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Abstract

The main objective of this work is to find a pricing model for weather
derivatives with payouts depending on temperature. We use historical
data to first suggest a stochastic process that describes the evolution of
the temperature. Since temperature is a non-tradable quantity, we obtain
unique prices of contracts in an incomplete market, using the market price
of risk. Numerical examples of prices of some contracts are presented,
using an approximation formula as well as Monte Carlo simulations.
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1 Introduction

The weather has an enormous impact on business activities of many kinds. The
list of businesses subject to weather risk is long and includes, for example, en-
ergy producers and consumers, supermarket chains, the leisure industry and the
agricultural industries. But it is primarily the energy sector that has driven the
demand for weather derivatives and has caused the weather risk management
industry to now evolve rapidly. The main aim of this paper is to find a pricing
model for weather derivatives. These are financial contracts with payouts that
depend on the weather in some form. The underlying variables can be for exam-
ple temperature, humidity, rain or snowfall. Since the most common underlying
variable is temperature, only temperature based derivatives will be considered
here.

There are a number of factors behind the growth of the weather derivatives
market. One of these is the deregulation of the energy markets. Energy produc-
ers have for a long time been able to see that energy prices are highly correlated
with the weather. In a competitive market the energy producers can no longer
set the prices so that they will not suffer from ”bad” weather. Trading weather
derivatives has become a way for these companies to hedge their risks. Another
key factor is that the capital markets and the insurance markets have come
closer to each other. There has been a growth in recent years in the number of
catastrophe bonds issued, and the Chicago Board of Trade (CBOT) has intro-
duced catastrophe options. Weather derivatives seem to be a logical extension
of this. People are now beginning to realize that they can no longer blame
low profits on the weather. Now that weather derivatives have been introduced
there is a possibility to hedge a company’s cash-flow against ”bad” weather.

In Section 2, we give a short overview of the market of weather drivatives.
In Section 3, we will focus on finding a stochastic process that describes the
evolution of the temperature. We find that an Ornstein-Uhlenbeck process is
appropriate. The unknown parameters in the model are estimated using histori-
cal temperature data. Since we have only discrete observations the estimation of
some parameters in the model is based on the use of martingale estimation func-
tions, proposed by Bibby & Sørensen. Section 4 is devoted to pricing contracts
with temperature as the underlying. As temperature is a non-tradable quantity
we have to consider the market price of risk in order to obtain unique prices
of the contracts. Finally, numerical examples of prices of some contracts, using
an approximation formula as well as Monte Carlo simulations are presented in
Section 5.

2 The market of weather derivatives

Until today approximately 3000 deals with a total value of $5.5 billion have been
made in the US weather derivatives market, whereas in Europe only about 100
weather deals worth £30 million have been completed (see Jain & Baile [7]).

The first transaction in the weather derivatives market took place in the US
in 1997, see Considine [5]. The market was jump started during the El Niño1

1El Niño is a periodic warming of the tropical Pacific ocean which affects weather around
the world. Typical consequences of El Niño include increased rainfall in the southern US



winter of 1997-98, which was one of the strongest such events on record. This
phenomenon received huge publicity in the American press. Many companies
then decided to hedge their seasonal weather risk due to the risk of significant
earnings decline.

After that the market for weather derivatives expanded rapidly and con-
tracts started to be traded over-the-counter (OTC) as individually negotiated
contracts. This OTC market was primarily driven by companies in the energy
sector. To increase the size of the market and to remove credit risk from the
trading of the contracts, the Chicago Mercantile Exchange (CME) started an
electronic market place for weather derivatives in September 1999. This was the
first exchange where standard weather derivatives could be traded. In Section
2.1.1 below we will look more closely at the type of contracts that are traded
on the CME. Among the major market makers for the CME are Aquila Energy,
Koch Energy Trading, Southern Energy, Enron and Castlebridge Weather Mar-
kets. All these firms are also active in the OTC market for weather derivatives.

There are probably not so many end-users trading contracts on the CME. It
can rather be seen as a possibility for the market makers to hedge the positions
they take when offering more specialized contracts to end-users.

This newly developed market for weather derivatives is currently not very
liquid though. It seems like many companies have not yet established a hedging
policy or even figured out their exposure to weather risk. This means that there
is only a relatively small amount of contracts traded on the exchange, and the
bid/offer spreads are quite large.

The European market has not developed as quickly as the US market, but
there are a number of factors that indicate its growth potential. One of them is
the fact that Europe’s energy industry is not yet fully deregulated, and as dereg-
ulation spreads throughout the industry the volume in weather deals traded in
Europe should increase. This will improve liquidity of the market and encourage
new actors to enter.

When actors outside the energy sector become more interested in the weather
derivatives market there will also be an enormous growth potential. As men-
tioned earlier there are companies in many different areas that are affected by
the weather. When these companies start to look at the weather derivatives
market for hedging purposes, increased liquidity as well as new products will
probably follow.

