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• Given: a finite normal-form game G = (N,S, π), where

- N = {1, ...n} is the set of players

- S = ×i∈NSi is the set of (pure-)strategy profiles

- π : S → Rn is the combined payoff function

• Its mixed-strategy extension G̃ = (N,X, π̃)

• Examples: the (pure-strategy) normal, quasi-reduced normal, or educed
normal forms of an EF game Γ

• Note that “nature” is not a player in the normal form



1 Nash’s (1950) two interpretations

1. The rationalistic (or epistemic) interpretation:

(a) All players are rational in the sense of Savage (Foundations of

Statistics, 1954): players only use strategies that are optimal under

some probabilistic belief about the other’s strategy choices

(b) If they randomize: statistical independence between different play-

ers’ randomizations

(c) All players know G. We may even assume that G and all players’

rationality is common knowledge (CK)



2. The mass-action (or population-statistical) interpretation:

“It is unnecessary to assume that the participants in a game have

full knowledge of the total structure of the game, or the ability and

inclination to go through any complex reasoning processes. But

the participants are supposed to accumulate empirical information

on the relative advantages of the various pure strategies at their

disposal.

To be more detailed, we assume that there is a population (in

the sense of statistics) of participants for each position of the

game. Let us also assume that the ’average playing’ of the game

involves n participants selected at random from the n populations,

and that there is a stable average frequency with which each pure

strategy is employed by the ’average member’ of the appropriate

population.



Since there is to be no collaboration between individuals playing

in different positions of the game, the probability that a particular

n-tuple of pure strategies will be employed in playing of the game

should be the product of the probabilities indicating the chance of

each of the n pure strategies to be employed in a random playing.

... Thus the assumptions we made in this ’mass action’ interpre-

tation led to the conclusion that the mixed strategies representing

the average behavior in each of the populations form an equilibrium

point.” (John Nash’s (1950) PhD. thesis)



• Today and next lecture: Focus on finite normal-form games!

• Let G = (N,S, π) be a finite game with mixed-strategy extension

G̃ = (N,¤ (S) , π̃)

• A solution concept is a correspondence that maps each game to a

subset of its mixed-strategy polyhedron. A point in that subset is a

solution.



2 The geometry of mixed-strategy spaces

• Let Si = {1, ...,mi} be i’s pure strategies in G

• The player’s mixed-strategy simplex:

Xi = ∆i = ∆ (Si) = {xi ∈ Rmi
+ :

miX
h=1

xih = 1}.

• The vertices of ∆i are the unit vectors, e
1
i , ..., e

mi
i ∈ Rmi

+

• The mixed-strategy simplex ∆i is the convex hull of its vertices:

xi =
miX
h=1

xihe
h
i .



• Its (relative) interior: int(∆i) = {xi ∈ ∆i : xih > 0 ∀h ∈ Si}

• Terminology: interior strategy = completely mixed strategy

• Example: |Si| = 3
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• The mixed-strategy polyhedron:

X = ¤ = ¤ (S) = ×i∈N∆i = ×i∈N∆ (Si)

• Example: n = |S1| = |S2| = 2
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3 Mixed-strategy payoff functions

• They are all polynomial, actually multi-linear. For any players i, j ∈ N :

π̃i(x) =

mjX
k=1

π̃i(e
k
j , x−j) · xjk

(the inner product between a constant vector in Rmi and xj ∈ Rmi)

• For n = 2 and i = j = 1:

π̃1(x) =
m1X
h=1

m2X
k=1

x1hahkx2k = x1 ·Ax2



4 Best Replies and Dominance Relations

4.1 Best replies

• The i:th player’s pure-strategy best-reply correspondence βi : ¤ (S)⇒
Si is defined by

βi(x) := {h ∈ Si : π̃i(e
h
i , x−i) ≥ π̃i(e

k
i , x−i) ∀k ∈ Si}

• Mixed strategies cannot give higher payoffs than pure. (Why?) Hence

βi(x) = {h ∈ Si : π̃i(e
h
i , x−i) ≥ π̃i(x

0
i, x−i) ∀x0i ∈ ∆i}.

• The i:th player’smixed-strategy best-reply correspondence β̃i: ¤ (S)⇒
∆i is defined by

β̃i(x) := {x∗i ∈ ∆i : π̃i(x
∗
i , x−i) ≥ π̃i(x

0
i, x−i) ∀x0i ∈ ∆i}



• Note that

β̃i(x) = {x∗i ∈ ∆i : supp(x
∗
i ) ⊂ βi(x)}

• β̃i(x) is a (non-empty) face of the simplex ∆i. Hence: compact and

convex!

