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e Given: a finite normal-form game G = (N, S, w), where
- N ={1,...n} is the set of players
- S = X;eNS; is the set of (pure-)strategy profiles

- m: S — R" is the combined payoff function

e lts mixed-strategy extension G = (N, X, 7)

e Examples: the (pure-strategy) normal, quasi-reduced normal, or educed
normal forms of an EF game I

e Note that “nature” is not a player in the normal form



1 Nash’s (1950) two interpretations

1. The rationalistic (or epistemic) interpretation:

(a) All players are rational in the sense of Savage (Foundations of
Statistics, 1954): players only use strategies that are optimal under
some probabilistic belief about the other’s strategy choices

(b) If they randomize: statistical independence between different play-
ers’ randomizations

(c) All players know G. We may even assume that GG and all players'’
rationality is common knowledge (CK)



2. The mass-action (or population-statistical) interpretation:

“It is unnecessary to assume that the participants in a game have
full knowledge of the total structure of the game, or the ability and
inclination to go through any complex reasoning processes. But
the participants are supposed to accumulate empirical information
on the relative advantages of the various pure strategies at their
disposal.

To be more detailed, we assume that there is a population (in
the sense of statistics) of participants for each position of the
game. Let us also assume that the 'average playing’ of the game
involves n participants selected at random from the n populations,
and that there is a stable average frequency with which each pure
strategy is employed by the 'average member’ of the appropriate
population.



Since there is to be no collaboration between individuals playing
in different positions of the game, the probability that a particular
n-tuple of pure strategies will be employed in playing of the game
should be the product of the probabilities indicating the chance of
each of the n pure strategies to be employed in a random playing.

... Thus the assumptions we made in this 'mass action’ interpre-
tation led to the conclusion that the mixed strategies representing
the average behavior in each of the populations form an equilibrium
point.” (John Nash’s (1950) PhD. thesis)



e Today and next lecture: Focus on finite normal-form games!

o Let G = (N,S,w) be a finite game with mixed-strategy extension
G = (N,0(8),7)

e A solution concept is a correspondence that maps each game to a
subset of its mixed-strategy polyhedron. A point in that subset is a
solution.



2 The geometry of mixed-strategy spaces

o Let S; ={1,...,m;} be i's pure strategies in G

e The player's mixed-strategy simplex:

m;
X;=A; = A(SZ) = {ZBZ c RTi ; Z Tip = 1}.
h=1

e The vertices of A; are the unit vectors, e}, ...,e; " € R

e The mixed-strategy simplex A, is the convex hull of its vertices:

my

h

T; = E Tih€; -
h=1



o lIts (relative) interior: int(A;) = {xz; € A; : x;;, > 0Vh € S;}

e Terminology: interior strategy = completely mixed strategy

e Example: |S;| =3
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e The mixed-strategy polyhedron:

X =U=0U(5) = xjeNA; = X;eNA(S;)

e Example: n =|S1| = |52 =2
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3 Mixed-strategy payoff functions

e They are all polynomial, actually multi-linear. For any playersi,5 € N:
m;

Ti(r) = > %i(eé?ax—j) F Tk
k=1

(the inner product between a constant vector in R and z; € R"*)

e Forn=2and =75 =1:

mi mp

f1(x) = Y > Tipapkxop = 21 - Axo
h=1k=1



4 Best Replies and Dominance Relations

4.1 Best replies
e The i:th player’s pure-strategy best-reply correspondence (3; : [1(S) =
S; is defined by
Bi(x) :=={h € S; : #i(ef, x_;) > #i(ef, x_;) Yk € S;}

e Mixed strategies cannot give higher payoffs than pure. (Why?) Hence
Bi(x)={heS;: %i(e?,x_i) > 7,(xh, x_;) Vo, € A}

e Thei:th player’'s mixed-strategy best-reply correspondence BZ 1(S) =
A; is defined by

Bi(x) == {xf € A;: #y(xf, o) > 7i(xh, ;) Vol € A}



Note that
Bi(x) = {af € A; : supp(a]) C Bi(z)}

B:(xz) is a (non-empty) face of the simplex A,;. Hence: compact and

convex!

The combined pure BR correspondence 5 : L1 = S is defined by
B(x) := XienBi(z)

The combined mixed BR correspondence (3 : [0 = [ is defined by
B(w) = XiENBi(x)



4.2 Dominance relations

Definition 4.1 z¥ € A; strictly dominates 2! € A; if ;(af, z_;) >
ﬁi(x;;,x_i) Vo e U

Definition 4.2 ¥ € A; weakly dominates =, € A; if #;(af,z_;) >
7ti(xl, x_;) Vo € O with > for some x € [

Definition 4.3 A strategy that is not weakly dominated is undominated.

e A strategy can be dominated without being dominated by any pure
strategy



Example 4.1 Consider player 1 with payoff matrix

"3 0°
A=10 3
L 1 1 -
payoff * ]

OO 0.1 02 03 04 05 06 07 08|8
wy’



Proposition 4.1 Each player has at least one undominated pure strategy.

Proof:
1. Pick any player : € N, z° € int [LJ(S)] and h € 3, (z°)
2. Then %i(e,?, x® ;) > iz, x%,) Vo, € A

h

3. Claim: Z; = e;' is undominated
4. Suppose that x; weakly dominates Z;
5. Then 7t;(z},s_;) > 7;(£;,5_;) Vs € S, with > for some s° € S

6. x° attaches pos. proba. to s® € S;, so 7;(x,x%,) > 7;(&;,x2,).
Contradiction.



e lterated elimination of strictly dominated strategies:
(a) Halts after a finite number of successive eliminations

(b) The result is independent of the order of elimination

Example 4.2 A two-player game with payoff bi-matrix (A, B) where B =
AT and

AN

|
= O W
N O
o1 b~ O

e Property (b) not generally valid for iterated elimination of weakly dom-
inated strategies



4.3 Dominance vs. best replies

e Pure best replies are not strictly dominated

Q1: If a pure strategy is not strictly dominated, is it then a best reply to
some (mixed-)strategy profile?

e Pure best replies to interior strategy profiles are undominated

Q2: If a pure strategy is undominated, is it then a best reply to some
interior belief?