Another key for the market to grow is the existence of standardised con-
tracts. London International Financial Futures Exchange (LIFFE) is currently
developing pan-European weather futures, which should increase the size of the
overall weather derivatives market.

There are also some barriers that must be removed if the market is to grow.
For example the quality and cost of weather data varies considerably across
Europe. Companies that want to analyze their performance against historical
weather data must often buy information from the national meteorological of-
fices, and that could, in some countries, be quite expensive. It is also important
that the quality of the weather data is good so that companies can rely on it
when pricing derivatives.

and drought in the western Pacific. Winter temperatures in the north-central US states are
typically higher than normal in El Niño years, and lower than normal in the south-east and
south-west of the country.
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2.1 The contracts

Weather derivatives are usually structured as swaps, futures, and call/put op-
tions based on different underlying weather indices. Some commonly used in-
dices are heating and cooling degree-days (See Definition 2.2), rain and snowfall.
In this work we will only study the degree-days indices, because they are most
often used.

We start with some basic definitions and terminology. When we from now
on speak about the temperature we use the following definition.

Definition 2.1 (Temperature) Given a specific weather station, let Tmax
i

and Tmin
i denote the maximal and minimal temperatures (in degrees Celsius)

measured on day i. We define the temperature for day i as

Ti ≡ Tmax
i + Tmin

i

2
. (2.1)

As mentioned above, one important underlying variable for weather deriva-
tives is the degree-day. This quantity is defined below.

Definition 2.2 (Degree-days) Let Ti denote the temperature for day i. We
define the heating degree-days, HDDi and the cooling degree-days, CDDi, gen-
erated on that day as

HDDi ≡ max{18− Ti, 0}, (2.2)

and

CDDi ≡ max{Ti − 18, 0}, (2.3)

respectively.

In Definition 2.2 above we see that the number of HDDs or CDDs for a specific
day is just the number of degrees that the temperature deviates from a reference
level. It has become industry standard in the US to set this reference level at
65o Fahrenheit (18o C). The names heating and cooling degree days originate
from the US energy sector. The reason is that if the temperature is below 18o C
people tend to use more energy to heat their homes, whereas if the temperature
is above 18o C people start turning their air conditioners on, for cooling.

Most temperature based weather derivatives are based on the accumulation
of HDDs or CDDs during a ceratin period, usually one calender month or a
winter/summer period. Typically the HDD season includes winter months from
November to March and the CDD season is from May to September. April and
October are often referred to as the ”shoulder months”.

2.1.1 The CME contracts

The CME offers trading with futures based on the CME Degree Day Index,
which is the cumulative sum of daily HDDs or CDDs during a calendar month,
as well as options on these futures. The CME Degree Day Index is currently
specified for eleven US cities.

The HDD/CDD Index futures are agreements to buy or sell the value of the
HDD/CDD Index at a specific future date. The notional value of one contract
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is $100 times the Degree Day Index, and the contracts are quoted in HDD/CDD
Index points. The futures are cash-settled, which means that there is a daily
marking-to-market based upon the index, with the gain or loss applied to the
customer’s account.

A CME HDD or CDD call option is a contract which gives the owner the
right, but not the obligation, to buy one HDD/CDD futures contract at a spe-
cific price, usually called the strike or exercise price. The HDD/CDD put op-
tion analogously gives the owner the right, but not the obligation, to sell one
HDD/CDD futures contract. On the CME the options on futures are European
style, which means that they can only be exercised at the expiration date.

2.1.2 Weather options

Outside the CME there are a number of different contracts traded on the OTC
market. One common type of contract is the option. There are two types of
options, calls and puts. The buyer of a HDD call, for example, pays the seller a
premium at the beginning of the contract. In return, if the number of HDDs for
the contract period is greater than the predetermined strike level the buyer will
recieve a payout. The size of the payout is determined by the strike and the tick
size. The tick size is the amount of money that the holder of the call receives
for each degree-day above the strike level for the period. Often the option has a
cap on the maximum payout unlike, for example, traditional options on stocks.

A generic weather option can be formulated by specifying the following pa-
rameters:

• The contract type (call or put)

• The contract period (e.g. January 2001)

• The underlying index (HDD or CDD)

• An official weather station from which the temperature data are obtained

• The strike level

• The tick size

• The maximum payout (if there is any)

To find a formula for the payout of an option, let K denote the strike level
and α the tick size. Let the contract period consist of n days. Then the number
of HDDs and CDDs for that period are

Hn =
n∑

i=1

HDDi, and Cn =
n∑

i=1

CDDi (2.4)

respectively. Now we can write the payout of an uncapped HDD call as

X = α max {Hn −K, 0} . (2.5)

The payouts for similar contracts like HDD puts and CDD calls/puts are defined
in the same way.
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2.1.3 Weather swaps

Swaps are contracts in which two parties exchange risks during a predetermined
period of time. In most swaps, payments are made between the two parties,
with one side paying a fixed price and the other side paying a variable price.

