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Abstract

In a sequence of independent Bernoulli trials the probability for success in
the k:th trial is pk, k = 1, 2, . . . . The number of strings with given number
of failures between two subsequent successes is studied. Explicit expressions
for distributions and moments are obtained for pk = a/(a + b + k − 1), a > 0,
b ≥ 0. Also the limit behaviour of the longest failure string in the first n trials is
considered. For b = 0 the strings correspond to cycles in random permutations.
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1 Introduction

In an infinite sequence of independent Bernoulli trials the probability for success
in the k:th trial is pk for k = 1, 2, . . . . A d–string is a string SF . . . FS of d − 1
failures between two subsequent successes. We will study the number of such strings.
Explicit results are obtained for pk = a/(a+b+k−1), a > 0, b ≥ 0. To our knowledge
only special cases have been studied previously.



For a = 1, b = 0, that is pk = 1/k, 1–strings correspond to double records in a
record sequence. Hahlin (1995) proved that the total number of such records is Po(1)
(Poisson distributed with mean 1). After that, an unpublished proof by Diaconis
inspired a number of studies on 1–strings, see Chern et al (2000), Mori (2001), Joffe
et al (2004) and the references therein.

Sethuraman and Sethuraman (2004) studied d–strings for a = 1, b > 0, and
obtained the joint distribution of the number of d–strings for d = 1, 2, . . . . For
a > 0 and b = 0, d–strings are closely connected with cycle lengths in random
permutations, see e.g. Arratia, Barbour and Tavaré (2003) page 95.

In Section 2 we introduce notations and derive recursions for the binomial mo-
ments of the number of d–strings in a finite sequence for general pk’s. The special
case pk = a/(a + k − 1), connected with random permutations, is studied in Sec-
tion 3. In Section 4 we derive the joint distribution of the total number of d–strings,
d = 1, 2, . . . , and study the limit behaviour of the longest failure string in the first
n trials in an infinite Bernoulli sequence with pk = a/(a + b + k − 1).

2 General case: notations and moments

In the following I1, I2, . . . is a sequence of independent Bernoulli random variables,
Ik is Be(pk), that is

P (Ik = 1) = 1− P (Ik = 0) = pk.

The number of d–strings in the first n trials is

Mdn =
n−d∑

k=1

Ik(1− Ik+1) · · · (1− Ik+d−1)Ik+d

with mean

E(Mdn) =
n−d∑

k=1

pk(1− pk+1) · · · (1− pk+d−1)pk+d.

Note that Mdn = 0 for d ≥ n and
∑n−1

j=1 jMjn ≤ n − 1. Implicitly, the following
result gives the distribution of (M1n, . . . , Mdn).

Proposition 2.1 For the binomial moments

fn(r1, . . . , rd) = E
((

M1n

r1

)
· · ·

(
Mdn

rd

))

with d ≤ n− 1 and
∑d

j=1 jrj ≤ n− 1, the recursion holds:
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fn+1(r1, . . . , rd) = fn(r1, . . . , rd)

+pn+1

[
fn(r1 − 1, r2, . . . , rd)− (1− pn)fn−1(r1 − 1, r2, . . . , rd)

]

+pn+1(1− pn)
[
fn−1(r1, r2 − 1, r3, . . . )− (1− pn−1)fn−2(r1, r2 − 1, r3, . . . )

]
+ . . .

+pn+1(1− pn) · · · (1− pn−d+2)

×[
fn−d+1(r1, . . . , rd−1, rd − 1)− (1− pn−d+1)fn−d(r1, . . . , rd−1, rd − 1)

]
.

Proof. Using generating functions and the independence between the Ik’s we get

E
[
t
M1,n+1

1 · · · tMd,n+1

d

]

= E
[
tM1n
1 · · · tMdn

d

(
1 + (t1 − 1)InIn+1

)(
1 + (t2 − 1)In−1(1− In)In+1

) · · ·
]

= E
[
tM1n
1 · · · tMdn

d

(
1 + (t1 − 1)InIn+1 + (t2 − 1)In−1(1− In)In+1 + . . .

