useful and general rule of thumb which
can be used to determine whether a certain model is complete and/or free of
arbitrage. The arguments will be purely heuristic.

Let us consider a model with N traded underlying assets plus the risk free
asset (i.e. totally N + 1 assets). We assume that the price processes of the
underlying assets are driven by R “random sources”. We cannot give a precise
definition of what constitutes a “random source” here, but the following infromal
rules will be enough for our purposes.

e Every independent Wiener process counts as one source of randomness.
Thus, if we have five independent Wiener processes, then R = 5.

e Every independent Poisson process counts as one source of randomness.
Thus, if we have five independent Wiener processes,and three independent
Poisson processes, then R =5+ 3 = 8.

e If we have a driving point process with random jump size, then every
possible jump size counts as one source of randomness. Thus, if we
have a compound Poisson process with three possible jump sizes at each
jump time then R = 3. If the jump size has a probability distribution
allowing a density w.r.t. Lebesgue measure, then R = co.
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When discussing completeness and absence of arbitrage it is important to
realize that these concepts work in opposite directions. Let the number of
random sources R be fixed. Then every new underlying asset added to the
model (without increasing R) will of course give us a potential opportunity of
creating an arbitrage portfolio, so in order to have an arbitrage free market the
number M of underlying assets must be small in comparison to the number of
random sources R.

On the other hand we see that every new underlying asset added to the model
gives us new possibilities of replicating a given contingent claim, so completeness
requires M to be great in comparison to R.

We cannot formulate and prove a precise result here, but the following rule of
thumb, or “meta-theorem”, is nevertheless extremely useful. In concrete cases
it can in fact be given a precise formulation and a precise proof.

Meta-Theorem 7.5.1 Let M denote the number of underlying traded assets
in the model excluding the risk free asset, and let R denote the number of
random sources. Generically we then have the following relations.

1. The model is arbitrage free if and only if M < R.
2. The model is complete if and only if M > R.

8. The model is complete and arbitrage free if and only if M = R.

As an example we take the Black—Scholes model, where we have one underlying
asset S plus the risk free asset so M = 1. We have one driving Wiener process,
giving us R = 1, so in fact M = R. Using the meta-theorem above we thus
expect the Black—Scholes model to be arbitrage free as well as complete and this
is indeed the case.



Chapter 8

Poisson Driven Stock Prices

8.1 Introduction

In this chapter we will study arbitrage pricing in a concrete model. The model
below is extremely simple and very unrealistic from an economic point of view.
We use it mostly as a small laboratory model, and it it is nevertheless instructive
to analyze it.

The model is very similar to the standard Black-Scholes model, the only
difference being that while the stock price in the Black-Scholes model is driven
by a Wiener process, the stock price in our model will be driven by a Poisson
process. The Wiener driven and the Poisson driven models are structurally very
close, so the reader will hopefully recognize concepts and techniques from the
Wiener case. Exactly as in the Wiener case, we have three different methods
for pricing financial derivatives.

1. Construction of locally risk free portfolios.
2. Construction of replicating portfolios.
3. Construction of equivalent martingale measures.

As one may expect, the martingale approach is the most general one, but it is
still very instructive (and a good exercise) to see how far it is possible to go
using the techniques 1-2 above.

As usual we consider a filtered space (Q, F, P,F) and we assume that the
space carries a Poisson process N with constant intensity A. The filtration is
the internal one generated by N. The market we will study is a very simple
one. It consists of two assets, namely a risky asset with price process S and a
the usual bank account B. The dynamics are as follows, where «, 3 and r are
known constants.

dSt = OéSt_dt + 6St—dNt7 (81)
dBt = TBtdt.
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In order to have an economic interpretation of the stock price dynamics (8.1)
we note that between jumps the price evolves according to the deterministic
ODE

E = O[St,
so between jumps the stock price grows exponentially with the factor a. We thus
see that the constant « is the local mean rate of return of the stock between
jumps.