In one type of weather swap that is often used, there is only one date when
the cash-flows are ”swapped”, as opposed to interest rate swaps, which usually
have several swap dates. The swaps with only one period can therefore be
thought of as forward contracts. Often the contract periods are single calendar
months or a period such as January-March.

In the case of a standard HDD swap, the parties agree on a given strike of
HDDs for the period, and the amount swapped is, for example, 10000 euro/HDD
away from the strike. Usually there is also a maximum payout corresponding
to 200 degree days.

2.2 Weather derivatives vs insurance contracts

Is there really any need for weather based derivatives? Why cannot the in-
surance industry take care of the need to hedge against the outcome of the
weather?

The main difference between derivatives and insurance contracts is that the
holder of an insurance contract has to prove that he has suffered a financial loss
due to weather in order to be compensated. If he is not able to show this, the
insurance company will not pay him any money. Payouts of weather derivatives
are based only on the actual outcome of the weather, regardless of how it affects
the holder of the derivative. One does not need to have any weather sensitive
production, for example, to buy and benefit from a weather derivative. As any
derivatives, these contracts can be bought for mere speculation.

Insurance contracts are usually designed to protect the holder from extreme
weather events such as earthquakes and typhoons, and they do not work well
with the uncertainties in normal weather. Weather derivatives, on the other
hand, can be constructed to have payouts in any weather condition.

There is another important advantage of derivative contracts compared to
insurance contracts. There may be two actors on the market, one of which will
make profits if there is a very cold winter, whereas the other will benefit from
a warm winter. In a derivatives market these two actors can meet and enter a
contract such that they will hedge each other’s risks. This is not possible in the
insurance market.

To understand how weather derivatives can be used in practice we give two
simple examples.

Example 2.1 A heating oil retailer may feel that if the winter is very cold
it will have high revenues, so it might sell a HDD call. If the winter is not
particularly cold, the oil retailer keeps the premium of the call. On the other
hand, if the winter is very cold, the retailer can afford to finance the payout
of the option because its revenues are high. The company has thus reduced its
exposure to weather risk. 2
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Example 2.2 This is an example taken from the real world. The London-based
chain of wine bars Corney & Barrow last summer bought coverage to protect
itself against bad weather, which would reduce its sales. Under the terms of
the deal, if the temperature fell below 24o C on Thursdays or Fridays between
June and September the company received a payment. The payments were fixed
at £15000 per day, up to a maximum limit of £100000 in total for the whole
period. 2

3 Modelling temperature

Since we have decided to only focus on derivatives with the temperature as the
underlying variable, we will in this section try to find a model that describes the
temperature. The goal is to find a stochastic process describing the temperature
movements. When we later on want to price weather derivatives based on
temperature it will be of great use to have an idea of how the temperature
process behaves.

To our help in finding a good model we have a database with temperatures
from the last 40 years from different Swedish cities. The temperature data
consists of daily mean temperatures, computed according to Definition 2.1. In
Figure 1 we have plotted the daily mean temperatures at Stockholm Bromma
Airport for 9 consecutive years.
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Figure 1: Daily mean temperatures at Bromma Airport during 1989-1997.

In the following analysis we will use the whole 40 years data series obtained
from Bromma Airport.

3.1 The mean temperature

From the temperature data in Figure 1 we clearly see that there is a strong
seasonal variation in the temperature. The mean temperature seems to vary
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between about 20o C during the summers and −5o C during the winters. After
a quick glance at Figure 1 we guess that it should be possible to model the
seasonal dependence with, for example, some sine-function. This function would
have the form

sin(ωt + ϕ), (3.1)

where t denotes the time, measured in days. We let t = 1, 2, . . . denote January
1, January 2 and so on. Since we know that the period of the oscillations is one
year (neglecting leap years) we have ω = 2π/365. Because the yearly minimum
and maximum mean temperatures do not usually occur at January 1 and July
1 respectively, we have to introduce a phase angle ϕ. Moreover, a closer look
at the data series reveals a positive trend in the data. It is weak but it does
exist. The mean temperature actually increases each year. There can be many
reasons to this. One is the fact that we may have a global warming trend all
over the world. Another is the so called urban heating effect, which means that
temperatures tend to rise in areas nearby a big city, since the city is growing
and warming its surroundings. To catch this weak trend from data we will
assume, as a first approximation, that the warming trend is linear. We could
have assumed it polynomial, but due to its weak effect on the overall dynamics
of the mean temperature, it is only the linear term of this polynomial that will
dominate.

Summing up, a deterministic model for the mean temperature at time t, Tm
t ,

would have the form

Tm
t = A + Bt + C sin(ωt + ϕ). (3.2)

where, the parameters A,B, C, ϕ have to be chosen so that the curve fits the
data well. The estimation of these parameters is given in Section 3.4, below.

