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Comments on Bruce Hansen’s course notes.
Some formulas can be a bit hard to get hold of, since one has to combine

formulas from different places. Therefore I summarise some results here. (My
notation may differ from Hansen’s in some places.)

Consider the regression equation

y = x′β + e E[ e | x] = 0

In sample form:

Y = Xβ + e (e is now an n× 1 matrix)

The OLS estimate β̂ of β is defined by

Y = Xβ̂ + ê X ′ê = 0

which yields β̂ = (X ′X)−1X ′Y .

• White’s estimate of the covariance matrix of β̂, conditional on X, is

Ω̂ = (X ′X)−1[X ′D(ê2)X](X ′X)−1

where
D(ê2) = diagonal-matrix(ê2

1, . . . , ê
2
n)

i.e.,

X ′D(ê2)X =
n∑
1

xix
′
iê

2
i

• Wald’s test is a follows: We want to test the null hypothesis H0 : Rβ = µ. The
test statistic is the variable

(Rβ̂ − µ)′(RΩ̂R′)−1(Rβ̂ − µ)

which is χ2(r) if H0 is true, where r is the number of rows in R. (Note that
Hansen has R′ for R.)
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• The Instrumental Variable Method. Assume that we have the same number
of instruments as explanatory variables. Let X be the matrix of observations
on the explanatory variables x and Z the observations on the instrumental
variables (recall that the instrumental variables comprise the exogenous x-
variables.) Note that Hansen reverses the notation: for some strange
reason he calls the explanatory variables (the variables entering the equation
under study) Z and the instruments X. I think this is very confusing, and at
odds with convention and the notation in previous chapters.

The estimate of β is then

β̂ = (Z ′X)−1Z ′Y

(compare with the formula given first in section 11.5 in Hansen (9.5 in the new
edition.) Note that X and Z are swapped.) The estimated MSE (Mean Squared
Error) matrix of β̂ is given by

Ω̂ = (Z ′X)−1[Z ′D(ê2)Z](X ′Z)−1

This is Whites heteroskedasticity-consistent estimator. I can’t find this in
Hansen! The instrumental estimator is not unbiased, the MSE matrix mea-
sures the deviation between the estimated value and the true value rather than
the expected value.

Lemma
Here is a useful lemma that does not appear in Hansen: Let Ω be a symmetric,

positive definite k × k matrix, and A, B k × j-matrices. If

B′ΩA = A′ΩA then B′ΩB ≥ A′ΩA

(the last inequality meaning that B′ΩB−A′ΩA is a positive (semi-)definite matrix.)

Proof of the lemma:
Assume that B′ΩA = A′ΩA. Note that this also implies that A′ΩB = A′ΩA.

Hence
0 ≤ (B −A)′Ω(B −A) = B′ΩB −B′ΩA−A′ΩB + A′ΩA

= B′ΩB −A′ΩA−A′ΩA + A′ΩA

= B′ΩB −A′ΩA

Q.E.D.
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• Instrumental Variables with GMM (and 2SLS). Assume that we have one or
more endogenous explanatory variables, and more instrumental variables than
explanatory variables (see above for notation.) The set of equations

Z ′ê = 0

is then over determined: we have more equations (m = number of instrumental
variables) than unknowns (k + 1 = number of β:s = number of explanatory
variables.) We have to reduce the number of equations to equal the number of
unknowns, and we do this by multiplying with some (k + 1)×m-matrix A:

AZ ′ê = 0

i.e., 0 = AZ ′ê = AZ ′(Y −Xβ), which yields

β̂ = (AZ ′X)−1AZ ′Y = (AZ ′X)−1AZ ′(Xβ + e)

= β + (AZ ′X)−1AZ ′e.