The question is now to get a grip on the overall mean rate of return, and in
order to do this we recall that if we define the process M by

M, = N, — M, (8.3)
then M is a martingale, and we will write (8.3) as
dNy = Adt + dM,. (8.4)
If we now plug (8.4) into (8.1) we obtain, after some reshuffling,
dSy = Si— (a+ BA) dt + 5Si—d My, (8.5)

and we see that the overall mean rate of return of the stock, including jumps
is given by a + SBA.

We see that we have two equivalent ways of viewing the stock price dynamics,
since can write the dynamics either as (8.1) or as (8.5). From a probabilistic
point of view, (8.5) is the most natural one, since it decomposes the dynamics
into a predictable drift part (the dt term), and a martingale part (the dM
term). This is known as “the semimartingale decomposition” of the S dynamics.
The representation (8.1), on the other hand, is often easier to use when we want
to apply the Ito formula. As we will see below we will often switch between the
two representations.

If we now move to the dN term in (8.1) we see that if N has a jump at time
t, then the induced jump size of S is given by

ASt = ﬂst—v

so [ is the relative jump size of the stock price, and we will sometimes refer
to 0 as the “jump volatility” of S. We also see that the sign of 8 determines
the sign of the jump: Assuming S; > 0, if 3 > 0 then all jumps are upwards
whereas if # < 0 all jump are downwards. In particular we see that if 8 = —1
then, if there is a jump at ¢, we obtain AS; = —S5;_, i.e.

St == Stf +ASt == Stf - Stf == 0

In other words, if § = —1, then the stock price will jump to zero at the first
jump of N (and the stock price will stay forever at the value zero). This indi-
cates clearly that we may use counting processes in order to model bankruptcy
phenomena.

We can now collect our findings so far.
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Proposition 8.1.1 If S is given by (8.1) we have the following interpretation.

e The constant « is the local mean rate of return of the stock between
jumps.

e Denoting the overall mean rate of return of the stock, including jumps
under the measure P by u*, we have

ut =a+ B (8.6)
o The relative jump size is given by (.

Before we go on to pricing in this simple model, let us informally discuss
conditions of no arbitrage.

Let us first assume that 8 > 0, and that Sy > 0. Then all jumps are
positive and it is clear that a necessary condition for no arbitrage is that r > «,
since otherwise the stock return would dominate the return of the bank between
jumps, and dominate even more at a jump time (because of the positive jumps).
In other words, if r < a then we would have an arbitrage by borrowing in the
bank and investing in the stock.

If, on the other hand, 8 < 0, then all jumps are negative, and a neces-
sary condition for no arbitrage is that « > r, since otherwise the bank would
dominate the stock between jumps and even more so at a jump time. We can
summarize the findings as follows.

Proposition 8.1.2 A necessary condition for absence of arbitrage is given by

r—o

B

> 0. (8.7)

8.2 The classical approach to pricing

We now turn the the problem of pricing derivatives in the model above. In
this section we will basically follow the “classical” Black-Scholes delta hedging
methodology and to this end we consider a contingent T-claim X of the form

X = (I)(ST)a

where ® is some given contract function. A typical example would be a Euro-
pean call option with exercise date T' and strike price K, in which case ® would
have the form

O(s) =max[s— K,0].

We now assume that the derivative is traded on a liquid market, and that the
price II (¢; X) is of the form
II(t; X) = F(t,S),

for some smooth function F'(¢, s). Our job is to find out what the pricing function
F must look like in order to avoid arbitrage on the extended market (S, B, F)).
To this end we carry out the following program.



72 CHAPTER 8. POISSON DRIVEN STOCK PRICES

1. Form a self financing portfolio based on the stock S and the derivative F’
and denote the corresponding value process of the portfolio by V'

2. Choose the portfolio weights such that the dN terms in the V' dynamics
cancel.

3. The V dynamics will then be of the form
dVy = Vikdt,
for some random process k.

4. Thus V is a risk free portfolio and in order to avoid arbitrage possibilities
between V' and the bank account we must, according to Proposition 7.2.1
have the equation

ki=r, t>0.