3.2 The driving noise process

Unfortunately temperatures are not deterministic. Thus, to obtain a more re-
alistic model we now have to add some sort of noise to the deterministic model
(3.2). One choice is a standard Wiener process, (Wt, t ≥ 0). Indeed, this is
reasonable not only with regard to the mathematical tractability of the model,
but also because Figure 2 shows a good fit of the plotted daily temperature
differences with the corresponding normal distribution, though the probabil-
ity of getting small differences in the daily mean temperature will be slightly
underestimated.

A closer look at the data series reveals that the quadratic variation σ2
t ∈ R+

of the temperature varies across the different months of the year, but nearly
constant within each month. Especially during the winter the quadratic vari-
ation is much higher than during the rest of the year. Therefore, we make
the assumption that σt is a piecewise constant function, with a constant value
during each month. We specify σt as

σt =





σ1, during January,
σ2, during February,

...
...

σ12, during December,

(3.3)
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Figure 2: The density of the daily temperature differences.

where {σi}12i=1 are positive constants. Thus, a driving noise process of the tem-
perature would be (σtWt, t ≥ 0).

3.3 Mean-reversion

We also know that the temperature cannot, for example, rise day after day for
a long time. This means that our model should not allow the temperature to
deviate from its mean value for more than short periods of time. In other words,
the stochastic process describing the temperature we are looking for should have
a mean-reverting property.

Putting all the assumptions together, we model temperature by a stochastic
process solution of the following SDE

dTt = a(Tm
t − Tt)dt + σtdWt, (3.4)

where a ∈ R determines the speed of the mean-reversion. The solution of such
an equation is usually called an Ornstein-Uhlenbeck process.

The problem with Eq.(3.4) is that it is actually not reverting to Tm
t in the

long run– See, for example, Dornier & Queruel [6]. To obtain a process that
really reverts to the mean (3.2) we have to add the term

dTm
t

dt
= B + ωC cos(ωt + ϕ) (3.5)

to the drift term in (3.4). As the mean temperature Tm
t is not constant this

term will adjust the drift so that the solution of the SDE has the long run mean
Tm

t .
Starting at Ts = x we now get the following model for the temperature

dTt =
{

dTm
t

dt
+ a(Tm

t − Tt)
}

dt + σtdWt, t > s (3.6)

9



whose solution is

Tt = (x− Tm
s ) e−a(t−s) + Tm

t +

t∫

s

e−a(t−τ)στdWτ , (3.7)

where

Tm
t = A + Bt + C sin(ωt + ϕ). (3.8)

3.4 Parameter estimation

In the previous section we decided to use the SDE (3.6) to model the tempera-
ture. In this section we will estimate the unknown parameters A, B,C, ϕ, a and
σ. The estimations are based on temperature data from Bromma Airport from
the last 40 years.

3.4.1 Fitting the mean temperature model to data

To find numerical values of the constants in (3.8) we fit the function

Yt = a1 + a2t + a3 sin(ωt) + a4 cos(ωt) (3.9)

to the temperature data using the method of least squares. This means that we
have to find the parameter vector ξ = (a1, a2, a3, a4) that solves

min
ξ
‖Y −X‖2, (3.10)

where Y is the vector with elements (3.9) and X is the data vector. The
constants in the model (3.8) are then obtained by

A = a1, (3.11)
B = a2, (3.12)

C =
√

a2
3 + a2

4, (3.13)

ϕ = arctan
(

a4

a3

)
− π. (3.14)

Inserting the numerical values into Eq.(3.8), we get the following function for
the mean temperature,

Tm
t = 5.97 + 6.57 · 10−5t + 10.4 sin

(
2π

365
t− 2.01

)
. (3.15)

The amplitude of the sine-function is about 10o C, which means that the differ-
ence in temperature between a typical winter day and a summer day is about
20o C. The trend is apparently very small, but during 40 years it will imply a
rise of the mean temperature of about 1o C. A plot of this function together
with the temperature data is shown in Figure 3.
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Figure 3: The mean temperature (3.15) and the real temperature at Bromma
Airport during two years.

3.4.2 Estimation of σ

In this section we aim at deriving a reliable estimator of σ from the data. We
will derive two estimators of σ from data collected for each month. Given a
specific month µ of Nµ days, denote the outcomes of the observed temperatures
during the month µ by Tj , j = 1, . . . , Nµ. The first estimator is based on the
the quadratic variation of Tt (see e.g. Basawa & Prasaka Rao [1], pp. 212-213):

σ̂2
µ =

1
Nµ

Nµ−1∑

j=0

(Tj+1 − Tj)2. (3.16)

The second estimator is derived by discretizing (3.6) and thinking of the dis-
cretised equation as a regression equation. Indeed, during a given month µ, the
discretised equation is

Tj = Tm
j − Tm

j−1 + aTm
j−1 + (1− a)Tj−1 + σµεj−1, j = 1, . . . , Nµ (3.17)

where {εj}Nµ−1
j=1 are independent standard normally distributed random vari-

ables. With T̃j ≡ Tj − (Tm
j − Tm

j−1) we can write (3.17) as

T̃j = aTm
j−1 + (1− a)Tj−1 + σµεj−1, (3.18)

which can be seen as a regression of today’s temperature on yesterday’s tem-
perature. Thus, an efficient estimator of σµ is (see e.g. Brockwell & Davis [9])

σ̂2
µ =

1
Nµ − 2

Nµ∑

j=1

(
T̃j − âTm

j−1 − (1− â)Tj−1

)2

. (3.19)

Here we need an estimator of a to find the estimator of σµ. This is the objective
of the following section.

