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Abstract

We consider the problem of maximizing terminal utility in a model
where asset prices are driven by Wiener processes, but where the var-
ious rates of returns are allowed to be arbitrary semimartingales. The
only information available to the investor is the one generated by the
asset prices and, in particular, the return processes cannot be observed
directly. This leads to an optimal control problem under partial infor-
mation and for the cases of power, log, and exponential utility we
manage to provide a surprisingly explicit representation of the optimal
terminal wealth as well as of the optimal portfolio strategy. This is
done without any assumptions about the dynamical structure of the
return processes. We also show how various explicit results in the
existing literature are derived as special cases of the general theory.
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1 Introduction

We consider a financial market consisting of the risk free bank account and
n risky assets without dividends. The risky assets are driven by a multi
dimensional Wiener process which is adapted to some filtration F. This
filtration is “big” in the sense that it properly includes the filtration gener-
ated by the Wiener process. The conditional mean return rate processes of
the risky assets are allowed to be general F-adapted semimartingales, and in
particular we make no Markovian assumptions. The information available to
the investor is the filtration FS generated by the asset price processes only,
so the investor can in general not observe the (F-conditional) mean return
rate processes (i.e. the drift of the return process) directly. The problem to
be solved is that of maximizing expected utility of terminal wealth over the
class of portfolio strategies adapted to the observable information FS . This
leads to a optimal control problem under partial information.

There is a considerable literature on investment problems of this kind,
and the standard approach is more or less as follows.

• Assume that the mean return processes have a “hidden Markov model”
structure.

• Project the asset price dynamics on the observable filtration, thereby
obtaining a completely observable model.

• Write down the filtering equations for the return processes and adjoin
the filter estimate processes as extended state variables.

• Apply standard dynamic programming techniques to the reformulated
completely observable problem, and solve the associated Bellman equa-
tion to obtain the optimal control. Alternatively, use martingale tech-
niques.

In this literature the two typical assumptions have been to model the
mean return rates as either linear diffusions, leading to the Kalman filter, or
as functions of a finite state Markov chain, leading to the Wonham filter. The
first finance paper to deal with such problems is, to our knowledge, Dothan
and Feldman (1986), where the linear model, coupled with the Kalman fil-
ter, is used in an equilibrium setting. See also Feldman (1989, 1992, 2003)
for further applications to general equilibrium models, and Feldman (2007)
for a critical discussion and an overview. Two basic references for the gen-
eral theory are Lakner (1995, 1998). In Lakner (1995), the author studies
the problem in general terms and derives, using martingale methods, the
structure of the optimal investment and consumption strategies. Explicit
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results are then obtained for log and power utility in a model where the
rates of returns are constant random variables. In Lakner (1998) the same
methodology is applied to the case when the mean return rate process is a
linear diffusion.

The linear diffusion model is studied further, and from a slightly differ-
ent perspective, in Brendle (2004, 2006), where explicit results for the value
of information are derived for power and exponential utility. The effects of
learning on the composition of the optimal portfolio are studied in Brennan
(1998) and Xia (2001), and Brennan and Xia (2001) discusses (apparent)
asset price anomalies in the context of partially observed models. In Gen-
notte (1986) the linear diffusion case is studied within a dynamic equilibrium
framework and in the recent paper Cvitanic et al. (2006), the authors use
a model with constant, but random, mean rates of returns to analyze the
value of professional analyst’s recommendations.

Using dynamic programming arguments, the case of an underlying Markov
chain is studied in Bäuerle and Rieder (2005, 2004), where also the optimal
investment in the partially observable model is compared to the one in the
case of a fully observable model.

The Markov chain model is also studied, using Martingale methods and
Malliavin calculus, in Honda (2003); Haussmann and Sass (2004b). In
Haussmann and Sass (2004a) this analysis is extended to stochastic volatil-
ity, and in Sass (2007) convex constraints are added to the model. In Nagai
and Runggaldier (2006) the Markov chain model is studied using dynamic
programming methods and a new stochastic representation formula is pro-
vided.

Two interesting alternative modeling approaches are presented in the
recent papers Bäuerle and Rieder (2007) and Callegaro et al. (2006) where
the asset prices are driven by jump processes instead of the usual Wiener
process.

In Sass and Wunderlich (2009) a detailed study (including extensive
numerical results) is made of optimal portfolio choices where there is a con-
straint on the expected loss.

The structure of the present paper is as follows.
In Section 2 we present our model, which is basically a non-Markovian

asset price model with invertible volatility matrix, where the asset prices
are driven by a multi dimensional Wiener process. The mean return rate
processes are, however, not necessarily adapted to the filtration generated
by the asset prices. Instead they are allowed to be general semimartingales
adapted to a larger filtration, thus leading to a model with partial informa-
tion. Section 3 is devoted to a fairly detailed study of the optimal investment
problem in the special (and rather well known) case of complete observa-
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tions, using martingale techniques. We have two reasons for including this
well studied problem in our paper. Firstly, we need the results for the later
parts of the paper. Secondly, in our non-Markovian setting we obtain new
and surprisingly explicit results for the optimal wealth and investment pro-
cesses in the cases of log, power, and exponential utility. In particular we
emphasize the role played by a certain measure Q0. In Section 4 we turn
to the partially observable case. The main (and standard) idea is then to
project the asset price dynamics onto the observable filtration using results
from non-linear filtering. We thus reduce the partially observable problem
to a completely observable (non-Markovian) problem, and to solve this we
only have to copy the results from the previous section. In Section 5 we
study the special case when the mean return rate processes are generated
by a “hidden Markov process”. By adjoining the filter equation for the con-
ditional density of the hidden Markov process as a new state variable we
can compute the optimal investment strategy explicitly up to the solution
of a PDE with infinite dimensional state space. For the cases when the
mean return rate processes are driven by a finite state Markov chain or a
linear SDE, we recover most of the known results from the literature, the
exceptions being Bäuerle and Rieder (2007) and Callegaro et al. (2006).

The contributions of the present paper are as follows.

• We add to the literature on the completely observable case by deriving
explicit expressions of the optimal wealth and investment processes in
a non-Markovian setting.

• For the general partially observed non-Markovian case, our results are
considerably more explicit than those obtained in Lakner (1995). In
particular we present and highlight the role played by the measure Q0.

• By the non-Markovian approach we manage to provide a unified treat-
ment of a large class of partially observed investment problems.

• In particular, we obtain most previously known results for models,
where the mean return rates are driven by a linear diffusion or by a
finite state Markov chain, as special cases of the general theory.