5. The equation above turns out to be a PIDE for the determination for the
pricing function F'.

We now go on to carry out this small program. Denoting the relative weights
on the underlying stock and the derivative by u® and u! respectively we have
the portfolio dynamics

av; = v, {usdst pdE(.5) }

vS T EG S
which we write more compactly as
ds dF
dV =V~ quS = 4 uf ——
{u 5 +u o } ,
where S~ is shorthand for S;_ etc. From the It6 formula we immediately have

oF oF
dF(t,S;) = {at(t, St) + ozSt%(t, St)} dt + Fg(t, Si—)dNy,

where
Fﬁ(tvs) = F(t78+68) _F(t75)7

and we can rewrite this in shorthand as
dF = apFdt + B F~dNy,

where
%—f(t, s) + as%—f(t, s)
F(t,s)

With this notation the portfolio dynamics takes the form

Br(t,s) =

ap(t,s) =

dV =V~ {u®(adt + BdN) + u* (apdt + BpdN)},
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or alternatively
dV =V~ {va+ap}dt+V {uB+u"Br}dN
We thus see that if we choose the relative portfolio u such that
u® B+ ul Br =0,
then the driving Poisson noise in the portfolio dynamics will vanish. Recalling
the the portfolio weights must sum to unity, we thus define the relative portfolio
by the system
W+ u Br = 0
u® +uf =

This is a simple 2 x 2 system of linear equations with the solution

W o= P
Pr—B
uf = - p .
Br—B

Using this portfolio, the V' dynamics takes the form

_ ) @Br  apB
v = v {2 - et

which represents the dynamics of a risk free asset. From Proposition 7.2.1 we
thus see that, in order to avoid arbitrage, the condition

afr  apP
Br—0B PBr—0
must be satisfied P — a.s.. Substituting the definitions for ar and fr and
reshuffling this equation will finally give us the equation
oF oF r—a«a

:7”

Fg—TF:O.

This is the required no arbitrage condition for the pricing function F'. Recalling
that we have the obvious (why?) boundary condition F(T,s) = ®(s), we have
our first main pricing result.

Proposition 8.2.1 Consider the pure Poisson model (8.1)-(8.2) and a T claim
X of the form X = ®(St). Assume that the price process I (¢; X) is of the form
II(t; X) = F(T,S;). Then, in order to avoid arbitrage, the pricing function F
must satisfy the following PIDE on the time interval [0,T].

OF OF r—a«

E(t’ s)+ ozsg(t7 s)+

3 Fg(t,s) —rF(t,s) = 0, (8.8)

F(T,s) = ®(s),
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where, Fg is defined by
Fg(t,s) = F(t,s+ 8s) — F(t,s). (8.9)

Comparing the PIDE above with our results in Section 6.3 we see (with
great satisfaction) that it is precisely of the form which allows for a Feynman-
Kac representation. In fact, using Propositions 6.2.2 and 6.3.3 we can write the
solution to the PIDE (8.9) as

F(t,s) = e "TDER [0(S7)],

where S has dynamics
dSt = OJStdt + ﬁStht, (810)

and N is Poisson with intensity (r — «)/8 under the measure (. This looks
quite nice, but at this point we have to be a bit careful, since in order to apply
the relevant Feynman-Kac Theorem we need to assume that the condition

r—o
g

is satisfied, otherwise we are dealing with a Poisson process with negative in-
tensity, and such animals do not exist. This condition is, however, exactly the
necessary condition for absence of arbitrage that we encountered in Proposition
8.1.2, and we can summarize our finding as follows.

>0, (8.11)

Proposition 8.2.2 Consider the pure Poisson model (8.1)-(8.2), where N is
Poisson with constant intensity \ under the objective measure P, and where we
assume that the no arbitrage condition (8.11) is satisfied. Consider a T claim
X of the form X = ®(St) and assume that the price process 11 (t; X) is of the
form 11 (¢t; X) = F(T,St). Absence of arbitrage will then imply that F has the
representation

F(t,s) = e "TDER [0(Sr)], (8.12)

where the S dynamics are given by (8.1.2), but where the process N under the
measure () is Poisson with intensity

r—«

29 =
B8

An explicit formula for F is given by

_ —r(T—1) = noam—t) (=) (T =8)" _rap_y
F(t,s)=e ngo@ (s(l + 0)"e ) Gl e 7 .