The White-estimate of the (conditional) MSE matrix of β̂ is thus

Ω̂ = (AZ ′X)−1A[Z ′D(ê2)Z]A′(X ′ZA′)−1

We now proceed to find the optimal choice of A. Let

Q̂ = Z ′D(ê2)Z,

B = A′(X ′ZA′)−1,

B0 = Q̂−1Z ′X(X ′ZQ̂−1Z ′X)−1

Note that with this notation Ω̂ = B′Q̂B, and B0 is the value we get for B with
the choice A = X ′ZQ̂−1. Now

B′Q̂B0 = (AZ ′X)−1AQ̂Q̂−1Z ′X(X ′ZQ̂−1Z ′X)−1

= (X ′ZQ̂−1Z ′X)−1

and hence also
B′

0Q̂B0 = (X ′ZQ̂−1Z ′X)−1

It follows from the lemma that B′Q̂B ≥ B′
0Q̂B0 and hence that A = X ′ZQ̂−1

is the optimal choice of A.

In summary: The GMME of β is

β̂ = (X ′ZQ̂−1Z ′X)−1X ′ZQ̂−1Z ′Y (1)

Q̂ = Z ′D(ê2)Z,where

Ω̂ = (X ′ZQ̂−1Z ′X)−1 (2)
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The problem with this is that in order to compute β̂ we need Q̂, and in
order to compute Q̂ we need ê, and in order to compute ê we need β̂. We get
consistent estimates by 1) first estimate β̂ by putting Q̂ = Z ′Z (this yields the
traditional 2SLS estimate of β̂.) 2) Then compute ê and Q̂. 3) Next, use this Q̂

to compute new values of β̂ and Ω̂.
Note that if we have an equal number of instruments as explanatory vari-

ables, then X ′Z and Z ′X are square matrices which supposedly are invertible,
hence in this case

β̂ = (X ′ZQ̂−1Z ′X)−1X ′ZQ̂−1Z ′Y

= (Z ′X)−1Q̂(X ′Z)−1(X ′Z)Q̂−1Z ′Y

= (Z ′X)−1Z ′Y

which is the expression given earlier. In this case β̂ does not involve Q̂, so no
iteration is needed.

• The GLS estimator (Hansen ch. 7.1; 5.1 in new edition) can be derived as follows.
We assume that the covariance matrix of e is Ω and estimate β by Z ′ê = 0 for
some suitable n× (k + 1)-matrix Z. We seek the optimal choice of Z. We get

β̂ = (Z ′X)−1Z ′Y = β + (Z ′X)−1Z ′e

so the covariance matrix of β̂ is (Z ′X)−1Z ′ΩZ(X ′Z)−1. Now define

B = Z(X ′Z)−1 and A = Ω−1X(X ′Ω−1X)−1

Note that A = B for Z = Ω−1X. Now

B′ΩA = (Z ′X)−1Z ′ΩΩ−1X(X ′Ω−1X)−1

= (X ′Ω−1X)−1

and hence also
A′ΩA = (X ′Ω−1X)−1

It follows from the lemma that B′ΩB ≥ A′ΩA. But B′ΩB is the covariance
matrix of β for the choice of Z, so we see that the choice Z = Ω−1X, yielding
the covariance matrix A′ΩA, is optimal.

In summary: The GLS estimator is

β̂ = (X ′Ω−1X)−1X ′Ω−1Y

with estimated covariance matrix
(X ′Ω−1X)−1

The problem in practise is of course that Ω is typically unknown. In some cases
it can be estimated, and the method is then called FGLS (“Feasible Generalised
Least Squares”.)
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• Goodness of fit. (Hansen ch. 4.2, note the typo!; ch. 3.3 in the new edition.) In
the model

y = x′β + e

the part ỹ = x′β is the part of the variation of y that is “explained” by x. In
the usual regression model, where E[ e | x] = 0, x and e are uncorrelated, hence
also ỹ and e are uncorrelated, so we can decompose the variance of y:

Var(y) = Var(ỹ) + Var(e)

and a measure of goodness of fit is the ratio
Var(ỹ)
Var(y)

. This ratio is in fact the

square of the correlation coefficient between y and ỹ. Indeed, it follows from
y = ỹ + e and the fact that ỹ and e are uncorrelated that

