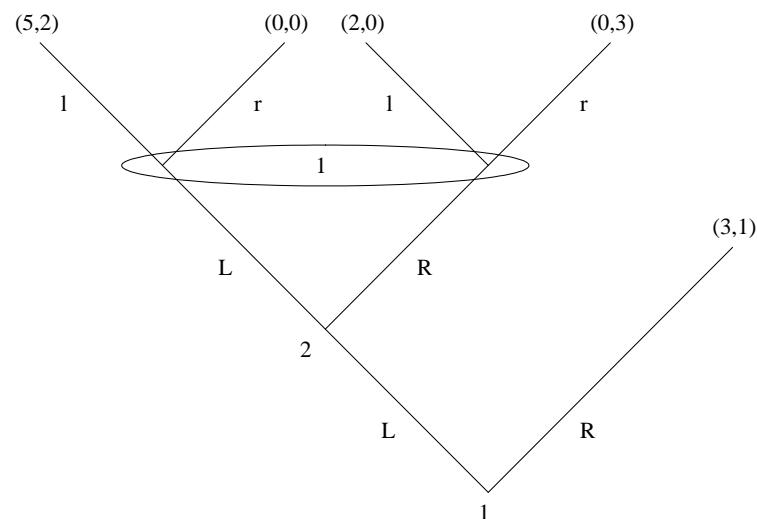


Introduction to Game Theory

Problem Set #3

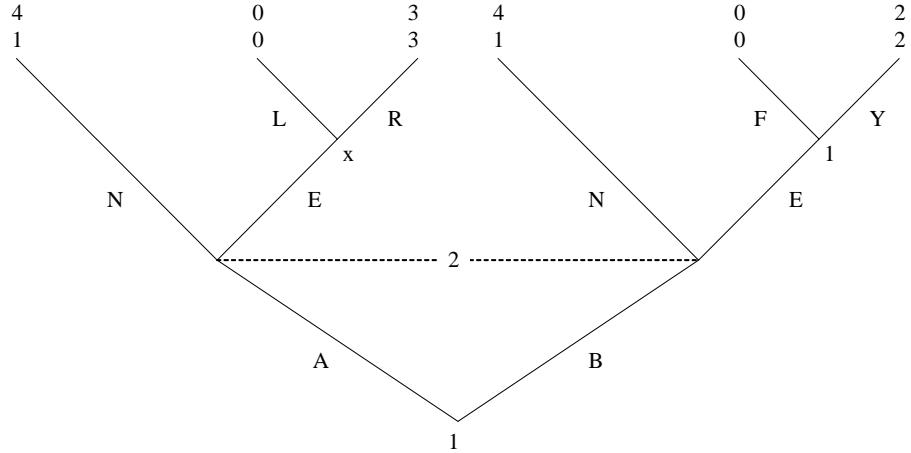
Jörgen Weibull

1. Consider the extensive-form game



- (a) Find the set of pure-strategy Nash equilibria
- (b) Find the set of subgame perfect equilibria
- (c) Find the set of sequential equilibria
- (d) Find the set of NF and EF perfect equilibria, respectively.

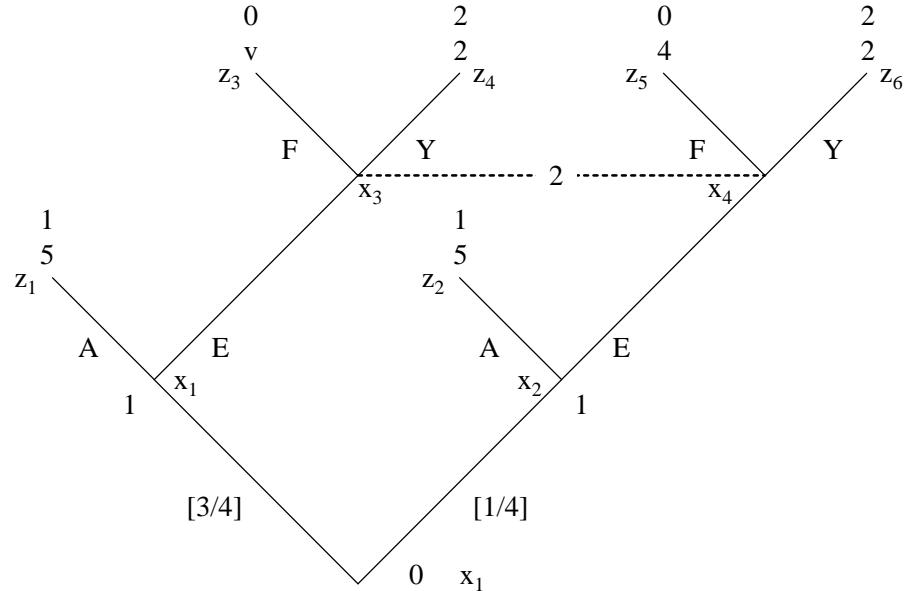
2. Consider the extensive-form game



(a) Suppose node x is “owned” by player 1. Is the pure strategy profile where 1 plays BLY and 2 plays E a Nash equilibrium, a sequential equilibrium?