• On the didactic side, we feel that one of the main contributions of the
paper is that it shows how simple the problem is, given the proper
perspective.
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2 Setup

We consider a financial market living on a stochastic basis (Ω,F ,F, P ),
where the filtration F = {Ft}0≤t≤T satisfies the usual conditions, and where
P is the objective probability measure. The basis carries an n-dimensional
P -Wiener process W , and the filtration generated by the W process (aug-
mented by P -null sets)is denoted by FW .

The financial market under consideration consists of n non-dividend pay-
ing risky assets with price processes S1, . . . , Sn, and a bank account with
price process B. The filtration generated by the vector price process S

(augmented by P -null sets) is denoted by FS , and the formal assumptions
concerning the price dynamics are as follows.

Assumption 2.1 .

1. The risky asset prices have P -dynamics given by

dSi
t = αi

tS
i
tdt + Si

tσ
i
tdWt, i = 1, . . . , n. (2.1)

Here α1, . . . , αn are assumed to be F-adapted scalar processes, and
σ1, . . . , σn are FS-adapted d-dimensional row vector processes.

2. The short rate rt is assumed to be a bounded FS-adapted process; then
the bank account has dynamics given by

dS0
t = rtS

0
t dt.

For a < b we will denote Ka,b = exp
(
−
∫ b
a rtdt

)
.

We note that, by the quadratic variation properties of W , the assump-
tion that σi, . . . , σn are FS-adapted is essentially without loss of general-
ity. Defining the stock vector process by S = [S1, . . . , Sn]′, where prime
denotes transpose, the (F-conditional) mean return rate vector process by
α = [α1, . . . , αn]′ and the volatility matrix by σ = [σ1, . . . , σn]′, we can write
the asset price dynamics as

dSt = D(St)αtdt + D(St)σtdWt,

where D(S) denotes the diagonal matrix with S1, . . . , Sn on the diagonal.
We will need two important assumptions concerning the model.

Assumption 2.2 We assume the following.

• The volatility matrix σt is non-singular for all t.
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• Defining the “Girsanov kernel” vector ϕ by

ϕt = σ−1
t {rt − αt} , (2.2)

where r denotes the column n-vector with r in all positions, we assume
that

EP
[
e

1
2

R T
0 ‖ϕt‖2dt

]
< ∞. (2.3)

Remark 2.1

1. We recall that the Girsanov kernel vector ϕ is related to the “market
price of risk” vector λ by ϕt = −λt. The integrability condition (2.3)
is the usual Novikov condition, which guarantees that the likelihood
process for the transition from P to the risk neutral martingale measure
Q is a true (rather than a local) martingale.

2. Note that we have not included any integrability conditions for the
various coefficient processes, and we are also at some points somewhat
informal concerning the exact measurability properities (for example
writing “adapted” instead of “optional” etc.) This is done for the
sake of readability. The precise conditions are standard and they can
be found (together with the necessary technical machinery) in Lakner
(1995).

The interpretation of the model above is that we do not have access to the
full information contained in the filtration F, but that we are only allowed
to observe the evolution of the asset price vector process S. A special case of
the model above would for example be that α is of the form α(t) = α(t, Yt)
where Y is a “hidden Markov process” which cannot be observed directly.
It is, however, important for the rest of the paper that we do not make any
such assumption of a Markov structure in our model. As regards the short
rate, it may seem artificial to assume that rt is adapted to FS , and indeed
this would be artificial if we were to interpret all the components of Si as
equity prices. Our assumption is however natural if some components are
interest-rate-related securities such as zero-coupon bonds. Our model thus
covers mixed investment strategies in equity and fixed-income assets.

To state the formal problem to be studied, we define the observable
filtration G by G = FS , and consider a fixed utility function U , satisfying
the usual Inada conditions. The problem to be solved is that of maximizing
expected utility over the class of observable portfolio strategies. Denoting
the initial wealth by x, and portfolio value process by X, we thus want to
maximize.

EP [U(XT )] ,
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over the class of self financing G-adapted portfolios with the initial condi-
tion X0 = x. We are thus facing a stochastic control problem with partial
information.

Our strategy for attacking this problem is by first solving the corre-
sponding (and much simpler) problem with complete information. By using
results from non-linear filtering theory, we will then show that our partially
observed problem can be reduced to a related problem with complete infor-
mation and we are done.

3 The completely observable case

For the rest of this section we assume that we are in the completely observ-
able case, i.e. that F = FS . Note that we do not assume that FS = FW .
Given the assumption F = FS and the earlier assumption that W is F-
adapted, we will of course always have FW ⊆ FS , but in general there could
be strict inclusion. For a concrete example, due to Tsirelson, see Rogers and
Williams (1987), p. 155.

Suppose now that M is an F martingale. Since FW may be strictly
included in F, we do not have access to a standard martingale representation
theorem. We do however have the following result.

Proposition 3.1 Let M be an FS martingale. Then there exists an FS-
adapted process h such that

Mt = M0 +
∫ t

0
hsdWs.

Proof. From the price dynamics it follows that

dWt = σ−1
t D(St)

−1 [dSt −D(St)αtdt] .

Since both σ and α are FS adapted it follows that, in the language of non
linear filtering, the process W is (trivially) an innovations process. We can
then rely on the martingale representation result from Fujisaki et al. (1972).

Given our assumption about the invertibility of the volatility matrix σ

this implies that the model is complete, in the sense that every integrable
contingent claim in FT = FS

T can be replicated. We may thus separate the
determination of the optimal wealth profile from the determination of the
optimal strategy. More precisely, we can proceed along the following well
known scheme pioneered by Karatzas et al. (1987), and also known as “the
martingale approach”.
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• Find the optimal wealth profile at time T by solving the static problem

max
X∈FT

EP [U(X)] (3.1)

subject to the budget constraint

EQ [K0,T X] = x, (3.2)

where x is the initial wealth, and Q is the unique (because of the
assumed completeness) martingale measure.

• Given the optimal wealth profile X∗
T , we can (in principle) compute

the corresponding generating portfolio using martingale methods.

As is well known, the static problem above can easily be solved using La-
grange relaxation. Since we need the formulas, we briefly recall the basic
technique. We start by rewriting the budget constraint (3.2) as

EP [K0,T LT X] = x,

where L is the likelihood process between P and Q, i.e.,

Lt =
dQ

dP

∣∣∣∣
Ft

.

We now relax the budget constraint to obtain the Lagrangian

L = EP [U(X)]− λ
(
EP [K0,T LT X]− x

)
,

so
L =

∫
Ω
{U(X(ω))− λ [K0,T (ω)LT (ω)X(ω)− x]} dP (ω).

