SF3940– PROBABILITY THEORY SPRING 2016

HOMEWORK 1

DUE FEBRUARY 22, 2016

You must be able to explain the following concepts:

• The definition of a field (algebra), a σ -field (σ -algebra), a measure, properties of a measure, the extension theorem (Caratheodory's extension theorem), Dynkin's π - λ theorem (or the monotone class theorem), the Borel σ -field, measurable functions.

Solve at least *five* of the following problems *and* two problems of your own choice (either the remaining two below or two problems form the book you are using).

PROBLEM 1. Let \mathscr{F}_n be classes of subsets of S. Suppose each \mathscr{F}_n is a field, and $\mathscr{F}_n \subset \mathscr{F}_{n+1}$ for $n = 1, 2, \ldots$. Define $\mathscr{F} = \bigcup_{n=1}^{\infty} \mathscr{F}_n$. Show that \mathscr{F} is a field. Give an example to show that \mathscr{F} need not be a σ -field.

PROBLEM 2. A (nonempty) collection \mathscr{S} of subsets of Ω is called a semi-field (or semi-algebra) if it satisfies (i) $A, B \in \mathscr{S}$ implies $A \cap B \in \mathscr{S}$ and (ii) $A \in \mathscr{S}$ implies A^c is a finite disjoint union of sets in \mathscr{S} .

- (a) Show that the collection of finite disjoint unions of sets in $\mathscr S$ is a field.
- (b) Let $\Omega = (0, 1]$ and show that the collection of sets of the form (a, b], $0 \le a < b \le 1$ and the empty set is a semi-field.

PROBLEM 3. Show that if $B \in \sigma(\mathscr{A})$, then there exists a countable subclass \mathscr{A}_B of \mathscr{A} such that $B \in \sigma(\mathscr{A}_B)$.

PROBLEM 4. Give an example of a measure μ on a σ -field \mathscr{F} where there exists a monotone decreasing sequence $A_n \downarrow A \neq \emptyset$ such that $\mu(A_n) = \infty$ and $\mu(A) = 0$.

PROBLEM 5. Let μ^* be an outer measure on a sample space Ω . Show that if μ^* is finitely additive, then it is a measure.

PROBLEM 6. Show that the Borel σ -field on \mathbb{R} is the smallest σ -field that makes all continuous functions $f : \mathbb{R} \to \mathbb{R}$ measurable. More precisely, let \mathscr{R} denote the Borel σ -field and let \mathscr{F} denote the smallest σ -field on \mathbb{R} that makes all continuous functions \mathscr{F}/\mathscr{R} -measurable. Show that $\mathscr{F} = \mathscr{R}$.

PROBLEM 7. A function $f : \mathbb{R} \to \mathbb{R}$ is lower semicontinuous (l.s.c.) if $\liminf_{y\to x} f(y) \ge f(x)$ for all x. A function $f : \mathbb{R} \to \mathbb{R}$ is upper semicontinuous (u.s.c.) if $\limsup_{y\to x} f(y) \le f(x)$ for all x. Show that, if f is l.s.c. or u.s.c., then f is (Borel) measurable.

Henrik Hult KTH Royal Institute of Technology Department of Mathematics 100 44 Stockholm, SWEDEN E-mail: hult@kth.se Website: http://www.math.kth.se/~hult Phone: 790 6911 Fax: 723 1788