(8.13)

We end this section by discussing how F' depends on the various model
parameters. The most striking fact, which we see from Propositions 8.2.1 and
8.2.2 is that while F' depends on the parameters «, 8 and r, it does not depend
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on the parameter A\, which is the Poisson intensity A under the objective measure
P. This is the point process version of the fact that in a Winer driven model,
the pricing function does not depend on the local mean rate of return.

We also see that the dynamics of S is given by

dSt = OéStdt + ﬁSt,dNt,

under the objective measure P as well as under the martingale measure ). The
difference between P and @ is that while N is Poisson with intensity A under
P, it is Poisson with intensity A\? = (r — a)/3 under Q.

We can also easily compute the local rate of return of S under Q. We can
write

AN, = (T;a) dt + dM2,

where M is a Q martingale. Inserting this into the S dynamics above gives us
dS, = rSydt + 8S,_dMPZ,

which shows that the local mean rate of return under () equals the short rate r.

This shows, as was expected, that @ is a risk neutral martingale measure for
S, i.e. that the process S/B is a () martingale. It is also easy to see that F'/S
is a (Q martingale.

8.3 The martingale approach to pricing

In this section we will study the simple Poisson market described above in terms
of martingale measures. We recall the P dynamics of the stock price

dSt = OéStdt + ﬁStdefJ (814)

and our first task is to find the relevant no arbitrage conditions. By elementary
arguments we have already derived the condition (8.11), but the logical status
of this condition is that it is only a necessary condition. We now want to find
necessary and sufficient conditions, and to this end we now determine the class
of equivalent martingale measures (with the bank account as numeraire) for our
market model on the compact interval [0, T].

Since the filtration is the internal one, we know from the converse of the
Girsanov Theorem that every measure Q ~ P , regardless of whether @ is a
martingale measure or not, is obtained by a Girsanov transformation of the form

dQ
Li=—
LT ap’
where the likelihood process L has the dynamics

dL; = Li_hy {dN; — \dt},
Lo = 1,
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for some predictable process H with h > —1. From the Girsanov Theorem we
know that the @ intensity of IV is given by

A9 = (14 hy),

SO we can write

ANy = (14 hy)Adt + dME,

where M® is a Q martingale. Subsituting this into the S dynamics gives us the
semimartingale mdecomposition of S under @ as

dS; = Sy {o+ B(1 + hy) A} dt + 3S,_dM?,
so the local mean rate of return under @) is given by
th =a+ 81+ h)A.

A martingale measure with B as numeraire is characterized by the fact that
u? =r, so (Q is a risk neutral martingale measure if and only if

a+B(l+h)r=r. (8.15)

First Fundamental Theorem now says that the market model is free of arbitrage
if and only if there exists an equivalent martingale measure, so we see that we
have absence of arbitrage if and only if eqn (8.15) has a solution & such that
hy > —1. Since (8.15) has the simple solution

T—«
AB

and A > 0 we have more or less proved the following

ht:

-1,

Proposition 8.3.1 The pure Poisson market model (8.1)-(8.2) is free of arbi-
trage if and only if the condition

rT—«
B

is satisfied. If the condition is satisfied,then the market is also complete, and
the process N is Poisson under QQ with intensity given by

> 0, (8.16)

r—«
g

Given this result, pricing of derivatives is very , and we have the following result.