This is a separable problem, so we can maximize for each ω. The optimality
condition is

U ′(X) = λK0,T LT

so the optimal wealth profile is given by

X∗ = I (λK0,T LT ) , (3.3)

where I = (U ′)−1. The Lagrange multiplier is as usual determined by the
budget constraint (3.2).

Remark 3.1 Note that the reasoning above only constitutes an outline of
the full argument. The wealth profile X∗ derived above is a candidate for
the optimal wealth profile, but we need further technical conditions to ensure
that X∗ is indeed optimal. For the precise conditions, which will be satisfied
in the concrete examples below, see Dana and Jeanblanc (1992), Karatzas
and Shreve (1998).
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We do in fact have an explicit expression for the Radon-Nikodym deriva-
tive LT above. From the price dynamics (2.1) and the Girsanov Theorem it
is easily seen that the L dynamics are given by

dLt = Ltϕ
′
tdWt, (3.4)

L0 = 1, (3.5)

where, as before, ϕt = σ−1
t (rt − αt). We thus have the explicit formula

Lt = exp
{∫ t

0
ϕ′sdWs −

1
2

∫ t

0
‖ϕs‖2ds

}
, (3.6)

and from the Novikov condition (2.3) if follows that L is a true martingale
and not just a local one. We will treat three special cases in detail: power
utility, log utility and exponential utility.

3.1 Power utility

The most interesting case is that of power utility. In this case the utility
function is of the form

U(x) =
xγ

γ
,

for some non-zero γ < 1. We have

I(y) = y
− 1

1−γ .

For this case we need an extra integrability assumption.

Assumption 3.1 We assume that

EP
[
e

1
2

R T
0 β2‖ϕt‖2dt

]
< ∞. (3.7)

with β defined by
β =

γ

1− γ
. (3.8)

3.1.1 The optimal terminal wealth profile

From (3.3), and the expression for I above we obtain the optimal wealth
profile as

X∗
T = (λK0,T LT )

−1
1−γ . (3.9)

The budget constraint (3.2) becomes

λ
−1
1−γ EP

[
K−β

0,T L−β
T

]
= x, (3.10)
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with β as above. Solving for λ
− 1

1−γ in (3.10) and inserting this into (3.9)
gives us the optimal wealth profile as

X∗
T =

x

H0
K

−1
1−γ

0,T L
−1
1−γ

T ,

where
H0 = EP

[
K−β

0,T L−β
T

]
.

The optimal expected utility V0 = EP [U (X∗
T )] can easily be computed as

V0 =
1
γ

EP [(X∗
T )γ ] = H1−γ

0

xγ

γ
. (3.11)

We will now study H0 in some detail. From (3.6) we obtain

L−β
T = exp

{
−
∫ T

0
βϕ′tdWt +

1
2

∫ T

0
β‖ϕt‖2dt

}
.

This expression looks almost like a Radon Nikodym derivative, and this
observation leads us to define the P -martingale L0 by

L0
t = exp

{
−
∫ t

0
βϕ′sdWs −

1
2

∫ t

0
β2‖ϕs‖2ds

}
(3.12)

i.e. with dynamics
dL0

t = −L0
t βϕ′tdWt.

We note that, because of Assumption 3.1, L0 is a true martingale and not
just a local one.

Remark 3.2 At this point there could be some slight confusion since it may
be unclear if the expression L0

t refers to the process L0 defined by (3.12) or
to the the L process defined in (3.4)-(3.5), raised to the power zero. For the
rest of the paper, the expression L0 will always refer to the the process L0

defined by (3.12), and never to the zero power of the L process.

We can thus write

L−β
T = L0

T exp
{

1
2

∫ T

0

β

1− γ
‖ϕt‖2dt

}
, (3.13)

to obtain

H0 = E0

[
exp

{
β

∫ T

0

(
rt +

1
2(1− γ)

‖ϕt‖2

)
dt

}]
. (3.14)

where we integrate over the measure Q0 defined through the likelihood pro-
cess L0.

For easy reference we collect the definitions of Q and Q0.
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Definition 3.1

• The risk neutral martingale measure Q is defined by

dQ

dP
= Lt, on Ft, (3.15)

with L given by
dLt = Ltϕ

′
tdWt, (3.16)

where ϕ is defined by (2.2).

• The measure Q0 is defined by

dQ0

dP
= L0

t , on Ft,

with L0 given by
dL0

t = −L0
t βϕ′tdWt. (3.17)

with
β =

γ

1− γ
.

We also collect our results so far.

Proposition 3.2 With definitions as above, the following hold.

• The optimal terminal wealth is given by

X∗
T =

x

H0
K

−1
1−γ

0,T L
−1
1−γ

T , (3.18)

where H0 is defined by (3.14) above.

• The optimal utility V0 is given by

V0 = H1−γ
0

xγ

γ
.

Remark 3.3 The new measure Q0 appears (in a more restricted setting) in
Nagai and Runggaldier (2006).

3.1.2 The optimal wealth process

We have already computed the optimal terminal wealth profile X∗
T above.

and we can in fact also derive a surprisingly explicit formula for the entire
optimal wealth process X∗.
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Proposition 3.3 The optimal wealth process X∗ is given by

X∗
t =

Ht

H0
(K0,tLt)

− 1
1−γ x, (3.19)

where

Ht = E0

[
exp

{
β

∫ T

t

(
rs +

1
2(1− γ)

‖ϕs‖2

)
ds

}∣∣∣∣Ft

]
. (3.20)

Proof. From general theory we know that the wealth process (normalized
with the bank account) of any self financing portfolio will be a Q martingale,
so we have

K0,tX
∗
t = EQ [K0,T X∗

T | Ft] . (3.21)

Using the expression (3.18) for X∗
T and the abstract Bayes’ formula, we

obtain

X∗
t =

x

H0
EQ

[
Kt,T K

−1
1−γ

0,T L
−1
1−γ

T

∣∣∣∣Ft

]
=

x

H0
K

−1
1−γ

0,t EQ

[
K−β

t,T L
−1
1−γ

T

∣∣∣∣Ft

]

=
x

H0
K

−1
1−γ

0,t

EP
[
K−β

t,T L−β
T

∣∣∣Ft

]
Lt

. (3.22)

Using (3.13) we have

EP
[
K−β

t,T L−β
T

∣∣∣Ft

]
= L0

t

EP
[
K−β

t,T L0
T exp

{
1
2

∫ T
0

β
1−γ ‖ϕt‖2dt

}∣∣∣Ft

]
L0

t

= L0
t E

0

[
K−β

t,T exp
{

1
2

∫ T

0

β

1− γ
‖ϕt‖2dt

}∣∣∣∣Ft

]
= L0

t exp
{

1
2

∫ t

0

β

1− γ
‖ϕs‖2ds

}
Ht

= L−β
t Ht, (3.23)

where Ht is defined by (3.20). The expression (3.19) for the optimal wealth
X∗

t now follows from (3.22) and (3.23).