• The combined pure BR correspondence β : ¤⇒ S is defined by

β(x) := ×i∈Nβi(x)

• The combined mixed BR correspondence β̃ : ¤⇒ ¤ is defined by

β̃(x) := ×i∈Nβ̃i(x)



4.2 Dominance relations

Definition 4.1 x∗i ∈ ∆i strictly dominates x0i ∈ ∆i if π̃i(x
∗
i , x−i) >

π̃i(x
0
i, x−i) ∀x ∈ ¤

Definition 4.2 x∗i ∈ ∆i weakly dominates x0i ∈ ∆i if π̃i(x
∗
i , x−i) ≥

π̃i(x
0
i, x−i) ∀x ∈ ¤ with > for some x ∈ ¤

Definition 4.3 A strategy that is not weakly dominated is undominated.

• A strategy can be dominated without being dominated by any pure

strategy



Example 4.1 Consider player 1 with payoff matrix

A =

⎡⎢⎣ 3 0
0 3
1 1

⎤⎥⎦
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Proposition 4.1 Each player has at least one undominated pure strategy.

Proof:

1. Pick any player i ∈ N , xo ∈ int [¤ (S)] and h ∈ βi (x
o)

2. Then π̃i(e
h
i , x

o
−i) ≥ π̃i(xi, x

o
−i) ∀xi ∈ ∆i

3. Claim: x̂i = ehi is undominated

4. Suppose that x∗i weakly dominates x̂i

5. Then π̃i(x
∗
i , s−i) ≥ π̃i(x̂i, s−i) ∀s ∈ S, with > for some so ∈ S

6. xo attaches pos. proba. to so ∈ Sj, so π̃i(x
∗
i , x

o
−i) > π̃i(x̂i, x

o
−i).

Contradiction.



• Iterated elimination of strictly dominated strategies:

(a) Halts after a finite number of successive eliminations

(b) The result is independent of the order of elimination

Example 4.2 A two-player game with payoff bi-matrix (A,B) where B =

AT and

A =

⎡⎢⎣ 3 1 6
0 0 4
1 2 5

⎤⎥⎦

• Property (b) not generally valid for iterated elimination of weakly dom-
inated strategies



4.3 Dominance vs. best replies

• Pure best replies are not strictly dominated

Q1: If a pure strategy is not strictly dominated, is it then a best reply to

some (mixed-)strategy profile?

• Pure best replies to interior strategy profiles are undominated

Q2: If a pure strategy is undominated, is it then a best reply to some

interior belief?



Proposition 4.2 (Pearce, 1984) Suppose n = 2. Then (a) h ∈ Si is not

strictly dominated iff h ∈ βi(x) for some x ∈ ¤, and (b) h ∈ Si is

undominated iff h ∈ βi(x) for some x ∈ int(¤).

Proof of claim (a): [h ∈ Si strictly dominated]⇔ [h ∈ βi(x) for no x ∈ ¤]

⇒: Trivial

⇐: Suppose that h ∈ S1 not a BR to any x

1. Define G∗ = (N,¤ (S) , v) by(
v1 (x) := π̃1 (x1, x2)− π̃1

³
eh1, x2

´
v2 (x) := −v1 (x)

2. Let x∗ be a NE of G∗ [∃ by Nash’s theorem]



3. Then v1 (x
∗) ≥ v1

³
eh1, x

∗
2

´
= 0, indeed v1 (x

∗) > 0

4. G∗ zero-sum ⇒ v1
³
x∗1, x2

´
≥ v1 (x

∗) ∀x2 ∈ ∆2

5. Thus v1
³
x∗1, x2

´
> 0 ∀x2 ∈ ∆2. Equivalently:

π̃1 (x
∗
1, x2) > π̃1

³
eh1, x2

´
∀x2 ∈ ∆2

Thus h ∈ S1 is strictly dominated in the original game by x
∗
1



• Not true for n > 2?

• Why?



5 Rationalizability

• Consider a finite game in normal form, G = (N,S, π) and assume

A1 (Rationality): Each player i forms a probabilistic belief μij ∈
∆
³
Sj
´
about every other player j’s strategy choice, a belief that

does not contradict any information or knowledge that player i has,

and player i chooses a (pure or mixed) strategy that maximize his

or her expected payoff, assuming statistical independence between

other player’s strategy choices

A2 (Common knowledge): The gameG and the players’ rationality

(A1) is common knowledge among the players

• We have observed that [A1 ∧ A2] ; NE



Q1: What does A1 and A2 then imply?