)]

= E
[
tM1n
1 · · · tMdn

d

]
+ (t1 − 1)pn+1E

[
tM1n
1 · · · tMdn

d

(
1− (1− In)

)]

+(t2 − 1)pn+1E
[
tM1n
1 · · · tMdn

d

(
1− (1− In−1)

)(
1− In

)]
+ . . .

= E
[
tM1n
1 · · · tMdn

d

]
+(t1−1)pn+1

[
E

(
tM1n
1 · · · tMdn

d

)
−(1−pn)E

(
t
M1,n−1

1 · · · tMd,n−1

d

)]

+(t2−1)pn+1(1−pn)
[
E

(
t
M1,n−1

1 · · · tMd,n−1

d

)
−(1−pn−1)E

(
t
M1,n−2

1 · · · tMd,n−2

d

)]
+. . . .

Expansion in series around t1 = 1, . . . , td = 1 proves the assertion. 2

Including the string SF · · ·F with d−1 failures after the last success in the count
we get the random variable

Ndn = Mdn + In−d+1(1− In−d+2) · · · (1− In)

with mean
E(Ndn) = E(Mdn) + pn−d+1(1− pn−d+2) · · · (1− pn).

Proposition 2.2 For pn+1 > 0 it holds for the binomial moments:

E
((

N1n

r1

)
· · ·

(
Ndn

rd

))
= E

((
M1n

r1

)
· · ·

(
Mdn

rd

))

+
1

pn+1

[
E

((
M1,n+1

r1

)
· · ·

(
Md,n+1

rd

))
− E

((
M1n

r1

)
· · ·

(
Mdn

rd

))]
.
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Proof. By the law of total probability we have

E
(
t
M1,n+1

1 · · · tMd,n+1

d

)
= pn+1E

(
tN1n
1 · · · tNdn

d

)
+ (1− pn+1)E

(
tM1n
1 · · · tMdn

d

)
,

from which the assertion follows by expansion in series. 2

In an infinite sequence the total number of d–strings

Md∞ =
∞∑

k=1

Ik(1− Ik+1) · · · (1− Ik+d−1)Ik+d < +∞

with probability one if and only if

∞∑

k=1

pk(1− pk+1) · · · (1− pk+d−1)pk+d < +∞.

Indeed, by splitting the series for Md∞ into d + 1 (independent) series this follows
from the Borel-Cantelli lemmas, cf. Mori (2001) page 834.

3 The case pk = a/(a + k − 1)

Following Knuth (1992) we denote descending and ascending factorials by

xn = x(x− 1) · · · (x− n + 1), xn = x(x + 1) · · · (x + n− 1) =
n∑

k=1

[n

k

]
xk,

where
[

n
k

]
is a cycle number or signless Stirling number of the first kind. We assume

in the rest of this section that pk = a/(a+k−1) with a > 0. Closed simple formulas
can be obtained for the binomial moments. Note that

∑n−1
j=1 jMjn ≤ n − 1 and∑n

j=1 jNjn = n (with probability one).

Proposition 3.1 For m =
∑d

j=1 jrj ≤ n− 1:

E
((

M1n

r1

)
· · ·

(
Mdn

rd

))
=

(n− 1)m

(a + n− 1)m

d∏

j=1

(a/j)rj

rj !
.

Proof. By telescoping sums we get

E(Mdn) =
n−d∑

k=1

a

a + k − 1

(
1− a

a + k

)
· · ·

(
1− a

a + k + d− 2

) a

a + k + d− 1
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=
a

d

n−d∑

k=1

[(
1− a

a + k + d− 1
)− (

1− a

a + k − 1
)](

1− a

a + k

)
· · ·

(
1− a

a + k + d− 2

)

=
a

d

(
1− a

a + n− d

)
· · ·

(
1− a

a + n− 1

)
=

a

d

(n− 1)d

(a + n− 1)d
.