Cov(ỹ, y) = Var(ỹ)

hence, denoting the correlation coefficient between y and ỹ by ρ,

ρ2 =
Cov(ỹ, y)2

Var(ỹ)Var(y)
=

Var(ỹ)
Var(y)

The estimate of ρ2, when degrees of freedom have been appropriately taken into
account, is called “adjuster R-square” and denoted R̄2. It is reported by every
OLS software. It can be computed as

R̄2 = 1−
1

n−k−1

∑n
1 ê2

j

1
n−1

∑n
1 (yj − ȳ)2

where ȳ = 1
n

∑n
1 yj

Note that when x and e are correlated, as when instrumental variables are
employed, R̄2 has little meaning. If it is reported at all, it has presumably been

estimated as 1− Var(e)
Var(y)

, i.e., by the formula above.

• Prediction. Assume that we want to predict the value of y given values c on
x = (x1 . . . xk)′. The best prediction ỹ, in the sense of least MSE (Mean Squared
Error) E[(y − ỹ)2] conditional on x is the conditional mean: ỹ = E[ y | x]. We
specify a functional form g(x; β) for ỹ = E[ y | x] :

y = g(x;β) + e, E[ e | x] = 0 (1)

where β is a vector of unknown parameters. If g(x, β) is linear in β this is a
usual linear regression equation:

y = x′β + e, E[ e | x] = 0 (2)
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and the estimation method is OLS or possibly GLS. We consider the linear
case (2). The estimate produces estimated values β̂ with estimated covariance
matrix Ω̂ of β. For given x = c the estimated predictor is then

ŷ = c′β̂ with MSE (or variance) c′Ω̂c

The MSE of the prediction (as opposed to the predictor ) is an estimate of
E[(y − ŷ)2] and is the sum of the error in the estimate of ŷ and the residual in
(2):

prediction MSE = c′Ω̂c + σ̂2(c)

where σ̂2(c) is an estimate of the residual in (2) when x = c. In the homoskedas-
tic case, an unbiased estimate is

σ̂2 = 1
n−k−1

∑n
1 ê2

The RMSE of the prediction (Root Mean Squared Error, equivalent to the
standard error) is thus

SD = RMSE =
√

c′Ω̂c + σ̂2(c)

Note that it is never appropriate to use instrumental variables for estimating a
prediction equation! The reason is that in this case we seek the values of β̂ that
produces the highest R̄2; there is no other interpretation involved.

• Non Linear Least Squares (NLLS). Assume that we want to estimate the model

y = g(x;β) + e, E[ e | x] = 0 (1)

where g(x;β) is some function of the random variables x = (x1, . . . , xj) and
β = (β0 . . . βk)′ is a column vector of unknown parameters that we want to
estimate. In the linear case, g(x, β) = x′β, i.e., g(x, β) is linear in the parameters
β.

I will use notation different from Hansen’s: gβ(x, β) = (∂g(x;β)
∂β0

. . . ∂g(x;β)
∂βk

),
i.e., gβ(x, β) is a row vector (not a column vector, as in Hansen.) A first order
Taylor expansion of β is thus denoted

g(x; β)− g(x; β̂) = gβ(x; β̂)(β − β̂)

Let X and Y be the matrices of observations on n values x1, . . . , xn of x and
y1, . . . , yn of y as before. I denote

G(X;β) =




g(x1; β)
...

g(xn;β)




Gβ(X;β) =




∂g(x1;β)
∂β0

· · · ∂g(x1;β)
∂βk

...
. . .