12



3.1.3 The optimal portfolio

We can also derive a reasonably explicit formula for the optimal portfolio.
For this we need a small technical lemma, which at the same time establishes
the notation µH and σH to be used later.

Lemma 3.1 The process H, as defined by (3.20) has a stochastic differen-
tial of the form

dHt = HtµH(t)dt + HtσH(t)dWt. (3.24)

Remark 3.4 The lemma above is not completely trivial, since we allow for
the situation that FW is strictly included in FS, so it is not a priori clear
that H is driven by W .

Proof. We write H as

Ht = E0
[
e

R T
t hsds

∣∣∣Ft

]
,

where the exact form of h is given in (3.20). Using the Bayes formula we
can write this as

Ht = EP
[
L0

T e
R T
0 hsds

∣∣∣Ft

]
· e−

R t
0 hsds

L0
t

,

Writing this, with obvious notation, as

Ht = Mt ·
Xt

L0
t

,

we see that M is an (P,FS) martingale so, by Proposition 3.1, we can write
dMt = gtdWt for some FS adapted process g. The dynamics of the process
X are dXt = −htXtdt, and the dynamics of L0 are given by (3.17). From
the Itô formula it is thus clear that the stochastic differential for H will
indeed be of the form (3.24).

We now go back to the study of the optimal portfolio, For any self
financing portfolio we denote by ut = (u1

t , . . . , u
n
t ) the vector process of

portfolio weights on the risky assets. This of course implies that the weight,
u0, on the bank account is given by u0

t = 1 − ut1, where 1 denotes the
n-column vector with a unit in each position.

Proposition 3.4 The optimal portfolio weight vector process u∗ is given by

u∗t =
1

1− γ
(αt − rt)

′ (σtσ
′
t

)−1 + σH(t)σ−1
t (3.25)
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Proof. From standard portfolio theory it follows that the wealth process
X of any self financing portfolio has the dynamics

dXt = Xtutαtdt + Xt(1− ut1)rtdt + XtutσtdWt, (3.26)

implying that the discounted wealth process Zt = K0,tXt has dynamics

dZt = Ztut (αt − rt) dt + ZtutσtdWt, (3.27)

the point being that the portfolio u can be determined from the diffusion
part of the Z-dynamics. From (3.19) we see that the optimal discounted
wealth process has the form

Z∗
t = AHtK

−β
0,t Lc

t ,

where A = xH−1
0 and c = −(1 − γ)−1. Using (3.16) and (3.24) we easily

obtain

dZ∗
t = Z∗

t (. . .) dt + Z∗
t

{
c
{
σ−1

t (rt − αt)
}′ + σH(t)

}
dWt,

where we do not care about the exact form of the dt term. Post-multiplying
the diffusion part by the term σ−1

t σt and comparing with (3.27) shows that

u∗t =
{

1
1− γ

{σ−1
t (αt − r)}′ + σH(t)

}
σ−1

t ,

which is equivalent to (3.25).

In (3.25) we recognize the first term as the solution to the classical (com-
pletely observable) Merton problem. The second term represents the “hedg-
ing demand for parameter risk”.

3.2 Log utility

In this case the utility function is given by

U(x) = ln(x),

which implies that

I(y) =
1
y
.

From the point of view of local risk aversion, log utility is the limiting case
of power utility when the risk aversion parameter γ tends to zero. We
would thus intuitively conjecture that the solution to the log utility problem
is obtained from the power utility case by setting γ to zero, and in fact
this turns out to be correct. We have the following result, and since the
calculations in this case are very simple we omit the proof.
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Proposition 3.5 For the log utility case, the following hold.

• The optimal portfolio process X∗ is given by

X∗
t = (K0,tLt)−1x,

where, as before, the likelihood process L is given by (3.16).

• The optimal portfolio weight vector process u∗ is given by

u∗t = (αt − rt)
′ (σtσ

′
t

)−1

In this case Ht ≡ 1, so that σH = 0 and there is no hedging demand for
parameter risk in the optimal portfolio. This is intuitively expected from
the interpretation of log utility as myopic.

In particular we see that results from the power case trivialize in the log
case, in the sense that L0 ≡ 1, Q0 = P , and H ≡ 1.

3.3 Exponential utility

In this case we have
U(x) = −1

γ
e−γx,

and
I(y) = −1

γ
ln(y).

3.3.1 The optimal wealth process

From (3.3) the optimal terminal wealth profile is given by

X∗
T = I(λK0,T LT ) = −1

γ
lnλ− 1

γ
ln(K0,T LT ),

and the Lagrange multiplier is easily determined by the budget constraint

EQ [K0,T X∗
T ] = x,

giving the following expression for the optimal terminal wealth:

X∗
T =

x + 1
γ J0

B0,T
− 1

γ
ln(K0,T LT ).

Here
J0 = EQ[K0,T ln(K0,T LT )]

and Bt,T is the zero-coupon bond value

Bt,T = EQ [Kt,T | Ft] .
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Proposition 3.6 For t ∈ [0, T ] define

Jt = EQ[Kt,T ln(Kt,T LT )|Ft]. (3.28)

Then the optimal terminal wealth process is given by

X∗
t =

(
x + 1

γ J0

B0,T
− 1

γ
lnK0,t

)
Bt,T −

1
γ

Jt. (3.29)

Proof. As usual,

X∗
t = EQ [Kt,T X∗

T | Ft]

=
x + 1

γ J0

B0,T
Bt,T −

1
γ

EQ [Kt,T ln(K0,T LT )| Ft] .

Writing ln(K0,T LT ) = ln(K0,t) + ln(Kt,T LT ), we see that

EQ [Kt,T ln(K0,T LT )| Ft] = Bt,T ln(K0,t) + Jt.

The result follows.

3.3.2 The optimal portfolio

As in the power utility case, we will identify the optimal portfolio from the
(discounted) wealth dynamics (3.26)-(3.27). Indeed, the discounted portfolio
value Zt = K0,tX

∗
t is a Q-martingale satisfying

dZt = ZtutσtdWQ
t ,

where u is the optimal portfolio trading strategy. Define

A(t) =

(
x + 1

γ J0

B0,T
− 1

γ
lnK0,t

)
K0,t. (3.30)

Then from (3.29) we have

Zt = A(t)Bt,T −
1
γ

K0,tJt,

and we note that both A(t) and K0,t are bounded variation processes. Let
σB(t) and σJ(t) be, respectively, the zero-coupon bond volatility and the
volatility of the Jt process, i.e. we have the semimartingale decompositions

dBt,T = Bt,T σB(t)dWQ
t + (· · · )dt,

dJt = JtσJ(t)dWQ
t + (· · · )dt.
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Then

dZt =
(

A(t)Bt,T σB(t)− 1
γ

K0,tJtσJ(t)
)

dWQ
t .