P

(8.17)

Proposition 8.3.2 Assume that the no arbitrage condition (8.16) is satisfied,
and consider any contingent T claim X. Then X will have a unique arbitrage
free price process 11 (t; X) given by

I(t; X)=e "TDEQ[X|F]. (8.18)
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Furthermore, if X is of the form X = ®(Sr) for some deterministic contract

function ®, then we have
It X) = F(t,5),

where the pricing function F satisfies the PIDE

OF (t5) + sk (1,5) + -2
8t , S Oésas , S

3 Fg(t,s) —rF(t,s) = 0, (8.19)

F(T,s) = ®(s),

Proof. The risk neutral valuation formula (8.18) is just a special case of Propo-
sition 7.3.2. If X is of the form X = ®(S7) then, since S is Markov under @,
we can write

e T VEQ(X|F)=e"T-DEQ[X|S)] = F(t,S),

and the PIDE (8.19) is the Kolmogorov backward equation. I

8.4 The martingale approach to hedging

As we saw in the previous section, the martingale measure is unique, so the
Second Fundamental Theorem guarantees that the Poisson model is complete.
In this simple case we can in fact also provide a self contained proof of market
completeness. Let us thus consider a T-claim X.

Our formal job is to construct three processes, V, u” and u° such that the
following hold.

e The (prospective) weights u? and u° are predictable and sum to unity,
ie.
utB + uf =1.

e The V dynamics have the form

dv, = V;_ {uf;l,it—&—ufgit}. (8.20)
e V replicates X at maturity, i.e.
Vr=X.
In order to do this we consider the associated the price process
I(t; X)=e "TDEQ[X| F). (8.21)

Furthermore, we hope that for the replicating relative portfolio u we will have

Ve =10 (t X).
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The idea is now to use a martingale representation result to obtain the dynamics
for T (¢t; X) from (8.21), compare these dynamics with (8.20) and thus identify
the portfolio weights.
We start by noting that II (¢; X ), henceforth abbreviated as 7, can be writ-
ten as
= efr(Tft)Yi’

where Y is defined by

E9[X|F].
It is clear that Y is a ) martingale, so by a slight variation of the Martingale
Representation Theorem 4.1.1 we deduce the existence of a predictable process

g such that
dY; = g;Y,— {dN; — N9t} .

where
r—a«

B

From the product formula we then obtain, after some reshuffling of terms,

2@ =

d7Tt = T¢— {7" — gt)\Q} dt + gtﬂ't,dNt. (822)
The V dynamics above can be written in more detail as

AV = Vi {ufa+ufr}dt + Vi_ud BAN,, (8:23)

and, comparing (8.22) with (8.23), we can now identify u° from the dN term.
More formally, let us define v by

-
B
We can then write (8.22) as
r—a

dmy = m_ {7‘ — g } dt + Wt,udeNt.

i.e.
dmy = mp_ {utsoz +(1- utS)r} dt + wt_ufﬂdNt.
and we see that if we define u? by

ul =1—uf,
and define the process V' by V; = m; we obtain
aVy = Vi {uf a +ufr} dt + Vi_uf BdN;.

which are the dynamics of a self financing portfolio with weights «? and u®
(summing to unity), and we obviously have Vp = X.



Chapter 9

Jump Diffusion Models

9.1 Introduction

The model in the previous chapter was an extremely unrealistic one, and we
now go on to present a more realistic model driven by a Wiener process as well
as by an independent Poisson process.

Formally we consider a stochastic basis (2, F, P,F) carrying a standard
Wiener process W as well as an independent Poisson Process IV with constant
P-intensity A. The market consists of a risky asset S and a bank account B
with constant short rate. The asset dynamics are given by

dSt = Oéstdt + O'Stth + ﬁSt,th (91)
dBt = TBtdt,

where «, o, 3, and the short rate r are known constants.

Exactly like in the previous section we can interpret « as the local mean rate
of return between jumps, and ( as the relative jump size. In particular this
implies that if S is the price of a common stock and thus non negative, then we
must have § > —1. To obtain the rate or return including jumps we write

dN; = \dt + dM;,
where M is a P martingale, and substitute this into (9.1) to obtain
dSt = {Oé + 5}\} Stdt + O'Stth + IBStfth.