...
∂g(xn;β)

∂β0
· · · ∂g(xn;β)

∂βk


and

6



We now turn to the estimation of (1). Let Z be some n× (k + 1)-matrix.
An MME is obtained by solving

0 = Z ′ê = Z ′
(
Y −G(X, β̂)

)

for β̂. We employ a first order Taylor approximation:

0 = Z ′
(
Y −G(X, β̂)

)
= Z ′

(
G(X; β) + e−G(X, β̂)

)

≈ Z ′
(
Gβ(X; β̂)(β − β̂) + e

)

Ignoring the approximation, we get

β̂ − β =
(
Z ′Gβ(X; β̂)

)−1
Z ′e

and as usual we want to find the matrix Z which minimises the MSE. A calcu-
lation similar to what we have done before shows that Z = Gβ(X; β̂) is optimal.
The NLLS estimator is thus obtained from

Gβ(X; β̂)′
(
Y −G(X, β̂)

)
= 0 (2)

and the MSE-matrix (covariance matrix, E[(β̂ − β)(β̂ − β)′]) can be estimated
by

Ω̂ =
(
G′βGβ

)−1
G′β D(ê2)Gβ

(
G′βGβ

)−1

Gβ = Gβ(X; β̂)where

which heteroskedasticity consistent.
Note that (2) is also the solution to the minimisation problem

min
β

(
Y −G(X,β)′

(
Y −G(X, β)

which is of course why the estimator is called Non Linear Least Squares. In
this non linear case, the minimisation problem might be simpler to solve than
(2), since there are no derivatives involved.

In summary: The NLLS estimator of (1) is

β̂ = argmin
β

(
Y −G(X,β)′

(
Y −G(X,β)

)

with estimated MSE-matrix
Ω̂ =

(
G′βGβ

)−1
G′β D(ê2)Gβ

(
G′βGβ

)−1

and prediction MSE for an observation c on x

gβ(c; β̂) Ω̂ gβ(c; β̂)′ + σ2(c)

7



• NLLS with Instrumental Variables. This is tricky, and doesn’t appear in Hansen.
But you should know that instrumental variables in conjunction with NLLS is
feasible.

Assume first that we have as many instrumental variables as parameters
β. Denote the matrix of instruments Z as in the linear case. In this case the
estimate β̂ is obtained from

Z ′
(
Y −G(X, β̂)

)
= 0

Ω̂ =
(
Z ′Gβ

)−1
Z ′D(ê2)Z

(
G′βZ)−1and

The problem is to figure out what good instruments are. The instrument z =
(z0 . . . zk) should be uncorrelated with e but well correlated with gβ(x, β).

If we have more instruments than parameters, then the formulas are

Gβ(X, β̂)′ZQ̂−1Z ′
(
Y −G(X, β̂)

)
= 0 (1)

Q̂ = Z ′D(ê2)Zwhere

Ω̂ =
(
Gβ(X, β̂)′ZQ̂−1Z ′Gβ(X, β̂)

)−1

Here we have to iterate, since we must compute Q̂ before we can compute β̂,

and before we can compute Q̂ we need the residuals ê for which we need β̂. We
can proceed as follows: first compute preliminary β̂ by putting Q̂ = Z ′Z. Then
compute the residuals using this β̂, and now compute Q̂, β̂ and Ω̂.

The equation (1) can also be formulated as a minimisation problem, not
involving derivatives:

β̂ = argmin
β

(
Y −G(X, β̂)

)′
ZQ̂−1Z ′

(
Y −G(X, β̂)

)
(1′)

The prediction error has the same formula as in the case without instruments.
The procedures and formulae I have presented in this section is not stan-

dard—I suppose different software programmes use different estimation meth-
ods for instrumental variable NLLS. The purpose of this section is just to make
you aware of the possibility of using instrumental variables also in the non linear
case.

• Generalised NLLS. Consider again the non linear equation

y = g(x;β) + e, E[ e | x] = 0 (1)

Just like in the linear case, if the covariance matrix of e is known, say V , then
a more efficient estimation can be obtained. The calculations are analogous to
those in the linear case, so I don’t repeat them here. The end results are as
follows:

G′βV −1
(
Y −G(X, β̂)

)
= 0To compute β̂:

β̂ = argmin
β

(
Y −G(X, β)

)′
V −1

(
Y −G(X,β)

)
or equivalently:

(
G′βV −1Gβ

)−1Covariance of β̂:
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• Logit and Probit. We want to estimate a model

p = p(x; β)

where p is the probability of an event occurring, depending on the values of x.
Typically

p(x; β) =





exp(x′β)
1 + exp(x′β)

