
Normalfördelningen

En stokastisk variabel X sägs vara normalfördelad med parametrar µ och σ > 0 om

fX(x) =
1√
2πσ

e(x−µ)2/2σ2

för alla x. Läs gärna beviset i boken att detta är en giltig täthet, dvs. integrerar sig till 1. Kodbe-
teckning X är N(µ, σ).

Detta är tvivelsutan en av de viktigaste fördelningarna. En av anledningarna är att den har en
rad trevliga matematiska egenskaper, men framför allt, det viktiga resultat som g̊ar under namnet
Centrala gränsvärdessatsen som säger att summor av (oberoende och likafördelade) stokastiska
variabler är approximativt normalfördelade.

Fördelningen är symmetrisk runt µ s̊a allts̊a är parametern µ ingenting annat än väntevärdet,
E [X] = µ.

En normalfördelad stokastisk variabel har momentgenererande funktion

mX(s) = E
[
eXs
]

=
∫ ∞
−∞

exs fX(x) dx =
∫ ∞
−∞

exs
1√
2πσ

e−(x−µ)2/2σ2
dx

=
∫ ∞
−∞

1√
2πσ

exp
{
−1
2σ2

(
−2σ2xs+ x2 − 2µx+ µ2

)}
dx

=
∫ ∞
−∞

1√
2πσ

exp
{
−1
2σ2

([
x− (µ+ σ2s)

]2 − (µ+ σ2s)2 + µ2
)}

dx

= eµs+σ
2s2/2

∫ ∞
−∞

1√
2πσ

exp
{
−1
2σ2

[
x− (µ+ σ2s)

]2}
dx = eµs+σ

2s2/2.

Förutom att denna momentgenererande funktion entydigt bestämmer fördelningen s̊a kan man
utnyttja den för att bestämma momenten:

E
[
Xk
]

=
dk

dsk
mX(s)

∣∣∣∣
s=0

= m
(k)
X (0)

Allts̊a,

m′X(s) =
d

ds
mX(s) = (µ+ σ2s)eµs+σ

2s2/2

m′′X(s) =
d2

ds2
mX(s) = σ2eµs+σ

2s2/2 + (µ+ σ2s)2eµs+σ
2s2/2

s̊a
E [X] = m′X(0) = µ E

[
X2
]

= m′′X(0) = σ2 + µ2

det vill säga V (X) = E
[
X2
]
− (E [X])2 = σ2.

Fördelningsfunktionen för en normalfördelad stokastisk variabel X

FX(t) = P (X ≤ t) =
∫ t

−∞
fX(x) dx =

∫ t

−∞

1√
2πσ

e(x−µ)2/2σ2
dx

finns inte p̊a n̊agon sluten form. Vi skall se hur vi kan klara oss med med fallet µ = 0, σ = 1.

Sats. L̊at X1, . . . , Xn vara en sekvens av oberoende, normalfördelade stokastiska variabler, och
a1, . . . , an och b konstanter. D̊a är

Y = a1X1 + · · ·+ anXn + b
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normalfördelad, Y är N(µ, σ), med väntevärde

µ = E [Y ] = E [a1X1 + · · ·+ anXn + b] = a1E [X1] + · · ·+ anE [Xn] + b

och varians
σ2 = V (Y ) = a2

1V (X1) + · · ·+ a2
nV (Xn) .

Bevis: Y har momentgenererande funktion

mY (s) = E
[
esY
]

= E
[
es(a1X1+···+anXn+b)

]
= {oberoende} = E

[
esa1X1

]
· · ·E

[
esanXn

]
esb

= mX1(a1s) · · ·mXn(ans)esb = eµ1a1s+a
2
1σ

2
1s

2/2 · · · eµnans+a
2
nσ

2
ns

2/2esb

= e(µ1a1+···+µnan+b)s+(a2
1σ

2
1+···+a2

nσ
2
n)s2/2 = eµs+σ

2s2/2

Allts̊a,

Y är N
(
a1E [X1] + · · ·+ anE [Xn] + b,

√
a2

1V (X1) + · · ·+ a2
nV (Xn)

)
och linjärkombinationer av oberoende normalfördelade stokastiska variabler är normalfördelade
med rätt väntevärde och rätt varians.

Om X är N(µ, σ) s̊a har

Z =
X − µ
σ

väntevärde E [Z] = E
[
X−µ
σ

]
= 1

σ (E [X] − µ) = 0 och varians V (Z) = 1
σ2 V (X) = 1. Satsen säger

att Z är normalfördelad och
fZ(x) =

1√
2π

e−x
2/2 = ϕ(x).

En normalfördelad s.v. med väntevärde 0 och varians (standardavvikelse) 1 sägs vara standardnor-
malfördelad. Dess täthetsfunktion betecknas av Blom med ϕ(x) och dess fördelningsfunktion med
Φ(x) = P (Z ≤ x).

Notera att

FX(x) = P (X ≤ x) = P

(
X − µ
σ

≤ x− µ
σ

)
= Φ

(
x− µ
σ

)
.

S̊a för att räkna ut fördelningsfunktionens värde i en punkt för en godtycklig normalfördelning
översätter vi den till motsvarande punkt för en standardsnormalfördelning. Funktionen Φ finns
tabulerad i formelsamlingen.

I formelsamlingen finns även N(0, 1) vanliga kvantiler till fördelningen tabulerade.

Sats (Centrala gränsvärdessatsen (CGS)). L̊at X1, X2, . . . vara en sekvens av oberoende,
likafördelade stokastiska variabler med väntevärde µ och standardavvikelse σ. D̊a gäller att

lim
n→∞

P

(
1

σ
√
n

(
n∑
k=1

Xi − nµ

)
≤ x

)
= Φ(x)

Notera att variabeln
1

σ
√
n

(
n∑
k=1

Xi − nµ

)
har väntevärde 0 och standardavvikelse 1 för alla n.

Man använder konvergensen för att säga att
n∑
k=1

Xi − nµ

σ
√
n
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är approximativt N(0, 1), eller
n∑
k=1

Xi

approx
är N(µn,

√
nσ)

för stora värden p̊a n, dvs summor av stokastiska variabler är approximativt normalfördelade.

Hur stort n skall vara för att approximationen skall vara bra beror p̊a fördelningen för de stokastiska
variablerna. Symmetriska fördelningar konvergerar snabbare än assymetriska.

Binomialfördelning och dess släktingar

Genomg̊aende modellsituation: Betrakta oberoende försök där vid varje försök det finns en sanno-
likhet p att en händelse A inträffar.

L̊at X beteckna antalet g̊anger man f̊ar göra försöket tills man ser att A inträffar för första g̊angen.

D̊a är X för första g̊angen-fördelad, skrivet X är ffg(p), om

P (X = k) = (1− p)k−1p, k = 1, 2, 3, . . .

för k = 1, 2, 3, . . .. Vi bestämmer den momentgenererande funktionen till X

mX(s) = E
[
eXs
]

=
∑
k

eksP (X = k) =
∞∑
k=1

eks(1− p)k−1p = pes
∞∑
k=0

(es(1− p))k

= pes
1

1− es(1− p)
=

p

e−s − (1− p)
.

Allts̊a är
d

ds
mX(s) =

pe−s

(e−s − (1− p))2
m′X(0) =

1
p

= E [X]

och
d2

ds2
mX(s) =

(−1)pe−s

(e−s − (1− p))2
+

2pe−2s

(e−s − (1− p))3

s̊a
m′′X(0) =

2− p
p2

= E
[
X2
]
.

Detta ger

V (X) = E
[
X2
]
− (E [X])2 =

1− p
p2

.
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