Since the dW and the dM terms are martingales this implies that the local
mean rate of return including jumps under P is given by

wf =a+ B

Before we go on to perform and concrete calculations, let us informally dis-
cuss what we may expect from the model above. Referring to the Metatheorem
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7.5.1 we see that we have one risky asset S, so N = 1, and two sources of ran-
domness W and N, so R = 2. From the Metatheorem we thus conclude that we
may expect the model to be arbitrage free but not complete. In particular we
should that the martingale measure is not unique, that there will not be unique
arbitrage free prices for financial derivatives, and that it will not be possible to
form a riks free portfolio based on a derivative and the underlying asset.

9.2 Classical technique

Vi now go on to study derivatives pricing using the methodology of risk free
portfolios developed in Section 8.2. To this end we consider a T-claim X of the
form

X = ®(57),

and we assume that this derivative asset is traded on a liquid market with a
price process of the form
II(t; X) = F(t,5S).

Our job is to see what we can say about the pricing function F, given the
requirement of an arbitrage free market. In the first round we just try to copy
the arguments from Section 8.2 so we try to form a risk free portfolio based on
S and F'. To do this we need the price dynamics of the derivative, and from the
It6 formula we have

dF = apFdt + opdW + 7 F~dNy, (9.3)

where upper case index, like in F'~, denotes evaluation at (t—,S;—). The coef-
ficients are given by

Fy(t,s) + asFy(t, s) + 025> Fy(t, s)

t = 9.4
ar(t;s) o 7 (90
osFs(t,s)
t = —2 9.5
orlts) = Tt (95)
Fﬁ(ta S)
t = = 9.6
Brits) = P (96)
Here we have used the notation F; = %—f and similarly for Fy and Fgs. The
function Fjg is given by
Fg(t,s) = F(t,s+ 8s) — F(T,s). (9.7)

If we now form a self financing portfolio based on S and F', we obtain the
following dynamics of the value process V.

s dr
_v-14J.,8 F
dv =V {u S_+u _}.



9.2. CLASSICAL TECHNIQUE 81

Inserting the expression for dF' above and collecting terms we obtain
dv. = V-~ {usa + uFa;} dt+V~ {’LLSO' + uFag} dw
+ Vo {uB+u" 85} dN.
We now want to balance the portfolio in such a way that it becomes locally risk
free, i.e. we want to choose the portfolio weights u° and u" such that the dW

and the dN terms vanish. Recalling that the weights must sum to unity we then
have the following system of equations

uo + uFUE = 0,
usﬂ + uFﬂE = 0,
u +ul =

This system is, however, overdetermined since we have two unknowns and three
equations, so in general it will not have a solution.

The economic reason for this is clear. If we want to hedge the derivative
by using the underlying asset, then we have only one instrument (the stock) to
hedge two sources of randomness (W and N).

We can summarize the situation as follows.

e The price of a particular derivative ® will not be completely determined by
the specification of the S-dynamics and the requirement that the market
(B, S, F) is free of arbitrage.

e The reason for this fact is that arbitrage pricing is always a case of pricing
a derivative in terms of the price of some underlying assets. In our
market we do not have sufficiently many underlying assets.

Thus we will not obtain a unique price of a particular derivative. This
fact does not mean, however, that prices of various derivatives can take any
form whatsoever. From the discussion above we see that the reason for the
incompleteness is that we do not have enough underlying assets, so if we adjoin
one more asset to the market, without introducing any new Wiener or Poisson
processes, then we expect the market to be complete. This idea can be expressed
in the following ways.

e We cannot say anything about the price of any particular derivative.

e The requirement of an arbitrage free derivative market implies that prices
of different derivatives (i.e. claims with different contract functions or
different times of expiration) will have to satisfy certain internal consis-
tency relations in order to avoid arbitrage possibilities on the derivatives
market.