11



3.4.3 Estimation of the mean-reversion parameter a

Since the time between observations of the temperature (one day) is obviously
bounded away from zero, it is appropriate to estimate the mean-reversion pa-
rameter a using the martingale estimation functions method suggested in Bibby
& Sørensen [3]: Based on observations collected during n days, an efficient es-
timator ân of a is obtained as a zero of the equation

Gn(ân) = 0, (3.20)

where,

Gn(a) =
n∑

i=1

ḃ(Ti−1; a)
σ2

i−1

{Ti − E[Ti | Ti−1]} (3.21)

and ḃ(Tt; a) denotes the derivative w.r.t. a of the drift term

b(Tt; a) =
dTm

t

dt
+ a(Tm

t − Tt). (3.22)

To solve (3.20) we only have to determine each of the terms E[Ti | Ti−1] in
(3.21). Indeed, by Eq.(3.7), for t ≥ s,

Tt = (Ts − Tm
s ) e−a(t−s) + Tm

t +

t∫

s

e−a(t−τ)στdWτ , (3.23)

which yields

E[Ti | Ti−1] =
(
Ti−1 − Tm

i−1

)
e−a + Tm

i , (3.24)

where, again,
Tm

t = A + Bt + C sin(ωt + ϕ).

Therefore,

Gn(a) =
n∑

i=1

Tm
i−1 − Ti−1

σ2
i−1

{
Ti −

(
Ti−1 − Tm

i−1

)
e−a − Tm

i

}
(3.25)

from which it is easily checked that

ân = − log

( ∑n
i=1 Yi−1 {Ti − Tm

i }∑n
i=1 Yi−1

{
Ti−1 − Tm

i−1

}
)

(3.26)

is the unique zero of Eq. (3.20), where

Yi−1 ≡
Tm

i−1 − Ti−1

σ2
i−1

i = 1, 2, . . . , n. (3.27)

Inserting the numerical values into (3.16) and (3.19) we get estimations of σ
for the different months. The estimations are listed in Table 1. With σ from
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Month Estimation 1 Estimation 2 Mean value
January 3.46 3.37 3.41
February 2.96 2.98 2.97
March 2.32 2.27 2.29
April 2.00 1.95 1.98
May 2.01 1.99 2.00
June 1.98 1.95 1.96
July 1.70 1.68 1.69
August 1.61 1.58 1.60
September 1.86 1.83 1.85
October 2.42 2.33 2.38
November 2.66 2.58 2.62
December 3.36 3.25 3.30

Table 1: The estimators of σ, based on the quadratic variation and the regression
approach, and their mean value.

Table 1 we obtain â = 0.237. It could be interesting to see how much this value
differs from an estimation based only on the discretised score function

˙̃
ln(a) =

n∑

i=1

ḃ(Ti−1; a)
σ2

i−1

(Ti − Ti−1)−
n∑

i=1

b(Ti−1; θ)ḃ(Ti−1; a)
σ2

i−1

. (3.28)

Indeed, the unique zero of Eq. (3.28) is

â′n =
∑n

i=1 Yi−1 {Ti − Ti−1 −B − Cω cos(ω(i− 1) + ϕ)}∑n
i=1 Yi−1

{
Tm

i−1 − Ti−1

} , (3.29)

where Yi−1 is the same as defined in (3.27).
With the numerical values inserted into (3.29) we get â′n = 0.211, which is

11 % less than ân. Thus, using the estimator â′n could induce an error in the
price of a derivative.

Now, having estimated all the unknown parameters in our temperature
model (3.6)-(3.8), we are able to simulate trajectories of the Ornstein-Uhlenbeck
process. Indeed, Figure 4 shows one possible trajectory of the temperature dur-
ing the following years. Comparing this simulation with the real temperatures
plotted earlier in Figure 1, we conclude that, at least visually, the temperature
model (3.6)-(3.8) seems to have the same properties as the observed tempera-
ture.