A1: Rationalizability!

Q2: What is, then, “rationalizability”?

A2: The definition is a bit involved. We make it in steps



1. For any X = ×n
j=1Xj, where each Xj ⊂ ∆

³
Sj
´
, write

β̃i (X) =
n
x∗i ∈ ∆ (Si) : x

∗
i ∈ β̃i (x) for some x ∈ X

o

2. Let C0 = ¤ (S) and define
D
Ct
E
t∈N recursively by⎧⎨⎩ Ct+1

i = conv
h
β̃i
³
Ct
´i
∀i ∈ N

Ct+1 = ×i∈NC
t+1
i

3. Note that Ct+1
i ⊂ Ct

i ∀t, i

Definition 5.1 (Pearce, 1984) A strategy xi ∈ ∆ (Si) is rationalizable for

player i if xi ∈ C∞i , where

C∞i = ∩t∈NCt
i .



Proposition 5.1 C∞i = ∆ (Ri) for some non-empty subset Ri ⊂ Si.

Proof:

1. ∀i, t: Ct
i is a non-empty subsimplex of ∆ (Si)

2. The collection of subsimplices is finite

Definition 5.2 A pure strategy h ∈ Si is rationalizable for i if h ∈ Ri.



• The set β̃i
³
Ct
´
⊂ ∆ (Si) is not necessarily convex

Example 5.1 Consider player 1 with payoff matrix

A =

⎡⎢⎣ 3 0
0 3
2 2

⎤⎥⎦
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The subset β̃1
³
C0
´
:
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• Apply rationalizability to earlier examples!



6 The set of Nash equilibria

Definition 6.1 ¤NE =
n
x ∈ ¤ : x ∈ β̃(x)

o

Theorem 6.1 (Nash, 1950) ¤NE 6= ∅.

• Two alternative proofs:

- Kakutani (Nash’s first proof)

- Brouwer (Nash’s second, and favorite, proof. Later used by Arrow and

Debreu to prove ∃ of Walrasian equilibrium in their general equilibrium

theory).

• The second proof (Nash, 1950b, 1951):



1. Let

uih (x) = max
n
0, π̃i(e

h
i , x−i)− π̃i(x)

o
The excess payoff of pure strategy h ∈ Si over strategy xi

2. Increase your probability on pure strategies with positive excess payoff:

xt+1ih = fih
³
xt
´
=

xtih + uih
³
xt
´

1 +
P
k∈Si uik (x

t)
h ∈ Si

3. This defines a continuous function f : ¤ → ¤. Each fixed point is a
NE.



6.1 Topological structure

Proposition 6.2 ¤NE is the finite union of disjoint, closed and connected

sets.

• These sets are called the Nash equilibrium components of the game G̃

Proof of proposition: Semialgebraic sets (van der Waerden, 1930s, Kohlberg

and Mertens, 1986):

¤NE =
n
x ∈ ¤ : π̃i(x)− π̃i(e

h
i , x−i) ≥ 0 ∀i ∈ N,h ∈ Si

o
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• Example: the Entry-Deterrence game
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6.2 Invariance

1. Positive affine transformations of payoffs (this is well-known):

Let G = (N,S, π) and G∗ = (N,S, π∗)

where each π∗i is a positive affine transformation of πi [π
∗
i (s) ≡

aπi (s) + b, for a > 0]

2. Local payoff shifts (this is less known):

Let G = (N,S, π) and G∗ = (N,S, π∗)

where each π∗i is a local payoff-shift of πi:

for some s̄−i ∈ ×j 6=iSj and c ∈ R, let

π∗i (s) =

(
πi(s) + c if s−i = s̄−i
πi(s) otherwise



Proposition 6.3 The set ¤NE is unaffected by positive affine transforma-

tions and local payoff shifts.

Proof of second claim: Note that

π∗i (x
0
i, x−i)− π∗i (x

00
i , x−i) ≡ π̃i(x

0
i, x−i)− π̃i(x

00
i , x−i)



• These invariance properties are extremely helpful when looking for NE.

Example 6.1

L R
T 7, 9 1, 6
B 5, 2 2, 3

∼
L R

T 2, 9 0, 6
B 0, 2 1, 3

∼
L R

T 2, 3 0, 0
B 0, 0 1, 1



Next topic: (a) refining the Nash equilibrium concept, and (b) going set-

wise

[Lecture notes chapter 4, chapter 1 in EGT book.]

THE END