We thus obtain the following result.

Proposition 3.7 The optimal portfolio strategy in the exponential utility
case is

u(t) =

(
A(t)Bt,T σB(t)− 1

γ K0,tJtσJ(t)

A(t)Bt,T − 1
γ K0,tJt

)
σ−1(t). (3.31)

3.3.3 Exponential utility with constant interest rate

The above expressions for X∗
t and ut are complicated and not easy to inter-

pret. They simplify considerably, however, in the case of constant interest
rate Kt,T = Bt,T = e−r(T−t). First, note from (3.6) that

ln(Lt) =
∫ t

0
ϕ′sdWs −

1
2

∫ t

0
‖ϕs‖2ds, (3.32)

where as before
ϕt = σ−1

t {r− αt} . (3.33)

Furthermore, the Girsanov Theorem tells us that we can write

dWt = ϕtdt + dWQ
t ,

where WQ is Q-Wiener. Hence

ln(Lt) =
∫ t

0
ϕ′sdWQ

s +
1
2

∫ t

0
‖ϕs‖2ds (3.34)

and

EQ [ ln(LT )| Ft] = ln(Lt) + EQ

[∫ T

t
ϕ′sdWQ

s +
1
2

∫ T

t
‖ϕs‖2ds

∣∣∣∣Ft

]
= ln(Lt) + Ht,

where

Ht =
1
2
EQ

[∫ T

t
‖ϕs‖2ds

∣∣∣∣Ft

]
. (3.35)

Proposition 3.8 With exponential utility and constant interest rate r,
(i) The optimal wealth process is given by

X∗
t = ertx + e−r(T−t) 1

γ
{H0 −Ht − ln(Lt)} , (3.36)
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(ii) The optimal portfolio investment strategy is

u∗t = e−r(T−t) 1
γXt

({
σ−1

t [αt − r]
}′ − σH(t)

)
σ−1

t , (3.37)

where σH is obtained from the H dynamics as

dHt = µH(t)dt + σH(t)dWt. (3.38)

Proof. From the definition (3.28), the process Jt is given in the case of
constant interest rate by

Jt = EQ
[
e−r(T−t) {−r(T − t) + ln(LT /Lt) + lnLt}

∣∣∣Ft

]
= {−r(T − t) + lnLt + Ht} e−r(T−t).

In view of (3.34) and (3.38) we have

dJt = e−r(T−t)
{
ϕ′t + σH(t)

}
dWQ

t + (· · · )dt,

so that
σJ(t) =

1
Jt

{
ϕ′t + σH(t)

}
e−r(T−t).

In this case σB = 0, so from (3.31) we obtain

u∗(t) =
− 1

γ K0,tJtσJ(t)

K0,tX∗
t

σ−1
t = −e−r(T−t {ϕ′t + σH(t)}

γX∗
t

σ−1
t .

4 The partially observable case

We now go back to the original partially observable model and recall that
the stock price dynamics are given by

dSi
t = αi

tS
i
tdt + Si

tσ
i
tdWt, i = 1, . . . , n.

where α1, . . . , αn are assumed to be F-adapted, whereas σ1, . . . , σn are as-
sumed to be FS-adapted. We again stress that there is no assumption of a
Markovian structure. The interesting case is of course when the observable
filtration FS is strictly included in the “big” filtration F. As before we write
the S dynamics on vector form as

dSt = D(St)αtdt + D(St)σtdWt, (4.1)

and we recall that σ is assumed to be invertible. Our problem is to maximize

EP [U(XT )]

over the class of FS adapted self financing portfolios, subject to the initial
wealth condition X0 = x.

18



4.1 Projecting onto the observable filtration

The idea is to reduce the partially observable problem above to an equivalent
problem with complete observations. To this end we define the process Z

by
dZt = σ−1

t D(St)−1dSt, (4.2)

i.e.
dZt = σ−1

t αtdt + dWt.

Now we define, for any F-adapted process Y , the filter estimate process Ŷ

as the optional projection of Y onto the FS filtration, i.e.

Ŷt = EP
[
Yt| FS

t

]
.

We go on to define the innovations process W̄ by

dW̄t = dZt − ̂(σ−1
t αt

)
dt,

which, by the observability assumption on σ, can be written as

dW̄t = dZt − σ−1
t α̂tdt, (4.3)

From non linear filtering theory (see e.g. Liptser and Shiryayev (2004)) we
recall the following result.

Lemma 4.1 The innovations process W̄ is a standard FS- Wiener process.

We now write (4.3) as

dZt = σ−1
t α̂tdt + dW̄t, (4.4)

and note that this is the semimartingale representation of Z w.r.t the filtra-
tion FS . Replacing the dZ term in (4.2) by the expression given in (4.4),
and rearranging terms, gives us

dSt = D(St)α̂tdt + D(St)σtdW̄t. (4.5)

This equation represents the dynamics of the S process w.r.t. to its internal
filtration FS . Note that the S occurring in (4.5) is exactly the same process
(omega by omega) as the one occurring in (4.1). The only difference is that
in (4.1) we have the semimartingale representation of S with respect to the
filtration F, whereas in (4.5) we have the FS semimartingale representation.
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4.2 Solving the optimal control problem

Going back to our partially observed optimal control problem, we wanted
to maximize

EP [U(XT )]

over the class of self financing FS adapted portfolios, given the initial condi-
tion X0 = x. The problematic feature was that the S dynamics were given
by

dSt = D(St)αtdt + D(St)σtdWt,

where α was not observable.
However, we have just derived an alternative expression for the S dy-

namics, namely
dSt = D(St)α̂tdt + D(St)σtdW̄t.

The point of this is that, since α̂ is by definition adapted to FS , and W̄ is
FS-Wiener, we now have a completely observable investment problem in a
complete market.

Remark 4.1 Note that, as in Section 3, the market is complete in the sense
that every integrable FS

T mesurable contingent claim can be replicated. Also
note that from the martingale representation result in Fujisaki et al. (1972)
we know that every (P,FS) martingale M can be written as

Mt = M0 +
∫ t

0
hsdW̄s,

for some FS adapted process h.

