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1. Consider infinitely repeated play of the two-player simultaneous-move
game with payoff bi-matrix

a b c
a 3, 0 4, 4 1, 0
b 2, 2 0, 0 0, 0
c 0, 1 0, 1 0, 0

(a) Identify its pure-strategy minmax strategies and payoffs, and its set
of feasible payoff pairs. Show all this in a diagram.

(b) What does the Fudenberg-Maskin Folk Theorem for infinitely repeated
games with discounting say about this example?

(c) Suppose both players’ discount factor is δ = 2/3. Find a subgame
perfect strategy profile that supports the play of the action pair (b, a) in
all periods, and hence the average discounted payoff (1−δ)

P
t δ

tπi(t) = 2
to each player. Specify the strategies (that is, what action each player will
take after every possible history of play).

(d) Suppose the stage game in (c) is repeated a finite number of times.
Find its average discounted subgame perfect equilibrium payoffs, for any
δ ∈ (0, 1). Compare this with your findings in (c), and explain the differ-
ence.

2. Consider a two-player simultaneous-move game G with normal form

L M R
A 10, 13 −5, 0 −5, 0
B 11,−5 4, 1 0, 0
C 0,−5 0, 0 1, 4

(a) Find all strictly dominated pure strategies.

(b) Find all Nash equilibria (in pure and mixed strategies). Compute the
(expected) payoff pair (π1, π2) for every Nash equilibrium, and place these
points in a diagram, with the first player’s payoff on the horizontal axis
and the second player’s payoff on the vertical.

(c) Find a (pure or mixed) minmax strategy against each player, compute
that player’s minmax payoff, and place the corresponding point in the
diagram drawn in (b).

(d) Define the set of feasible and individually rational payoff pairs and
indicate it in the diagram.
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(e) Suppose this game G is repeated twice, where each player’s payoff
in the repeated game is the average of his or her payoffs in each period,
and where both players observe each others’ first-period actions before
deciding on their second-period actions. Can the (average) payoff pair
(7, 7) be obtained in subgame perfect equilibrium in the repeated game?

(f) Suppose that the game G is repeated infinitely many times, with per-
fect monitoring between periods, and where both players discount future
payoffs by the same factor δ. For what values of δ ∈ (0, 1) can the aver-
age discounted payoff pair (10, 13) be obtained in pure-strategy subgame
perfect equilibrium of the infinitely repeated game? Specify the strategies
(that is, what action each player will take after every possible history of
play).

3. Consider a Cournot oligopoly game between firms i = 1, 2, ..., n, where de-
mand is linear and the marginal production cost is constant and equal for
both firms. Let the inverse demand function be P (Q) = max {0, 1−Q},
where Q = q1+ ...+ qn is aggregate output, and let the marginal cost be c
for all firms, where 0 < c < 1. Hence, each firm’s profit is πi (q1, ..., qn) =
[P (Q)− c] · qi
(a) Define the described situation as a simultaneous-move game in normal
form, with profits as payoffs, and show that it has a unique (pure strategy)
Nash equilibrium. Find this, and compute the corresponding profits.

(b) Suppose this interaction is repeated over time, in periods t = 0, 1, 2, 3, ....
Suppose that all firms use pure behavior strategies and can observe each
other’s outputs after each period. After each period there is a probability
p ∈ (0, 1) that the interaction stops, with statistical independence between
periods. The payoff to each firm is its expected total profit. Define this
as an infinitely repeated game with discounting, and identify the discount
factor δ as a function of p.

(c) In the setting in (b) and for n = 2: What exactly does the Fudenberg-
Maskin Folk Theorem for subgame perfect equilibrium say in this exam-
ple? Give an example of a subgame-perfect equilibrium, with a stationary
outcome
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, each period, in which firm 1 earns more than in the

static Nash equilibrium but firm 2 earns less than its static Nash equilib-
rium payoff, supported by temporary minmaxing, and specify the range
of δ-values for which your strategy profile is subgame perfect.

(d) In the setting in (b) and for n > 2: Does the Abreu-Dutta-Smith Folk
Theorem apply? What does it say in this example? Consider subgame
perfect equilibrium strategies whereby the n firms each produce 1/n:th
of the monopoly output quantity, Qm, supported by the threat of Nash-
reversion, that is, when any deviation is punished by play of the static
Nash equilibrium forever. For each n ≥ 2, find the minimal discount
factor δ for which this is possible, in particular, how it depends on n and
its asymptotic value as n→∞.
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4. Consider two altruistic players who each contributes to a public good. For
any contributions x1, x2 ≥ 0 let

ui (x1, x2) = (x1 + x2)
τ − 1

2
x2i

be the resulting (material) utility to player i, where 0 < τ ≤ 1. Each player
i places some positive weight αi ∈ (0, 1) on the other player’s utility, so
that player i’s (psychological) utility is

πi (x1, x2) = ui (x1, x2) + αiuj (x1, x2)

for j 6= i. View this as a simultaneous-move game with payoff functions
πi.

(a) Find the unique Nash equilibrium (x∗1, x
∗
2) of this game, and calculate

the associated material utilities.

(b) For the special case α1 = α2 = α ∈ (0, 1), find the action pair (xo1, xo2)
that maximizes the sum of the players’ psychological utilities, and compare
with the Nash equilibrium action pair for this special case. Does (xo1, x

o
2)

depend on α?

(c) For the special case α1 = α2 = α ∈ (0, 1), and τ = 1, suppose that
this game is repeated indefinitely, and that both players discount future
(psychological) utility by the same discount factor δ ∈ (0, 1). For each such
discount factor, identify the set of action pairs (x1, x2) such that perpetual
play of this action pair is the outcome of a subgame perfect equilibrium in
which each player punishes any deviation by reversion forever to the static
Nash equilibrium. For what range of altruism coefficients and discount
factors, α, δ ∈ (0, 1), is (xo1, xo2) implementable in this way?
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