We now go on to investigate these internal consistency relations so we assume
that, apart form the claim X = ®(Sr) there is also another T-claim Y = I'(St)
traded on the market, and we assume that the price of Y is of the form

II(t;Y) = G(t, St),
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for some pricing function G. We assume that the market (B, S, F, G) is free of

arbitrage and we now form a portfolio based on these assets, with predictable

weights u?, 4%, uf", u®. Since the weights must sum to unity we can write

WP =1—u®—uf" —uf,

where u®, uf", u can be choose without constraints. The corresponding value
dynamics are then given by

dB ds dF dG
_ s . F_G\4D s 4o F AL G4
av =V {(1 u’ —u u) +u g +u +u a }

The differential dF is already given by (9.3)-(9.6), and we will of course have
exactly the same structure for the differential dG. Collecting the various terms,
we obtain
v = V {r+(a- ru® + (ap —ruf + (ag — T)uG} dt
+ V- {aus + U;uF + aguG} dW;
+ V- {ﬂus + ﬁ;uF + ﬁéuG} dNy
If we now choose the weights such that the diW and dN terms vanish we obtain
the system
Uus—i—U;uF—i—UauG = 0,
Bu® + ppu’ + fou” =
With such a a choice of weights, the portfolio becomes locally risk free, and

absence of arbitrage now implies that we must also have

r+ (o —r)u® + (ap —r)uf + (ag —r)u® =7,

or equivalently
(a —r)u® + (ap — r)uf + (ag — r)u® = 0.

The result of all this is that absence of arbitrage on the derivatives market
implies that the system

G

(a —r)u’ + (ap —r)ul + (ag —r)u® = 0,
ou® + O'EUF + a&uc = 0,
pu + Bpuf + 6&uG = 0
admits a non trival solution. (The trivial solution v® = uf = u% = 0 corre-

sponds to putting all the money in the bank). This is equivalent to saying that
the coefficient matrix

a—r ap—1r ag-—r
o op e

B Br Ba
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is singular. This, in turn, implies that the rows must be linearly dependent, so
there must exists functions (¢, s) (the lower case index will soon disappear)
and (¢, s) such that

a—r = o+ 50, (9.8)
ap—r = @oF+Y0F, (9.9)
ag—r1 = og+vPa- (9.10)

This system allows a natural economic interpretation, and to see this we recall
that « is the local mean rate of return for the stock excluding jumps. The
local mean rate of return for the stock including jumps is given by

p =+ A,

and in the same way the local mean rates of return for the F' and G contracts
are given by /‘11; and ug, where

ph = ap 4 Br), (9.11)
plE = ac+ Be) (9.12)

Defining the function h by
v(t,8) =0(t,s) — A

we can write (9.8)-(9.10) as

pt—r = po+9p, (9.13)
pp—r = ok +0r, (9.14)
ug —r = wog+v8a. (9.15)

These equations allow a very natural economic interpretation. On the left hand
side we have the risk premium for the assets S, F, and G. On the right
hand side we have a sum of the diffusion and jump volatilities multiplied by the
coefficients ¢ and v respectively. The main point to observe is that whereas the
risk premium, the diffusion volatility, and the jump volatility vary from asset
to asset, the coeflicients ¢ and v are the same for all assets. We can thus
interpret ¢ as “the risk premium per unit of diffusion volatility”, and v as “the
risk premium per unit of jump volatility”. A less precise, but very common,
way of referring to ¢ and + is that

@ = “the market price of diffusion risk”,

v = “the market price of jump risk”.
We have now proved out first result.

Proposition 9.2.1 Consider the model (9.1)-(9.2) and assume absence of ar-
bitrage on the derivatives market. The there will exist functions ¢(t,s) and
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~v(t,s) such that, for any claim of the form ®(St) with pricing function F(t,s)
the following condition will hold

pp =1 =por +70r, (9.16)
where the local mean rate of return pZ., the diffusion volatility o, and the jump
volatility Br are defined by (9.4)-(9.6), and (9.16). The functions ¢ and v are
universal in the sense that they do not depend on the particular choice of the
deriwative. In particular we have

a+ A3 —r=po+~0. (9.17)

We may also use the relations above to obtain an equation for the F' function.
Plugging the definitions of uL£, ar, or and Br into (9.16) and using (9.17) gives
us the following pricing result.

Proposition 9.2.2 The pricing function F for the contract ®(St) will satisfy
the PIDE

1
Ft+{7’fﬂ(}\f’y)}st+50252ng+()\7'y)Fg—rF = 0,
F(Tv 5) = (I)(S)a

where Fy = %—f etc.