Proposition 4.2 (Pearce, 1984) Suppose n = 2. Then (a) h € S; is not
strictly dominated iff h € B,(x) for some x € [, and (b) h € S; is
undominated iff h € 8;(x) for some x € int(L]).

Proof of claim (a): [h € S; strictly dominated] < [h € 5,(x) for no xz € []]
=>: Trivial

<: Suppose that h € S1 not a BR to any x

1. Define G* = (N, (S),v) by
{ v1 (z) = 71 (21, 22) — 71 (6?,332)
v2 () := —v1 ()

2. Let ™ be a NE of G* [3 by Nash's theorem]



3. Then vy (z*) > vy (e}, 23) = 0, indeed vy (z*) > 0
4. G* zero-sum = vy (x’l", xg) > vy (x*) Vo € As

5. Thus vy (ac“lk, 332) > 0 Vo € Ay. Equivalently:

71 (27, x2) > 71 (6?, 332) Vo € Ao

Thus h € Sy is strictly dominated in the original game by z7



e Not true for n > 27

e Why?



5 Rationalizability

e Consider a finite game in normal form, G = (IV, S, ) and assume

Al (Rationality): Each player i forms a probabilistic belief ,ué- C

A (Sj) about every other player j's strategy choice, a belief that
does not contradict any information or knowledge that player 2 has,
and player ¢ chooses a (pure or mixed) strategy that maximize his
or her expected payoff, assuming statistical independence between

other player’s strategy choices

A2 (Common knowledge): The game GG and the players’ rationality
(Al) is common knowledge among the players

e \We have observed that [A1 A A2] & NE



Q1: What does Al and A2 then imply?

Al: Rationalizability!

Q2: What is, then, “rationalizability” ?

A2: The definition is a bit involved. We make it in steps



1. For any X = x?lej, where each X,; C A (S]), write

Bi (X) = {a:';" c A(S;) : zF € B; () for someazeX}

2. Let C% = [I(S) and define <C’t> recursively by

teN

C’;;Jrl = conv [BZ (C’t)] Vi€ N
Ot+1 — XiENCf—l_l

3. Note that C’;?Jrl C C’,f Vt,1

Definition 5.1 (Pearce, 1984) A strategy x; € A (S;) is rationalizable for

player i if x; € C?°, where

¢
C7° = NenGi.



Proposition 5.1 C>° = A (R;) for some non-empty subset R; C S;.
Proof:

1. Vi,t: C’,f is a non-empty subsimplex of A (S;)

2. The collection of subsimplices is finite

Definition 5.2 A pure strategy h € S; is rationalizable for ¢ if h € R;.



o The set 3, (Ct) C A (S;) is not necessarily convex

Example 5.1 Consider player 1 with payoff matrix
30

A=|0 3

- 2 2 -

The subset [31 (CO) :
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e Apply rationalizability to earlier examples!



6 The set of Nash equilibria

Definition 6.1 OV = {a: cll:z € B(az)}
Theorem 6.1 (Nash, 1950) OVE £ &

e Two alternative proofs:

- Kakutani (Nash's first proof)
- Brouwer (Nash's second, and favorite, proof. Later used by Arrow and

Debreu to prove d of Walrasian equilibrium in their general equilibrium
theory).

e The second proof (Nash, 1950b, 1951):



. Let

u;ip () = max {0, #i(el, m_;) — 7”%:(??‘)}

The excess payoff of pure strategy h € S; over strategy x;

. Increase your probability on pure strategies with positive excess payoff:

xt —+ u; xt

h th

xﬁf{l = fin (xt) = ’ ( )t h € S;
1+ > kes; wik ()

. This defines a continuous function f : [ — [1. Each fixed point is a
NE.



6.1 Topological structure

Proposition 6.2 (VE js the finite union of disjoint, closed and connected
sets.

e These sets are called the Nash equilibrium components of the game G

Proof of proposition: Semialgebraic sets (van der Waerden, 1930s, Kohlberg
and Mertens, 1986):



1.0 7

0.8 1

0.6 1

0.4 1

0.2 1

0.0

-0.2 1

0.4 -




e Example: the Entry-Deterrence game
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6.2 Invariance

1. Positive affine transformations of payoffs (this is well-known):
Let G = (N, S,7) and G* = (N, S, )

where each 77 is a positive affine transformation of m; [7} (s) =

ar; (s) + b, for a > 0]

2. Local payoff shifts (this is less known):
Let G = (N, S,7) and G* = (N, S, )

where each 7 is a local payoff-shift of m;:

for some 5_; € Xj;,giSj and c € R, let

% | mi(s)+c ifs_; =5
mi(s) = { 7;(8) otherwise



Proposition 6.3 The set OV js unaffected by positive affine transforma-
tions and local payoff shifts.

Proof of second claim: Note that

mi(xh, ) — mi(zf, x_;) = Fi(xh, w_y) — Fi(zy, w—;)



e These invariance properties are extremely helpful when looking for NE.

Example 6.1
L R L R L R
T 7,9 1,6 ~ T 2,9 0,6 ~ T 2,3 0,0
B 5,2 23 B 0,2 1,3 B 0,0 1,1



Next topic: (a) refining the Nash equilibrium concept, and (b) going set-

wise

[Lecture notes chapter 4, chapter 1 in EGT book.]

THE END