(b) Suppose node x is instead “owned” by player 2. Is the pure strategy profile where 1 plays BY and 2 plays EL a Nash equilibrium, a sequential equilibrium?

3. Consider the game



For each payoff value $v > 0$:

- (a) Find its set of Nash equilibria.
- (b) Find its set of subgame perfect equilibria.
- (c) Find its set of sequential equilibria.

4. Find all evolutionarily stable strategies in the following two games

$$G_1 = \begin{array}{ccc} & L & R \\ \begin{array}{c} L \\ R \end{array} & \begin{array}{cc} 1, 1 & 0, 0 \\ 0, 0 & 3, 3 \end{array} \end{array} \quad G_2 = \begin{array}{ccc} & L & R \\ \begin{array}{c} L \\ R \end{array} & \begin{array}{cc} 0, 0 & 3, 1 \\ 1, 3 & 0, 0 \end{array} \end{array}$$

5. Consider the games

$$G_3 = \begin{array}{ccc} & L & R \\ \begin{array}{c} T \\ B \end{array} & \begin{array}{cc} 5, 5 & 0, 1 \\ 5, 2 & 2, 2 \end{array} \end{array} \quad \text{and} \quad G_4 = \begin{array}{ccc} & L & R \\ \begin{array}{c} T \\ B \end{array} & \begin{array}{cc} 0, 0 & 2, 2 \\ 2, 2 & 0, 0 \end{array} \end{array}$$

- (a) Find all (pure and mixed) perfect equilibria in each game
- (b) Does the concept of evolutionary stability apply to the two games? Find all evolutionarily stable strategies in the game(s) where the concept applies.
- (c) For each of the two games, write up a meta-game in which nature first chooses the player roles, such that evolutionary stability applies to the meta-game, and find all evolutionarily stable strategies.

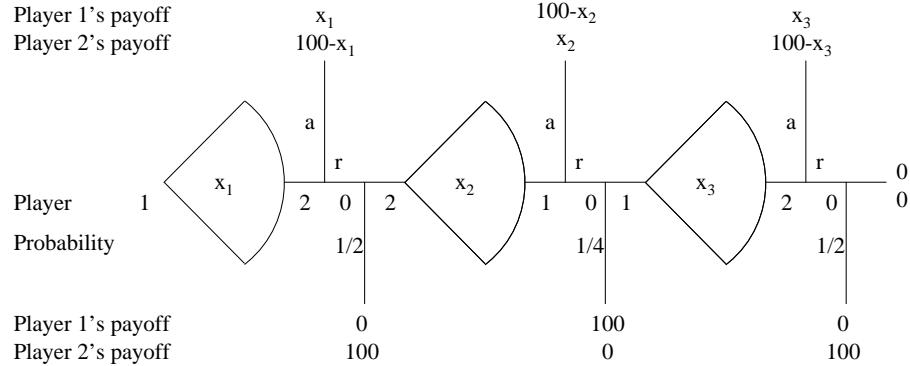
6. Consider the coordination game

$$\begin{array}{ccc} & a & b \\ \begin{array}{c} a \\ b \end{array} & \begin{array}{cc} 2, 2 & 0, 0 \\ 0, 0 & 1, 1 \end{array} \end{array}$$

Suppose that the two players can costlessly exchange messages before playing this game. Let the set of messages, M , be finite, and assume that first both players simultaneously select a message to send, then they both observe the sent messages, and thereafter they simultaneously select an action, a or b , in the game above.

- (a) Write up the (pure-strategy) normal-form of this cheap-talk game.
- (b) Find a pure strategy in the cheap-talk game that is evolutionarily stable (in the cheap-talk game) and that results in the play of (a, a) .
- (c) Show that there exists no pure strategy in the cheap-talk game that is evolutionarily stable (in the cheap-talk game) and that results in the play of (b, b) .
- (d) Find a mixed strategy in the cheap-talk game that is evolutionarily stable (in the cheap-talk game) and that results in the play of (b, b) .

7. The diagram below shows the (infinite-action) extensive form of a bar-gaining game.



There is a total payoff of 100 to be divided between players 1 and 2. But also "nature" (player 0) has three moves in the game. Player 1 begins the game by demanding some payoff $x_1 \in [0, 100]$ for herself. If player 2 accepts this demand ("a"), then the game ends, and the two players receive x_1 and $100 - x_1$ respectively. If player 2 instead rejects the demand ("r"), then Nature makes her first move. With probability 1/2 this ends the game, with probability 1/2 player 2 is given the opportunity to make a demand $x_2 \in [0, 100]$, etc. Note that if player 2 rejects 1's final demand, x_3 , then Nature may end the game by giving payoff zero to both players.

(a) Find a subgame perfect equilibrium of this game. Is it unique?

(b) Find a Nash equilibrium with an outcome that is incompatible with subgame perfection.