(Logit), or

Φ(x′β) (Probit)

where Φ is the cumulative normal distribution. We estimate the parameters β
with generalised NLLS in the regression model

yi = p(xi; β) + ei (1)

E[ ei | xi] = 0 (2)

E[ e2
i | xi] = p(xi; β)(1− p(xi; β)) (3)

where yi = 1 if the event occurred and yi = 0 if it did not occur. It is easy to
verify (2) and (3). In this case we do not know V in advance, but once we have
estimates β̂ of β, we can estimate V :

V̂ = diag.
(
p(x1; β̂)(1− p(x1; β̂)) . . . p(xn; β̂)(1− p(xn; β̂))

)

The equation for β̂ thus becomes

Pβ(X, β̂)′V̂ −1
(
Y − P (X, β̂)

)
= 0

with covariance matrix (
Pβ(X, β̂)′V̂ −1Pβ(X, β̂)

)−1

The orthodox way of estimating (1) is by Maximum Likelihood but, as is easy
to show, this is equivalent to the estimator given above.

• Self Selection Bias. A not so uncommon problem is that we want to estimate
an equation

y = x′β + e

but one of the regressors is endogenous through self selection. For example,
assume I want to figure out if my teaching in this course does any good, or if I
could just as well give you the course literature, and you all read for yourselves.
In order to measure the impact on performance on the final test of attendance
to class, I run an regression like

(performance in final test) = β0 + (attendance in class)β1 + e (1)

Assume that I, to my great disappointment, find that β1 is negative. It appears
that my teaching actually is detrimental rather than helpful. But it might be
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that it is the very clever students who choose not to attend class. I.e., those
students who are very clever, and thus have a large residual, have a lower
than average attendance. In that case, there is a negative correlation between
“attendance” and the residual. This causes the OLS estimate of β1 to be biased
downwards.

I find it easiest to think about this as follows: If the equation (1) is esti-
mated with OLS, it can be interpreted as a prediction equation. What perfor-
mance do I predict for a student that do not attend class? If I believe that those
who do not attend are more clever than average, then I might expect a good
performance by those with a low attendance, i.e., a low—or even negative—
value of β1. Its value, however, would not fully reflect the impact of teaching
on performance.

Here is another type of self selection. Assume that we want to estimate a wage
equation:

ln(w) = x′β + e (2)

(w = wage) but we only observe wages on those who work, obviously. We want
to interpret (2) as the wage a person would get if she works, whether or not she
does. A person chooses to work if the wage is above her reservation wage, and
we have another equation for the reservation wage rw :

ln(rw) = z′γ + u (3)

We only observe w if w > rw, so in the sample used for estimating (2) we have

E[ e | x] = E[ e | w > rw]

= E[ e | x′β + e > z′γ + u

= E[ e | e > z′γ − x′β + u] > 0

so we have an endogeneity bias. In cases like this, a popular estimation method
is “Heckman’s Lambda”.

• Heckman’s Lambda. An orthodox way to estimate an equation which suffers
from a self selection problem is a “Heckit”, AKA “Heckman’s lambda”. I will
not go into details, but the procedure is as follows. We want to estimate

y = x′β + e (1)
where E[ e | x] 6= 0

The idea is that we should define a second equation, a selection equation, from
which we can estimate E[ e | x], say by some expression E[ e | x] = ρλ(x). Then
e = ρλ(x) + u, where E[u | x] = 0 and we can write our equation (1)

y = x′β + ρλ(x) + u, E[ u | x] = 0 (2)

which can be estimated by OLS. Here λ(x) is to be estimated from the selection
equation (see below), but ρ is estimated in (2). We can immediately see a
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problem with this approach: if λ is linear in x, then we have multicolinearity.
The only way this can work is if λ is highly non-linear and the specification
(1) is indeed perfectly correct, i.e., that there is no non-linearity in the true
specification that we haven’t taken into account. The situation improves if
there are exogenous variables z that appear in the selection equation, so that
λ = λ(x, z). In this way ρ can be identified essentially via z. But in this case
we don’t need Heckman’s procedure in the first place, since we are much better
off by estimating (1) with z as instrument for the endogenous x-variable.