Since this problem is exactly of the form treated in Section 3, this means
that we only need to copy and paste from Section 3 in order to obtain the
solution to the partially observable problem. The only difference will be
that whenever we have an expression involving α in the results from Section
3, we have to replace α by α̂. We then need some new notation in order
to see the difference between the formulas in the completely observable and
the partially observable cases.

Remark 4.2 Concerning the notation below. We reserve “hat” exclusively
to denote filter estimates, whereas “bar” denotes objects in the partially ob-
served model. For example: H̄t denotes the process which in the partially
observed model has the role that H had in the fully observable model. In
contrast, the process Ĥt would denote the filter estimate of H.

We start by defining the appropriate martingale measure on FS .
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Definition 4.1 The FS martingale measure Q̄ is defined by

dQ̄

dP
= L̄t, on FS

t ,

with L̄ dynamics given by

dL̄t = L̄t

{
σ−1

t (rt − α̂t)
}′

dW̄t.

4.2.1 Power utility

Going to power utility we need to define the FS analogues of the measure
Q0 and the process H.

Definition 4.2

• The measure Q̄0 is defined by

dQ̄0

dP
= L̄0

t , on FS
t , (4.6)

with L̄0 given by

dL̄0
t = L̄0

t βσ−1
t (α̂t − rt) dW̄t. (4.7)

where, as before, β = γ
1−γ .

• The process H̄ is defined by

H̄t = E0

[
exp

{
β

∫ T

t

(
rs +

1
2(1− γ)

‖σ−1
s (α̂s − rs)‖2

)
ds

}∣∣∣∣Ft

]
.

(4.8)

We now have the following results. They all follow directly from the
corresponding results for the completely observable case.

Proposition 4.1 (Power utility)
With notation as above, the following hold.

• The optimal wealth process X̄∗ is given by

X̄∗
t =

H̄t

H̄0
(K0,tL̄t)

−1
1−γ x,

where H̄ is given above and the expectation is taken under Q̄0.
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• The optimal portfolio weight vector ū∗ is given by

ū∗t =
1

1− γ
(α̂t − rt)

′ (σtσ
′
t

)−1 + σH̄(t)σ−1
t

where σH̄ is the volatility term of H̄, i.e. H̄ has dynamics of the form

dH̄t = H̄tµH̄(t)dt + H̄tσH̄(t)dW̄t. (4.9)

Remark 4.3 The fact that the process H̄ really has dynamics of the form
(4.9) follows from the martingale representation property of the innovations
process W̄ (see Remark 4.1). We can copy the proof of Lemma 3.1.

4.2.2 Log utility

For log utility we immediately have the following result.

Proposition 4.2 (Log utility) For the log utility case, the following hold.

• The optimal portfolio process X̄∗ is given by

X̄∗
t = (K0,tL̄t)−1x,

where the likelihood process L̄ is given above.

• The optimal portfolio weight vector process ū∗ is given by

ū∗t = (α̂t − rt)
′ (σtσ

′
t

)−1

4.2.3 Exponential utility

We readily have the following result.

Proposition 4.3 (Exponential utility)

• The optimal wealth process is given by

X̄∗
t =

(
x + 1

γ J̄0

B0,T
− 1

γ
lnK0,t

)
Bt,T −

1
γ

J̄t.

where
J̄t = EQ̄[Kt,T ln(Kt,T L̄T )|Ft], t ∈ [0, T ].

• The optimal portfolio, in terms of the optimal weights on the risky
assets, is given by

ū∗(t) =

(
Ā(t)Bt,T σB(t)− 1

γ K0,tJ̄tσJ̄(t)

Ā(t)Bt,T − 1
γ K0,tJ̄t

)
σ−1(t).

where σJ̄ is obtained from the J̄ dynamics as

dJ̄t = (· · · )dt + σJ̄(t)J̄tdW̄t,

and Ā(t) is given by (3.30) with J0 replaced by J̄0.
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5 The Markovian case

In order to obtain more explicit results, and to connect to the earlier lit-
erature we now make the assumption that we have a Markovian system.
We start with the general setting and then go on to the concrete cases of
power, log, and exponential utility. For these special cases, we show that
the optimal strategy can be computed explicitly, up to the solution of a lin-
ear PDE with infinite dimensional state space, in contrast to the nonlinear
infinite-dimensional Hamilton-Jacobi-Bellman equation required for general
stochastic control problems—see Bensoussan (2004).

5.1 Generalities and the DMZ equation

The model is specified as follows.

Assumption 5.1 We assume that the asset price dynamics are of the form

dSi
t = αi

t(Yt)Si
tdt + Si

tσ
i
tdWt, i = 1, . . . , n.

Here αi
t(y) is assumed to be a deterministic function of t and y, whereas

σi
t is a deterministic function of t. The process Y is assumed to be a time

homogeneous Markov process, independent of W , living on the state space Y
and having generator A. We assume that the short rate rt is deterministic.

The two most typical special cases of the setup above is that either Y is
a (possibly multi dimensional) diffusion or that Y is a Markov chain living
on a finite state space. The independence assumption between S and Y

is not really needed, but leads to simpler calculations. The assumed time
invariance for Y is only for notational simplicity and can easily be relaxed.
We could also allow αi and σi to be adapted to the filtration FS . It might
seem natural to suppose that the short rate is a function rt = r(t, Yt) of the
factor process, but this does not fit into the nonlinear filtering framework
since we would then have a noise-free observation r(t, Yt) = d

dtB(t) of Yt.
On the other hand, if we continue to assume that rt is a general FS-adapted
process then we will not obtain the ‘Markovian’ results below.

In this setting we may apply standard non-linear filtering theory (see
Liptser and Shiryayev (2004)) and to do so we need a regularity assumption.

Assumption 5.2 We assume that the conditional P -distribution of Yt given
FS

t admits a density pt(y) on Y, relative to some dominating measure m(dy).

If Y is a diffusion on Rn, the measure m(dy) will be n-dimensional
Lebesgue measure, and in the case of Y being a finite state Markov chain,
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m(dy) will be the counting measure on the (finite) set Y . Given the assump-
tion above we can thus write conditional expectations as integrals w.r.t.
pt(y). More precisely, for any function f : Y → R we have

EP
[
f(Yt)| FS

t

]
=
∫
Y

f(y)pt(y)m(dy).

In the language of non linear filtering we thus have the signal process Y ,
and the observation process Z, where Z is given by

dZt = σ−1
t αt(Yt)dt + dWt.

We can now write down the Kushner-Stratonovich (KS) equation for the
conditional density pt in our model.

