SF3940– PROBABILITY THEORY SPRING 2016

HOMEWORK 4

DUE MARCH 21, 2016

You must be able to explain the following concepts:

• Weak convergence, the Portmanteau theorem, the continuous mapping theorem, Helly's selection theorem, characteristic functions and the inversion formula, the central limit theorem (Lindeberg-Feller thm and Berry-Essen), Poisson convergence, Cramér-Wold device.

Solve at least *four* of the following problems.

PROBLEM 1. Prove the following claim. If X_1, X_2, \ldots are independent and have characteristic function $e^{-|t|^{\alpha}}$, $0 < \alpha < 2$, then $n^{-1/\alpha}(X_1 + \cdots + X_n)$ has the same distribution as X_1 . (This is an example of stable distributions).

PROBLEM 2. One can interpret the central limit theorem as the solution to a fixed point problem. Let \mathcal{P} denote the set of probability measures μ on \mathcal{R} with the properties that

$$\int x^2 \mu(dx) = 1, \quad \int x \mu(dx) = 0.$$

Define $T\mu$ for $\mu \in \mathcal{P}$ to be the probability measure given by

$$T\mu(B) = \int \int I\left\{\frac{x+y}{\sqrt{2}} \in A\right\} \mu(dx)\mu(dy), \text{ for Borel sets } B.$$

- (a) Check that T maps \mathcal{P} to itself.
- (b) Use the central limit theorem to show that, for every $\mu \in \mathcal{P}$,

$$\lim_{n} \int \varphi dT^{n} \mu = \int \varphi d\gamma,$$

for each bounded continuous function φ , where γ is the standard normal distribution. Conclude that γ is the unique element of \mathcal{P} with the property that $T\mu = \mu$ and that this fixed point is attracting.

PROBLEM 3. Let $X_n = (X_{n1}, X_{n2}, \ldots, X_{nn})$ be uniformly distributed over the surface of a sphere with radius \sqrt{n} in \mathbb{R}^n . Show that X_{n1} converges in distribution to a standard normal distribution.

PROBLEM 4. Consider PROBLEM 4 in Homework 2 where k balls are placed at random in n boxes. Suppose that k = k(n) is such that $ne^{-k/n} \to \lambda$ as $n \to \infty$. Show that the distribution of the number of empty boxes converges to a Poisson distribution with parameter λ .

Henrik HultE-mail: hult@kth.seKTH Royal Institute of TechnologyWebsite: http://www.math.kth.se/~hultDepartment of MathematicsPhone: 790 6911100 44 Stockholm, SWEDENFax: 723 1788

PROBLEM 5. Let X_1, X_2, \ldots be iid with $EX_k = 0$ and $EX_k^2 = \sigma^2$. Show that

$$\frac{\sum_{k=1}^{n} X_k}{\left(\sum_{k=1}^{n} X_k^2\right)^{1/2}} \to \gamma,$$

in distribution, where γ is the standard normal distribution.

PROBLEM 6. Suppose X_1, X_2, \ldots are random variables such that the central limit theorem:

$$\sqrt{n}\frac{\bar{X}_n - c}{\sigma} \to \gamma,$$

in distribution, where γ is a standard normal distribution. Suppose f is a real smooth function with a nonzero derivative f'(c) at c. Show that

$$\sqrt{n}\frac{f(\bar{X}_n) - f(c)}{\sigma |f'(c)|} \to \gamma,$$

(this is called the delta-method)

Henrik Hult KTH Royal Institute of Technology Department of Mathematics 10044 Stockholm, SWEDEN E-mail: hult@kth.se Website: http://www.math.kth.se/~hult Phone: 790 6911 Fax: 723 1788