The selection equation is typically defined as follows: let D be a dummy
for selection. Then the model says that D = 1 if and only if x′γ + v > 0 where
v is a N(0, 1)-variable; γ is to be estimated. The probability that D = 1 is
thus Prob(v > −x′γ) = Φ(x′γ) where Φ is the (cumulative) normal distribution
function. Hence γ can be estimated by a Probit:

D = Φ(x′γ) + error

The final assumption is then that v and e (the residual in (1)) have a joint
normal distribution with covariance ρ. After some computations, one comes up
with the specification (2) where λ has a known functional form.

The “Heckit” model is common knowledge in econometrics, so you must
know about it. If you ever are going to use it, you can look up the details, but
personally I would be very reluctant to employ it. It is important, though, that
you can recognise the problem with self selection. In any case, Heckman’s two
step procedure is inferior to a MLE (Maximum Likelihood Estimator,) which
thus is a preferred alternative.

• Tobit Equations. Sometimes we have to work with data that are either truncated
or censored. Data are censored when in some cases we don’t know the true value
of the dependent variable, but only that it is above (or below) some threshold.
For example, assume that we want to estimate the demand for hotel rooms in
some area. This demand varies with the current prices for rooms, with the
season, and so on. In some cases, perhaps under the most popular holiday
season, all rooms are booked, and then we don’t know the real demand, only
that it exceeds the actual capacity.

Data are truncated if in the case the dependent variable is above (or below)
some threshold we don’t even know the corresponding explanatory variables.
For example, in the wage equation (2) in the discussion on “Self Selection Bias”,
if we only have data on persons who work, we have only data when the wage
exceeds the reservation wage.

When data are censored, the Tobit Model assumes that the residual has a
normal distribution, and a rather straightforward MLE can be employed; see
ch. 14.3 in Hansen (12.3 in new edition.)
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• Duration Models. Unfortunately there is nothing in Hansen about duration
models, but I feel that the case with censored data is not fully treated if we
leave them out. So here goes.

A duration model is one where we want to estimate the duration of some-
thing, depending on some characteristics x. How long does it take for a patient
to recover from some disease depending on some treatment; how long does a
laid off person stay unemployed, given her characteristics, how long does it take
for a KTH student to finish her studies, given her characteristics and the tu-
ition offered, how long does it take for a certain product to break, given some
production characteristics, and so on. Assume that the duration has an expo-
nential distribution with intensity µ(x′β) for some function µ. Since µ must
be positive, a possible choice is µ(x′β) = ln

(
(exp(x′β) + 1

)
. The probability

density function for y = duration is then

f(y) = µ exp(−µy) and distribution function F (y) = 1− exp(−µy)

Assume that we have a number of observations, some of which are censored, i.e.,
the duration still goes on, so we only know that the duration will exceed some
value y∗. Denote the non-censored durations yi, i = 1, . . . , n, and the censored
ones y∗i , i = n + 1, . . . ,m. The log likelihood is then (essentially)

L(β) =
n∑

i=1

(
ln

(
µ(x′iβ)

)− µ(x′iβ) yi

)
−

m∑

i=n+1

µ(x′iβ) y∗i

and the MLE of β is thus the β that maximises this expression.
A problem with this is that it does not take care of duration dependence.