4 Pricing weather derivatives

The market for weather derivatives is a typical example of an incomplete market,
because the underlying variable, the temperature, is not tradable. Therefore we
have to consider the market price of risk λ, in order to obtain unique prices
for such contracts. Since there is not yet a real market from which we can
obtain prices, we assume for simplicity that the market price of risk is constant.
Furthermore, we assume that we are given a risk free asset with constant interest
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Figure 4: One trajectory of the Ornstein-Uhlenbeck process that we will use to
model the temperature.

rate r and a contract that for each degree Celsius pays one unit of currency.
Thus, under a martingale measure Q, characterized by the market price of risk
λ, our price process also denoted by Tt satisfies the following dynamics:

dTt =
{

dTm
t

dt
+ a(Tm

t − Tt)− λσt

}
dt + σtdVt, (4.1)

where, (Vt, t ≥ 0) is a Q–Wiener process. Since the price of a derivative is
expressed as a discounted expected value under martingale measure Q, we start
by computing the expected value and the variance of Tt under the measure Q.
Indeed, as a Girsanov transformation only changes the drift term, the variance
of Tt is the same under both measures. Therefore,

Var[Tt | Fs] =

t∫

s

σ2
ue−2a(t−u)du. (4.2)

Moreover, it follows from (3.7) that

EP[Tt | Fs] = (Ts − Tm
s ) e−a(t−s) + Tm

t . (4.3)

Hence, in view of Eq.(4.1) we must have

EQ[Tt | Fs] = EP[Tt | Fs]−
t∫

s

λσue−a(t−u)du. (4.4)

Evaluating the integrals in one of the intervals where σ is constant, we get that

EQ[Tt | Fs] = EP[Tt | Fs]− λσi

a

(
1− e−a(t−s)

)
(4.5)
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and the variance is

Var[Tt | Fs] =
σ2

i

2a

(
1− e−2a(t−s)

)
. (4.6)

For later use, we need to compute the covariance of the temperature between
two different days. Indeed, for 0 ≤ s ≤ t ≤ u,

Cov[Tt, Tu | Fs] = e−a(u−t)Var[Tt | Fs]. (4.7)

Suppose now that t1 and tn denote the first and last day of a month and
start the process at some time s from the month before [t1, tn]. To compute the
expected value and variance of Tt in this case, we split the integrals in (4.4) and
(4.2) into two integrals where σ is constant in each one of them. We then get

EQ[Tt | Fs] = EP[Tt | Fs]− λ

a
(σi − σj)e−a(t−t1) +

λσi

a
e−a(t−s) − λσj

a
(4.8)

and the variance is

Var[Tt | Fs] =
1
2a

(σ2
i − σ2

j )e−2a(t−t1) − σ2
i

2a
e−2a(t−s) +

σ2
j

2a
. (4.9)

The generalisation to larger time intervals becomes now obvious.

4.1 Pricing a heating degree day option

As mentioned before, most weather derivatives involving the temperature are
based on heating or cooling degree days. In this section we will show how to
price a standard heating degree day option.

We begin with the HDD call option. Recall from Section 2.1.2 that the
payout of the HDD call option is of the form

X = α max {Hn −K, 0} , (4.10)

where, for simplicity α = 1 unit of currency/HDD and

Hn =
n∑

i=1

max{18− Tti , 0}. (4.11)

The contract (4.10) is a type of an arithmetic average Asian option. In the case
of a log-normally distributed underlying process, no exact analytic formula for
the price of such an option is known. Here we have an underlying process which
is normally distributed, but the maximum function complicates the task to find
a pricing formula. We therefore try to make some sort of approximation.

We know that, under Q, and given information at time s,

Tt ∼ N(µt, vt), (4.12)

where µt is given by (4.8) and vt by (4.9). Now suppose that we want to find the
price of a contract whose payout depends on the accumulation of HDDs during
some period in the winter, for example the month of January. In Stockholm,
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the probability that max{18−Tti , 0} = 0 should be extremely small on a winter
day. Therefore, for such a contract we may write

Hn = 18n−
n∑

i=1

Tti . (4.13)

The distribution of this is easier to determine. We know that Tti , i = 1, . . . , n are
all samples from an Ornstein-Uhlenbeck process, which is a Gaussian process.
This means that also the vector (Tt1 , Tt2 , . . . Ttn) is Gaussian. Since the sum in
(4.13) is a linear combination of the elements in this vector, Hn is also Gaussian.
With this new structure of Hn it only remains to compute the first and second
moments. We have, for t < t1,

EQ [Hn | Ft] = EQ
[
18n−

n∑

i=1

Tti

∣∣∣∣ Ft

]
= 18n−

n∑

i=1

EQ[Tti | Ft] (4.14)

and

Var[Hn | Ft] =
n∑

i=1

Var [Tti | Ft] + 2
∑∑

i<j

Cov
[
Tti , Ttj | Ft

]
. (4.15)

Now, suppose that we have made the calculations above, and found that

EQ[Hn | Ft] = µn and Var[Hn | Ft] = σ2
n. (4.16)

Thus, Hn is N(µn, σn)–distributed. Hence, the price at t ≤ t1 of the claim
(4.10) is

c(t) = e−r(tn−t)EQ [max{Hn −K, 0} | Ft]

= e−r(tn−t)

∞∫

K

(x−K)fHn(x)dx

= e−r(tn−t)

(
(µn −K)Φ (−αn) +

σn√
2π

e−
α2

n
2

)
, (4.17)

where, αn = (K − µn)/σn and Φ denotes the cumulative distribution function
for the standard normal distribution.