This is the pricing PIDE for F', but in order to provide an explicit solution
we need to know the market price of jump risk 7y, and this object is not given a
prior neither is it determined within the model. The reason for this si of course
that our model is incomplete, so there are infinitely many market prices of risk
which are consistent with no arbitrage. Thus there are also potentially infinitely
many arbitrage free price processes for the contract ®. In a concrete market,
exactly one of these price processes will be chosen by the market, and this
process will be determined, not only on the requirement of absence of arbitrage,
but also by the preferences towards risk on the market. These preferences are
then codified in the the market choice of the market price of risk v. Obviously
the same argument goes for the market price of diffusion risk ¢, but the (9.17)
allows us to express ¢ in terms of v. We could of course also express v in terms
of ¢, and we would then obtain a pricing equation involving ¢ but not 7. A
more precise statement is therefore that the market chooses ¢ and ~ subject to
the constraint (9.17).

We can of course also apply the Feynman-Kac representation formula to
(9.18). This gives us the following risk neutral pricing formula.

Proposition 9.2.3 With notations as above, the pricing function F can also
be represented by the following risk neutral valuation formula.

F(t,s) = e " T DER [0(S7)] (9.19)
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The dynamics of S under Q are given by
dS; = (o — o — vB) Sdt + SiodWE + BS,_dNy, (9.20)
where W& is Q-Wiener and N is Poisson under QQ with intensity of A — 7.

Remark 9.2.1 By using (9.17) we can of course also write the dt term of S as
{r — B(A —7)}, but the notation (o« — oo — v(3) emphasizes the dependence on
both ¢ and v more clearly.

The next proposition shows that, as expected, the measure ) above is indeed
the martingale measure with B as numeraire.

Proposition 9.2.4 The measure Q above has the property that the processes
St/ By as well as F(t,S:)/B: are martingales under Q.

Proof. Exercise for the reader. |

9.3 Martingale analysis
We now go on to study the jump diffusion model

dSt = aStdt + O'Stth + ﬂSt,dNt, (921)
dBt = ’/‘Btdt, (922)

from the point of view of martingale measures. This turns out to be very easy,
and as usual we start looking for a potential martingale measure by applying
the Girsanov Theorem. We thus choose two predictable processes g and h with
h > —1, define the likelihood process L by

st = Ltgtth + Lt,ht {dNT — )\dt} 5
, (9.23)
Ly = 1
and define a new measure Q) by
d
Ltfd%, onft,OSth.
From the Girsanov Theorem we know that N has ) intensity
A2 = (14 hy)A, (9.24)

and that we can write
AW, = gedt + dW 2, (9.25)
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where W@ is Q-Wiener. Plugging (9.25) into the S dynamics (9.21) and com-
pensating N under @ gives us the ) dynamics of S as

dS;, = {a+ go+ (14 h)BA} Sedt + oS, dW? (9.26)
+  BS_{dN, — (1 + h))\dt} (9.27)

From this we see that @ is a martingale measure if and only if the relation
a+gio+ 1+ h)BA=r, (9.28)
is satisfied, and we can write this as
a+PBAN—r=—gioc— hAS. (9.29)

This equation is of course the same equation as (9.17) and we have the following
result.

Proposition 9.3.1 The measure Q above is a martingale measure if and only
if the following conditions are satisfied.

he > —1, (9.30)
a+06A—r = —gio— G, (9.31)
EP[Ly] = 1 (9.32)

Furthermore, the Girsanov kernels g and h are related to the market price of
diffusion risk ¢ and the market price of jump risk v by

g = —p(t—,5), (9.33)
hy = ———M=. (9.34)



Chapter 10

List of topics to be added

The following topics will be added later.

e Diversification and Arbitrage Pricing Theory (APT)

Marked point processes

Optimal control theory with finance applications

Interest rate theory in the presence of jumps

Credit risk theory

Nonlinear filtering

Queuing theory and Jackson networks
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