Theorem 5.1 (The KS equation) With assumptions as above the dynam-
ics of the conditional density are given by

dpt(y) = A∗pt(y)dt + pt(y)
{
σ−1

t [αt(y)− α̂t(pt)]
}′

dW̄t. (5.1)

Here, A∗ is the adjoint to A, α̂ is given by

α̂t(pt) =
∫

Y
αt(y)pt(y)m(dy), (5.2)

and
dW̄t = dZt − σ−1

t α̂t(pt)dt.

We note that
α̂t(pt) = α̂t(Yt)

where α̂ in the left hand side denotes a deterministic function, whereas the
ˆ sign in the right hand side denotes a filter estimate. More precisely, if we
denote the convex space of densities on Y by H, then α̂ is a deterministic
mapping α̂ : H×R+ → R, where

(p, t) 7−→
∫

Y
αt(y)p(y)m(dy).

We can now view the KS equation as a single infinite dimensional SDE,
writing it as

dpt = µp(t, pt)dt + σp(t, pt)dW̄t,

with µp and σp defined by the KS equation above, so the conditional density
process p will be Markovian. The main point of this is that, in a Markovian
setting, a conditional expectation like the ones defining H̄ in the power and
exponential cases above, will be a deterministic function of the state variable
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p, and it will also satisfy a PDE (the Kolmogorov backward equation) on an
inherently infinite dimensional state space. We will thus be able to provide
an explicit solution to the optimal investment problem, up to the solution
of a PDE. We note that instead of using the standard conditional density
process pt(y) and the KS equation we could instead use the un-normalized
density qt(y) and the Zakai equation. See Section 5.5 below for details.

5.2 Power utility

For the power case we of course still have Proposition 4.1, but in the present
Markovian setting we can obtain more explicit formulas for the processes
H̄ and u∗. We start by noticing that the measure Q̄0 in (4.6)-(4.7) has
likelihood dynamics given by

dL̄0
t = L̄0

t β
{
σ−1

t [rt − α̂t(pt)]
}′

dW̄t. (5.3)

where α̂t(p) is given by (5.2). The Q̄0 dynamics of the conditional density
process are thus, by Girsanov, given by

dpt = µ0
p(t, pt)dt + σp(t, pt)dW̄ 0

t , (5.4)

where
µ0

p(t, p) = µp(t, p) + βσp(t, p)σ−1
t [rt − α̂t(p)] (5.5)

Furthermore, the process H̄ defined by (4.8) will now have the more specific
form

H̄t = E0

[
exp

(∫ T

t

{
rs +

β

2(1− γ)
‖σ−1

s (α̂s(ps)− rs)‖2

}
ds

)∣∣∣∣FS
t

]
,

and the Markovian structure of the p process will allow us to write the H̄

process as
H̄t = H̄(t, pt),

where H̄ on the right hand side denotes a deterministic function of the
variables t and p, defined by

H̄(t, p) = E0
t,p

[
exp

(∫ T

t

{
rs +

β

2(1− γ)
‖σ−1

s (α̂s(ps)− rs)‖2

}
ds

)]
.

(5.6)
Thus the function H̄ will solve the following Kolmogorov backward equation
(see Da Prato and Zabzcyk (1996)), where Tr denotes the trace.

∂H̄

∂t
+

∂H̄

∂p
µ0

p +
1
2
Tr
[
σ′p

∂2H̄

∂p2
σ2

p

]
+
(

r +
β

2(1− γ)
‖σ−1 (α̂− r)‖2

)
H̄ = 0 (5.7)

H̄(T, p) = 1. (5.8)
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Note that this is a PDE in the infinite dimensional state variable p, so the
partial derivatives terms w.r.t. p above are Frechet derivatives.

In the Markovian setting, the optimal portfolio weight vector process ū∗

will have the form of a feedback control, i.e. it will be of the form

ū∗t = ū∗(t, pt),

where ū∗ in the right hand side denotes a deterministic function defined by

ū∗(t, p) =
1

1− γ
(α̂t(p)− rt)

′ (σtσ
′
t

)−1 +
1

H̄(t, p)
∂H̄

∂p
(t, p)σp(t, p)σ−1

t .

This follows directly from the fact that σH̄ in Proposition 4.1 can, in the
Markovian case, be computed explicitly by using the Itô formula.

Remark 5.1 It is interesting to note that although Lakner (1998) and Hauss-
mann and Sass (2004a) do not introduce the measure Q0 and the process H

etc. they provide, within their framework, an explicit expression for σH̄

using Malliavin calculus.

5.3 Log utility

The log utility case is trivial. The optimal strategy given in Proposition 4.2
can, in the Markovian framework, be written in feedback form as

ū∗(t, p) = (α̂t(p)− rt)
′ (σtσ

′
t

)−1
.

5.4 Exponential utility

Since in this section rt is deterministic, we can use the simpler expressions
of Section 3.3.3. The process H̄t, i.e. Ht defined by (3.35) with α replaced
by α̂, can be written as

H̄t = H̄(t, pt),

where the function H̄(t, p) is defined as

H̄(t, p) =
1
2
EQ

t,p

[∫ T

t
‖σ−1

s (α̂s(ps)− rs)‖2ds

]
,

and where H̄(t, p) will satisfy the Kolmogorov backward equation

∂H̄

∂t
+

∂H̄

∂p
µQ

p +
1
2
Tr
[
σ′p

∂2H̄

∂p2
σ2

p

]
+

1
2
‖σ−1(α̂− r)‖2 = 0 (5.9)

H(T, p) = 0. (5.10)
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Here µQ
p is defined by

µQ
p (t, p) = µp(t, p) + σp(t, p)σ−1

t [rt − α̂t(p)]

The optimal portfolio, in terms of the optimal weights on the risky assets,
is given in feedback form as

ū∗(t, p, x̄) = e−r(T−t) 1
γx̄

({
σ−1

t [α̂(t, p)− rt]
}′ − ∂H̄

∂p
(t, p)σp(t, p)

)
σ−1

t .

(5.11)

5.5 The Zakai equation

An alternative to using the KS equation in (5.1) above, and the related PDEs
(5.7)-(5.8) and (5.9)-(5.10) is to use the Zakai un-normalized conditional
density process qt(y). This density satisfies the Zakai equation

dqt(y) = A∗qt(y)dt + qt(y)σ−1
t αt(y)dZt. (5.12)

and the advantage of using the Zakai equation is that it is much simpler
than the DMZ equation. It is driven directly by the observation process Z,
and the drift and diffusion terms are linear in q. The relation between q and
p is given by

pt(y) =
qt(y)∫

Y qt(u)du
,

and the results on Sections 5.2, 5.3, and 5.4 can easily be transferred to the
q formalism.