In the same way we can derive a formula for the price of a HDD put option,
which is the claim

Y = max{K −Hn, 0}. (4.18)

The price is

p(t) = e−r(tn−t)EQ [max{K −Hn, 0} | Ft]

= e−r(tn−t)

K∫

0

(K − x)fHn(x)dx

= e−r(tn−t)

[
(K − µn)

(
Φ(αn)− Φ

(
−µn

σn

))
+

σn√
2π

(
e−

α2
n
2 − e−

1
2 (µn

σn
)2

)]
.

(4.19)

16



The formulas (4.17) and (4.19) above hold primarily for contracts during win-
ter months, which typically is the period November-March. During the summer
we cannot use these formulas without restrictions. If the mean temperatures are
very close to, or even higher than, 18o C we no longer have max{18−Tti

, 0} 6= 0.
For such contracts we could use the method of Monte Carlo simulations de-
scribed in Section 4.2. As mentioned earlier this reference level (18o C) origi-
nates from the US market, but it seems to be used also in Europe. Perhaps it
could be more interesting to base the derivatives on some reference level which
is closer to the expected mean temperature for the period.

4.1.1 Maximum payouts

In practice many options often have a cap on the maximum payout. The reason
is to reduce the risks that extreme weather conditions would cause. An option
with a maximum payout could be constructed from two options without maxi-
mum payouts. If we enter a long position in one option and a short position in
another option with a higher strike value, we get a payout function that would
look something like Figure 5. Thus, an option with a maximum payout can be

0 100 200 300 400 500 600 700 800 900
−50

0

50

100

150

200

Number of HDDs

P
ay

ou
t

Figure 5: The payout of a HDD call option with a maximum payout.

treated as a portfolio of two standard options. This means that we do not have
to derive an explicit formula for the price of the capped option.

4.1.2 In-period valuation

Often one would like to find the price of the option inside the contract period.
Suppose we want to find the the price at a time ti, t1 ≤ ti ≤ tn. We could then
rewrite the variable Hn as

Hn = Hi + Hj . (4.20)

Here Hi is known at ti and Hj is stochastic. The payout of the HDD call option
can then be rewritten as

X = max{Hn −K, 0} = max{Hi + Hj −K, 0} = max{Hj − K̃, 0}, (4.21)
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where K̃ = K−Hi. An in-period option can thus be valued as an out-of-period
option with transformed variables as above.

4.2 Monte Carlo simulations

In this section we will not make any simplifying assumption about the distribu-
tion of Hn or any other variable. Instead we will use Monte Carlo simulations.
The Monte Carlo simulation technique is a way to numerically calculate the
expected value E[g(X(t))], where X is the solution to some SDE and g is some
function. The approximation is based on

E[g(X(t))] ≈ 1
N

N∑

i=1

g(X(t, ωi)), (4.22)

where X is an approximation of X, which has to be used if the exact solution
X is not available. The idea is to simulate a lot of trajectories of the process
and then approximate the expected value with the arithmetic average.

When we simulate the temperature trajectories for a given period of time we
could either start the simulation today, and use today’s observed temperature as
the initial value, or we could start the simulation at a future date near the first
day of the period we are interested in, with the expected mean temperature for
that day as the initial value. If the contract period is far enough ahead in time
it will not be necessary to start the simulations at today’s date. The reason is
that the temperature in the nearby future will not affect the temperature very
much during the contract period. After some time the temperature process will
not be dependent on the initial value, and the variance will have reached its
”equilibrium” value. On the other hand, if we are close enough to the start of
the contract period (or even inside it) we should start the simulations at the
current date.

4.3 Calibrating the model to the market

Before we can calculate any prices at all we have to calibrate the pricing model
to the market conditions. We first have to find the still unknown parameter λ,
the market price of risk. To obtain an accurate pricing model we also have to
take meteorological forecasts into account.

4.3.1 The market price of risk

To be able to simulate temperature trajectories under the risk neutral measure
Q we have to determine the market price of risk, λ. We earlier made the
assumption that this quantity is a constant. To find an estimate of λ we have
to look at market prices for some contracts, and examine what value of λ that
gives a price from our model that fits the market price. But unfortunately there
is not yet a fully developed weather derivatives market for contracts on Swedish
cities.

The ”market” today consists of a number of actors who quote prices on
options and other derivatives. One of these actors, Scandic Energy, has provided
us with prices for some options. These prices are not market quotes though, and
should only be seen as indications. We received ”prices” on HDD call options
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for January and February. The specifications of these contracts are listed in
Table 2. The premiums, in the beginning of December 2000, for option I and

Parameter Option I Option II
Weather station Bromma Airport Bromma Airport
Index HDD HDD
Type Call Call
Period January 2001 February 2001
Strike 600 HDDs 540 HDDs
Nominal 1 SEK/HDD 1 SEK/HDD
Max payout 200 SEK 200 SEK

Table 2: The specifications of two HDD options.