The exponential distribution has the property that the “hazard” is independent
of the length of the duration spell so far. Indeed, assume that a spell has lasted
for a time of t days, and consider the conditional probability that it will end
within the the next ∆t days. This probability is

Prob(y ≤ t + ∆t | y > t) =
F (t + ∆t)− F (t)

1− F (t)

=
exp(µt)− exp

(
µ(t + ∆t)

)

exp(µt)
= 1− exp(−µ∆t)

which is independent of t.
An alternative approach, which also makes it easy to model duration de-

pendence, is to measure the duration in discrete time steps. Let us choose the
unit of time such that ∆t = 1 is a suitable time step; a day or a week, or
whatever, and denote p(x′β) = 1 − exp(−µ(x′β)). With our specification of µ
this becomes

p(x′β) =
exp(x′β)

1 + exp(x′β)
,
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i.e., a logit specification. This is thus the probability that the spell will end
during the next time period. Assume we are studying unemployment spells.
We view “each individual as contributing not one but several observations to
a giant logit likelihood function. In the first time period, each individual ei-
ther stays or leaves unemployment, so a logit likelihood could be structured,
with appropriate explanatory variables, to capture this. Now consider all the
individuals who have not yet left the unemployment state and who have not
become censored, namely all the individuals for whom it is possible to leave
the unemployment state during the second time period. In the second time
period each of these individuals either stays or leaves the state of unemploy-
ment, so a second logit likelihood, with the same explanatory variables (whose
values could be different if they vary with time,) can be structured to capture
this. Similar logit likelihoods can be formulated for each of the remaining time
periods, with the number of observations contributing to these likelihoods di-
minishing as individuals are censored or leave the unemployment state. A giant
likelihood can then be formed by multiplying together all these separate-period
likelihoods. Each individual contributes several terms to this giant likelihood,
one term for each time period for which that individual was at risk of leaving
the unemployment state.

A baseline hazard can be built into this specification by including a function
of time among the explanatory variables. Alternatively, we could allow the
intercept in each of the separate-period logit formulations to be different. If
there are a a total of k time periods, k dummy variables, one for each period,
(taking the value one for that period and zero for all other periods,) are entered
as additional explanatory variables in the logit specification in place of the
intercept. These dummy variables allow each duration length to contribute to
the intercept to the logit specification separately, thereby modeling a completely
unrestricted baseline hazard.” [Citation from P. Kennedy’s book “A Guide to
Econometrics,” Blackwell Publishing.]

Note that we still have a problem with unobserved heterogeneity. Those
with a “bad” unobserved heterogeneity, i.e., those who have a small hazard, are
more likely to appear many times in the likelihood, thus creating a bias in the
estimate.

• Transformation of Dependent Variable. Consider a model

y = x′β + ε (1)

where the dependent variable y can only take positive values. It is then of-
ten advisable to consider an alternative model where y is transformed by a
logarithm:

ln y = x′γ + u (2)

For instance, wage equations, where y is wage, are often formulated in this way.
Three things to consider:

1. The interpretation of β and γ are quite different. If x1 increases by one
unit in equation (1), then y increases by β1 units, so the dimension of β1 is
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“y-units per x1-unit”. However, an increase by x1 by one unit in equation
(2) means that ln y increases by γ1, i.e., that y is multiplied by eγ1 . Hence,
γ1 is dimension-less.

2. Note that in equation (2), it is not true that E[y] = ex′γ . Indeed, if u has a
Normal distribution, the true relation is that

E[y] = e
1
2 σ2+x′γ , where σ2 = E[ u2 | x].

3. The specification (2) is particularly suitable when we believe that (1) suffers
from heteroskedasticity, and that the standard error of ε is proportional to
y. Indeed, in this case we could write (1) as

y = x′β(1 + v)

where the variance of v is approximately independent of x. Taking logarithms
gives

ln y = ln(x′β) + ln(1 + v) = ln(x′β) + u

where u = ln(1 + v), and the variance of u is independent of x. This is thus
a homoskedastic equation, and we might consider replacing ln(x′β) by the
linear specification x′γ to get (2).

A common situation is that y can only take values between zero and one. This
is the case for instance if y is a fraction. The model (1) can then easily suffer
from the problem that x′β for some reasonable values of x takes values outside
of this range. A common transformation for y is then the logistic:

ln
( y

1− y

)
= x′γ + u

Note that as y varies from zero to one, the transformed value of y varies from
−∞ to +∞.
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