5.6 Finite dimensional filters

As we have seen above, for the general hidden Markov model the optimal
investment strategy u∗ is a deterministic function u∗(t, p, x̄) of running time
t, the conditional density pt, and the wealth X̄t. Furthermore, we can com-
pute the optimal investment strategy u∗ explicitly up to the solution of a
PDE (the Kolmogorov backward equation) on an infinite dimensional state
space. For a general model, we then have two closely related computational
problems.

• The DMZ filter equations (5.1) describes an infinite dimensional SDE,
driven by the innovations process. In a concrete application, the fil-
ter could thus never be implemented exactly, so one would have to
construct an approximate finite dimensional filter.

• As a consequence of the infinite dimensionality of the filter, the Kol-
mogorov equations above are generically PDEs on an infinite dimen-
sional state space and thus very hard to solve.
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In order to simplify the situation it is thus natural to study models where
the state space is of finite dimension. This occurs if and only if the DMZ
equation evolves on a finite dimensional sub manifold of the inherently infi-
nite dimensional convex space of probability densities, in other words if and
only if the associated filtering problem has a finite dimensional filter. It is
furthermore well known from filtering theory that the existence of a finite
dimensional filter is a very rare phenomenon, related to the finite dimen-
sionality of the Lie algebra generated by the drift and diffusion operators of
the Zakai equation. The two main cases where the filter is finite dimensional
are the following:

• The case when Y is a finite state Markov chain, leading to the Wonham
filter.

• The case when Y is the solution of a linear SDE, leading to the Kalman
filter.

These cases are (apart from Bäuerle and Rieder (2007) and Callegaro et al.
(2006)) precisely the cases studied previously in the literature. The linear
diffusion case is studied in Brendle (2004, 2006), Brennan (1998), Brennan
and Xia (2001), Cvitanic et al. (2006), Gennotte (1986), Lakner (1995),
Lakner (1998), and Xia (2001), whereas the Markov chain model is treated
in Bäuerle and Rieder (2005, 2004), Honda (2003); Haussmann and Sass
(2004a,b), Nagai and Runggaldier (2006), Sass (2007), and Sass and Wun-
derlich (2009).
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Bäuerle, N., Rieder, U., 2007. Portfolio optimization with jumps and unob-
servable intensity. Mathematical Finance 17 (2), 205–224.

Bensoussan, A., 2004. Stochastic Control of Partially-Observable Systems,
2nd Edition. Cambridge University Press.

Brendle, S., 2004. Portfolio selection under partial observation and constant
absolute risk aversion, working paper, Princeton University.

28



Brendle, S., 2006. Portfolio selection under incomplete information. Stochas-
tic processes and their Applications 116 (5), 701–723.

Brennan, M., 1998. The role of learning in dynamic portfolio decisions. Eu-
ropean Finance Review , 295–306.

Brennan, M., Xia, Y., 2001. Assessing asset pricing anomalies. Review of
Financial Studies 14 (4), 905–942.

Callegaro, G., Di Masi, G., Runggaldier, W., 2006. Portfolio optimization
in discontinuous markets under incomplete ionformation. Asia-Pacific Fi-
nancial Markets 13, 373–394.

Cvitanic, J., Lazrak, A., Martinelli, L., Zapatero, F., 2006. Dynamic portfo-
lio choice with parameter uncertainty and the economic value of analysts’
recommendations. Review of Financial Studies 19, 1113–1156.

Da Prato, G., Zabzcyk, J., 1996. Ergodicity for Infinite Dimensional Sys-
tems. Cambridge University Press.

Dana, R., Jeanblanc, M., 1992. Financial Markets in Continuous Time. Cam-
bridge University Press.

Dothan, M., Feldman, D., 1986. Equilibrium interest rates and multiperiod
bonds in a partially observable economy. Journal of Finance 41 (2), 369–
382.

Feldman, D., 1989. The term structure of interest rates in a partially ob-
served economy. Journal of Finance 44, 789–812.

Feldman, D., 1992. Logarithmic preferences, myopic decisions, and incom-
plete information. Journal of Financial and Quantitative Analysis 27, 619–
629.

Feldman, D., 2003. Production and the real rate of interest: a sample path
equilibrium. Review of Finance 7, 247–275.

Feldman, D., 2007. Incomplete information equilibria:separation theorems
and other myths. Annals of Operations Research 151, 119–149.

Fujisaki, M., Kallianpur, G., Kunita, H., 1972. Stochastic differential equa-
tions for the non linear filtering problem. Osaka Journal of Mathematics
9, 19–40.

Gennotte, G., 1986. Optimal portfolio choice under incomplete information.
Journal of Finance 41, 733749.

29



Haussmann, U. G., Sass, J., 2004a. Optimal terminal wealth under partial
information for HMM stock returns. In: Mathematics of Finance (Con-
temp. Math. 351). AMS.

Haussmann, U. G., Sass, J., 2004b. Optimizing the terminal wealth under
partial information: The drift process as a continuous time Markov chain.
Finance and Stochastics 8, 553–577.

Honda, T., 2003. Optimal portfolio choice for unobservable and regime-
switching mean returns. Journal of Economic Dynamics and Control 28,
45–78.

Karatzas, I., Lehoczky, J., Shreve, S., 1987. Optimal portfolio and consump-
tion decisions for a ”small investor” on a finite horizon. SIAM Journal of
Control and Optimization 25, 1557–1586.

Karatzas, I., Shreve, S., 1998. Methods of Mathematical Finance. Springer.

Lakner, P., 1995. Utility maximization with partial information. Stochastic
Processes and their Applications 56, 247–249.

Lakner, P., 1998. Optimal trading strategy for an investor: the case of partial
information. Stochastic Processes and their Applications 76, 77–97.

Liptser, R., Shiryayev, A., 2004. Statistics of Random Processes, 2nd Edi-
tion. Vol. I. Springer Verlag.

Nagai, H., Runggaldier, W., 2006. PDE approach to utility maximization for
market models with hidden Markov factors. In: 5th Seminar on Stochastic
Analysis, Random Fields and Applications. Birkhauser Verlag.

Rogers, L., Williams, D., 1987. Diffusions, Markov processes and Martin-
gales. Vol. 2. Wiley.

Sass, J., 2007. Utility maximization with convex constraints and partial
information. Acta Appl Math 97, 221–238.

Sass, J., Wunderlich, R., 2009. Optimal portfolio policies under bounded
expected loss and partial information, Working paper.

Xia, Y., 2001. Learning about predictability: the effects of parameter un-
certainty on dynamic asset allocation. Journal of Finance 56, 205–246.

30