II were 25 SEK and 45 SEK, respectively. Using the model presented here we
obtain, with λ = 0, prices at about 29 SEK for both contracts. Thus we can
conclude that the contracts were not ”priced” using the same market price of
risk. The price 25 SEK of option I would correspond to a negative value of λ,
and the price 45 SEK of option II corresponds to λ ≈ 0.08. Without any deeper
knowledge of the temperature forecasts (in December) for January and February
it is difficult to explain the big difference in the prices of these options. The
strike levels are both set close to the expected value of Hn for the two periods,
and the temperature variations during February are historically smaller than
during January.

Although these results contradict the assumption made earlier that the mar-
ket price of risk is constant, we will use this assumption in lack of better infor-
mation. Pricing a derivative in an incomplete market is pricing a derivative in
terms of the price of some benchmark derivative. So we now decide to use option
II in Table 2, with the price 45 SEK, as our benchmark derivative. It would
have been interesting to look at prices of contracts in the future, for example
during some summer month. But unfortunately there are not yet any contracts
traded in Sweden during other periods than the winter.

4.3.2 Using forecasts

So far we have determined prices without taking any meteorological forecasts
into account. We could say that these prices hold at times long enough before the
contract period starts. Meteorologists usually say that temperature predictions
more than a week or so in advance are not very significant. However, they are
often able to make some sort of rough long term forecasts which can give a hint
if it during a certain period will be warmer or cooler than normal.

Therefore, when we want to find the price of a contract at a date sufficiently
close to the start of the contract period, we must adjust our model of the tem-
perature. This adjustment can be made in several different ways. For example,
if we believe that the temperature will be higher than normal, during the con-
tract period, we would increase the parameter A in the model (3.8). This will
lead to an increased mean temerature, and thus a decreased value of Hn, for the
period. Other ways to incorporate meteorological data into the pricing model
could be to change the variation σ, or the amplitude C.
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One way to use the existing meteorological expectations is to look at prices
on the so called swap (forward) market. The EnronOnline website2 quotes
prices on HDD swaps for different terms. As an example, in the beginning of
December the bid/offer prices of HDD swaps for January and February were
592/603 HDDs and 540/550 HDDs respectively. Thus we should adjust the
model so that we get a mean value at about 600 HDDs for January and about
545 HDDs for February. The simplest way to do this is to change the parameter
A.

This procedure is analogous to the method of fitting an interest rate model
to the initial term structure.

5 Results

In this section we will calculate prices of some contracts, and compare the
approximation formula with the Monte Carlo simulation method. We used
20000 sample paths for the Monte Carlo simulations.

The prices of the three different options listed in Table 3 have been calcu-
lated. The options are similar to those listed in Table 2, and they are priced in

Parameter Option I Option II Option III
Weather station Bromma Airport Bromma Airport Bromma Airport
Index HDD HDD HDD
Type Call Call Call
Period February 2001 February 2001 March 2001
Strike 525 HDDs 560 HDDs 480 HDDs
Nominal 1 SEK/HDD 1 SEK/HDD 1 SEK/HDD

Table 3: The specifications of three degree-day options.

terms of the price of option II in Table 2. Note that we have omitted the maxi-
mum payouts. These options are just some examples of derivatives whose price
we could calculate, but they are probably quite similar to the options which can
be traded in the market.

The resulting prices (in SEK) obtained, in the beginning of January, by
Monte Carlo simulations and by the approximation formula are listed in Table 4.

Method Option I Option II Option III
Formula 55.7 33.0 64.4
Monte Carlo 56.1 32.4 64.1
Difference -0.7% 1.9% 0.5%

Table 4: The prices of the options in Table 3.

Since the prices obtained are based on the price indication of a benchmark
derivative it is not interesting to know whether the actual price of some option

2http://www.enrononline.com
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is 55.7 or 55.8. The prices obtained here are very dependent on the choice of
the parameter λ. What is interesting to notice is that there seems to be a good
fit between the results obtained from the Monte Carlo simulations and from the
approximation formula. The results obtained, and our experience gained while
working with the model, indicate that the fit is better the more in-the-money
the option is.

6 Conclusion

There are several things that could be done to improve the pricing model
that has been presented here. Perhaps the most important issue when pricing
weather derivatives is to have a good model for the weather. The temperature
model used here is of course a simplification of the real world, even though it
seems to fit quite well the temperature data. One way to make the temperature
model developed here even more realistic could be to use some more sophisti-
cated model for the driving noise process. One could study historical data series
and try to find some pattern of how the volatility is changing. Perhaps a model
including stochastic volatility would be more realistic. To find a better model
for the temperature one should perhaps consider larger models of the climate,
in which the temperature is only one of several different variables. With the
development of better models of the climate together with faster computers,
the experts will probably be able to make more significant long term forecasts,
which would be of great importance for the pricing of weather derivatives. As
the market grows i.e. when there are real time prices to observe on the market,
one could probably find a better structure for the market price of risk.
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