Hence the assertion holds for E(Mdn). By elementary calculations the recursion in
Proposition 2.1 is verified. The proof is finished by induction. 2

Proposition 3.2 For d ≤ n and m =
∑d

j=1 jrj ≤ n:

E
((

N1n

r1

)
· · ·

(
Ndn

rd

))
=

nm

(a + n− 1)m

d∏

j=1

(a/j)rj

rj !
,

and for
∑n

j=1 jxj = n:

P (N1n = x1, . . . , Nnn = xn) =
n!
an

n∏

j=1

(a/j)xj

xj !
.

Proof. Using Propositions 2.2 and 3.1 the first assertion follows from an elementary
calculation.

We have using generating functions that

E
(
tN1n
1 · · · tNnn

n

)
= E

(
(1 + (t1 − 1))N1n · · · (1 + (tn − 1))Nnn

)

=
∑

E
((

N1n

r1

)
· · ·

(
Nnn

rn

))
(t1 − 1)r1 · · · (tn − 1)rn

=
∑∑

E
((

N1n

r1

)
· · ·

(
Nnn

rn

))
(−1)r1−x1 · · · (−1)rn−xn

(
r1

x1

)
· · ·

(
rn

xn

)
tx1
1 · · · txn

n .

As
∑n

1 jNjn = n the binomial moments disappears for
∑n

1 jrj > n. Therefore for∑n
1 jxj = n we have rj = xj in the summation. Thus

P (N1n = x1, . . . , Nnn = xn) = E
((

N1n

x1

)
· · ·

(
Nnn

xn

))
,

proving the second assertion. 2

The distribution of (N1n, . . . , Nnn) is the famed Ewens Sampling Formula. Fur-
thermore, Ndn is the number of d–strings in 1I2I3 . . . In1. Using this, the last propo-
sition can be derived by combinatorial arguments, cf. Arratia et al (2003) page 95.
In that context Ndn is interpreted as the number of cycles of length d in a random
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permutation of 1, 2, . . . , n biased by aKn , where Kn =
∑n

k=1 Ik is the number of
cycles with the distribution

P (Kn = j) =
[n

j

] aj

an
, j = 1, 2, . . . , n.

The moment convergence

E
((

M1n

r1

)
· · ·

(
Mdn

rd

))
→

d∏

j=1

(a/j)rj

rj !
, n →∞,

implies the following result, well known for a–biased random permutations, see Ar-
ratia et al (2003) page 96.

Proposition 3.3 The number of strings M1∞,M2∞, . . . are independent Poisson
random variables with E(Md∞) = a/d.

4 The case pk = a/(a + b + k − 1)

In this section we assume that pk = a/(a + b + k− 1) with a > 0 and b > 0. Clearly

Md∞ =
∞∑

k=1

Ik(1− Ik+1) · · · (1− Ik+d−1)Ik+d < +∞

with probability one. Mori (2001) derived the distribution of M1∞. For the special
case a = 1 Sethuraman and Sethuraman (2004) obtained the joint distribution of
M1∞,M2∞, . . . . Using different methods we generalize their result to any a > 0.
Let U be Beta(a, b), that is a random variable with density

fU (u) =
Γ(a + b)
Γ(a)Γ(b)

ua−1(1− u)b−1, 0 < u < 1.

Theorem 4.1 Conditional on a Beta(a,b) random variable U, the number of strings
M1∞,M2∞, . . . are independent Poisson random variables with

E(Md∞|U) =
a

d
(1− (1− U)d), d = 1, 2, . . . .

Proof. We introduce the following mixture of Pólya’s and Hoppe’s urn models. An
urn contains initially one white and one black ball of weights a and b respectively.
Balls are drawn at random proportional to weights. The white and the black ball
are replaced together with a new ball of a colour not present in the urn, other balls
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are replaced together with one new ball of the same colour. All new balls have
weight one. Obviously, the probability of drawing the white ball at drawing k is
pk = a/(a + b + k − 1).

