SF3940– PROBABILITY THEORY SPRING 2016

HOMEWORK 3

DUE MARCH 14, 2016

You must be able to explain the following concepts:

• Borel Cantelli's Lemma I and II, Kolmogorov's 0-1 Law, Kolmogorov's Three Series Theorem, The Weak Law of Large Numbers, The Strong Law of Large Numbers, The Glivenko-Cantelli Theorem, Applications of the SLLN.

Solve at least *three* of the following problems *and* one problems of your own choice (either one of the remaining two below or two problems form the book you are using).

PROBLEM 1. Let $\{U_n\}$ be a sequence of independent random variables on a probability space (Ω, \mathcal{F}, P) and suppose that U_n has uniform distribution on (0, 1) for each n. Put

$$X_1 = U_1,$$

 $X_n = (1 - U_1) \cdots (1 - U_{n-1})U_n, \quad n \ge 2.$

- (a) Show that $\sum_n X_n = 1$ almost surely and conclude that $X_n \to 0$ almost surely.
- (b) Show that $\frac{1}{n} \log X_n$ converges almost surely and determine the limit.

PROBLEM 2. Consider a probability space (Ω, \mathcal{F}, P) where, for each $n \geq 1$, the random variables X_n have a standard Gaussian distribution in *n*-dimensions. Find a sequence c_n of real numbers such that $\frac{1}{c_n} ||X_n|| \to 1$ almost surely.

This shows that in high dimensions the Gaussian distribution is concentrated on a sphere with radius c_n .

PROBLEM 3. Consider an investor that can invest in risk-free bonds and risky stocks. The risk-free bond gives a return of e^r each year, on each invested krona, whereas the stock gives a stochastic return R_n at the end of the *n*th year. It is assumed that $\{R_n\}$ are iid and non-negative. If $P_0 = 1$ and a constant fraction α is invested in the risky stock each year, then the value P_n of the portfolio at the end of each year is

$$P_n = (1 - \alpha)P_{n-1}e^r + \alpha P_{n-1}R_n.$$

Suppose $E[R_n^2] < \infty$ and $E[R_n^{-2}] < \infty$.

- (a) Show that $\frac{1}{n} \log P_n \to u(\alpha)$, almost surely.
- (b) Show that $u(\alpha)$ is concave.
- (c) Give conditions on the distribution of R_n that guarantee that the optimal α is in (0,1).

Henrik Hult KTH Royal Institute of Technology Department of Mathematics 100 44 Stockholm, SWEDEN E-mail: hult@kth.se Website: http://www.math.kth.se/~hult Phone: 790 6911 Fax: 723 1788 PROBLEM 4. Linear processes are constructed as follows. Let $\{Z_n : n \in \mathbb{Z}\}$ be a sequence of iid random variables and $\{c_n : n \in \mathbb{Z}\}$ be deterministic constants. Then the linear process is

$$X_n = \sum_{k \in \mathbb{Z}} c_k Z_{n-k}.$$

- (a) Suppose E[Z] = 0 and $E[Z^2] < \infty$. Determine necessary and sufficient conditions on the sequence $\{c_n\}$, such that X_0 is finite almost surely.
- (b) Suppose $P(Z < -x) = P(Z > x) = \frac{1}{2}(1 + x)^{-\alpha}$, for all x > 0 and $\alpha \in (0, 1)$. Determine necessary and sufficient conditions on the sequence $\{c_n\}$, such that X_0 is finite almost surely.

PROBLEM 5. (Records) Let X_1, X_2, \ldots be iid random variables on a probability space (Ω, \mathcal{F}, P) with continuous distribution function. Let $B = \bigcup_{m,n} \{ \omega : X_n(\omega) = X_m(\omega) \}$ be the set where ties occur and remove B from Ω . That is, we consider $\Omega_0 = \Omega \setminus B$ as the sample space.

Let $\Pi^n(\omega) = (\Pi_1^n(\omega), \ldots, \Pi_n^n(\omega))$ be the permutation (π_1, \ldots, π_n) of $(1, \ldots, n)$ for which $X_{\Pi_1^n} < \cdots < X_{\Pi_n^n}$ and let R_n be the rank of X_n among X_1, \ldots, X_n . That is, $R_n = r$ if $X_k < X_n$ for exactly r-1 values of $k \le n$.

- (a) Show that Π^n is uniformly distributed among all n! permutations.
- (b) Show that $P(R_n = r) = 1/n$ and that R_1, R_2, \ldots are independent.
- (c) Let $A_n = \{\text{record at time } n\} = \{\omega : X_n(\omega) > \max_{1 \le k \le n-1} X_k(\omega)\}$ and show that A_1, A_2, \ldots are independent and compute $P(A_n)$.
- (d) Let N_n be the number of records up to time n and show that $N_n/\log n \to 1$ in probability.

Henrik Hult KTH Royal Institute of Technology Department of Mathematics 100 44 Stockholm, SWEDEN E-mail: hult@kth.se Website: http://www.math.kth.se/~hult Phone: 790 6911 Fax: 723 1788