Generate a sequence of W ’s and B’s. We get a W if drawing the white ball
or a ball of a colour emanating from a draw of the white, else we get a B. This
sequence is as drawing from an ordinary Pólya urn. Note that the sequence is
exchangeable. Therefore, by de Finetti’s theorem the sequence can be thought of
as having been generated by first observing the Beta(a, b) random variable U and
then, conditional on the outcome U = u, generating a sequence of independent Be(u)
random variables, with 1 corresponding to W and 0 to B.

In the subsequence of W ’s in the original sequence I1, I2, . . . the probability
of getting the white ball at the j:th trial is p∗j = a/(a + j − 1). According to
Proposition 3.3 the number of d–strings in the subsequence, M∗

d∞, is Po(a/d) and
M∗

1∞,M∗
2∞, . . . are independent.

Recall the following well known fact. If the random variable ξ is Po(µ) and
independent of the independent Be(p) random variables ε1, ε2, . . . , then

∑ξ
j=1 εj

and
∑ξ

j=1(1− εj) are independent Po(µp) and Po(µ(1− p)) respectively.
Consider the 1–strings in the subsequence of W ’s. Each such 1–string is also

a 1–string in the original sequence, provided it was not interrupted by a B. The
probability for interruption is 1−u. As M∗

1∞ is Po(a) it follows from the fact above
and the independence, that conditional on U = u, the total number of 1–strings
in the original sequence, M1∞, is Po(au) and independent of M∗

1∞ −M1∞ which is
Po(a(1− u)).

For the 2–strings we can argue in a similar way as above. Conditional on U = u,
the random variable M2∞ is Poisson with mean

a

2
u2 + a(1− u)u =

a

2
(1− (1− u)2)

and independent of M1∞. The argument extends, Md∞ is Poisson with (conditional)
mean

a

d
ud +

a

d− 1

(
d− 1

1

)
ud−1(1− u) +

a

d− 2

(
d− 1

2

)
ud−2(1− u)2 + · · ·+ au(1− u)d−1

=
a

d

(
1− (1− u)d

)

and independent of M1∞,M2∞, . . . , Md−1,∞. 2
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Finally, consider long strings of failures. Let the last success in the first n trials
occur at trial n+1−A1n; if there is no success set A1n = 0. We have for j = 1, 2, . . . , n

P (A1n > j) =
(
1− a

a + b + n− j

)
· · ·

(
1− a

a + b + n− 1

)

=
(b + n− j)j

(a + b + n− j)j
=

Γ(b + n)
Γ(b + n− j)

Γ(a + b + n− j)
Γ(a + b + n)

.

For j, n →∞ such that j/n → x, 0 < x < 1, Stirling’s formula gives

P (A1n/n > j/n) → (1− x)a, n →∞,

that is A1n/n converges in distribution to Beta(1, a).
In a similar way we find for the number of trials between the last and the second

last success, A2n, that

(A1n, A2n)/n → (U1, (1− U1)U2), n →∞,

in distribution, where U1, U2 are independent Beta(1, a) random variables. The
procedure can be repeated in like manner.

The limit behaviour of the long strings is as if A1n, A2n, . . . had been cycle
lengths in an a–biased random permutation, see Arratia et al (2003) Section 5.4.
The limit distribution of the size ordered A’s is the Poisson–Dirichlet distribution
with parameter a. In particular we have:

Theorem 4.2 For the longest string of failures in the first n trials:

max(A1n, A2n, . . . )/n → L1 = max(U1, (1−U1)U2, (1−U1)(1−U2)U3, . . . ), n →∞,

in distribution, where U1, U2, . . . are independent Beta(1, a) random variables.

Various formulas connected with the random varible L1 can be found in Arratia et
al (2003) Section 5.5.
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natorial Structures: a Probabilistic Approach. European Mathematical Society
Publishing House, ETH-Zentrum, Zürich.
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