
SOLUTIONS TO SELECTED EXERCISES

27th August 2002

1 Chapters 1-4
Exercise 4.1 We begin by showing that

A, B ∈ F implies A ∩B ∈ F . (1.1)

We use the properties (i), (ii) and (iii) in Definition 1.3 p.2. Since A∩B = (Ac∪Bc)c

(draw a picture) (1.1) follows as the next argument shows. By (iii) Ac ∈ F and
Bc ∈ F . Now, (ii) implies that Ac∪Bc ∈ F and (iii) again completes the argument.
Let us show that B \ A ∈ F . Since, B \ A = B ∩ Ac this follows from (iii) and
(1.1). To show that ∩∞i=1Ai ∈ F we note that ∩∞i=1Ai = (∪∞i=1A

c
i )

c. Now (iii) implies
that Ac

i ∈ F for each i, (ii) then implies ∪∞i=1A
c
i ∈ F and finally (iii) yields the result.

Exercise 4.6 We have the sample space Ω = {1, 2, 3, 4, 5, 6} and want to find
the σ-field generated by the events A = {1, 2, 3} and B = {2, 4, 6}. By taking
unions, intersections and complements we find that the σ-field is given by

F =
{∅, {2}, {5}, {1, 3}, {2, 5}, {4, 6}, {1, 2, 3}, {1, 3, 5}, {2, 4, 6}, {4, 5, 6},
{1, 3, 4, 6}, {2, 4, 5, 6}, {1, 2, 3, 5}, {1, 2, 3, 4, 6}, {1, 3, 4, 5, 6},Ω}

.

Exercise 4.12 We have the sample space Ω = {(i, j); i = 1, . . . , 6, j = 1, . . . , 6}.
Here i denotes the result of the first throw and j the result of the second throw.
We have the given information

A = “Two sixes” = {(6, 6)}
B = “Exactly one six” = {(i, 6), (6, j); i = 1, . . . , 5, j = 1, . . . , 5}
C = “No sixes” = {(i, j); i = 1, . . . , 5, j = 1, . . . , 5}

The σ-field, F generated by A,B and C is given by F = {∅, A, B, C,Ac, Bc, Cc, Ω}
(note that A,B and C are disjoint, A ∪ B = Cc, A ∪ C = Bc and B ∪ C = Ac).
The probabilities of these events are

P(A) = (1/6)(1/6) = 1/36, P(Ac) = 1− P(A) = 35/36
P(B) = 2(1/6)(5/6) = 10/36, P(Bc) = 1− P(B) = 26/3611/36
P(C) = (5/6)(5/6) = 25/36, P(Cc) = 1− P(C) = 11/36.

Next we determine the F-measurable functions X : Ω → {−1, 1, 2, . . . } with
E[X] = 0. For X the be F-measurable we require that for each k ∈ {−1, 1, 2, . . . },
X−1(k) = {ω | X(ω) = k} belongs to F . Since the events A, B and C are disjoint
generate the σ-field and A∪B ∪C = Ω, we only need to specify X on A,B and C.
Assume X(ω) = kA for ω ∈ A, X(ω) = kB for ω ∈ B and X(ω) = kC for ω ∈ C.
Since E[X] = 0 we must have

0 = E[X] = kA P(A) + kB P(B) + kC P(C) = kA
1
36

+ kB
10
36

+ kC
25
36

.
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For this to hold it is neccessary that kC = −1. Now there are three choices for kA

and kB . Either, kA = 5, kB = 2 or kA = 15, kB = 1 or kA = 35, kB = −1. This
corresponds to the fair games:

“No sixes” ⇒ You loose 1 unit

“Exactly one six” ⇒ You win 2 units

“Two sixes” ⇒ You win 5 units

or

“No sixes” ⇒ You loose 1 unit

“Exactly one six” ⇒ You win 1 unit

“Two sixes” ⇒ You win 15 units

or

“No sixes” ⇒ You loose 1 unit

“Exactly one six” ⇒ You loose 1 unit

“Two sixes” ⇒ You win 35 units

Exercise 4.14 Let Ω denote the sample space and A be a subset of Ω. Let GA be
the collection of σ-fields G that contains A. If we show that

F = ∩G∈GAG

is a σ-field, then this is the smallest σ-field that contains the set A. We will now
show the slightly more general statement that if Λ is an index set and Fλ is a σ-field
for each λ ∈ Λ, then F = ∩λ∈ΛFλ is a σ-field. Let us verify the conditions (i), (ii)
and (iii), in Definition 1.3 p.2. ∅ ∈ F since ∅ ∈ Fλ for each λ ∈ Λ. This shows
(i). Next, if A1, A2, · · · ∈ F then by property (ii) of a σ-field ∪∞i=1Ai ∈ Fλ for each
λ ∈ Λ which implies that ∪∞i=1Ai ∈ F . This proves (ii). Finally if A ∈ F then
Ac ∈ Fλ for each λ ∈ Λ and hence Ac ∈ F .
A counterexample where F1 and F2 are σ-fields but F1 ∪ F2 is not a σ-field can
be constructed as follows. Let Ω = {1, 2, 3} and let F1 be the σ-field generated
by A = {1} and F2 generated by B = {2}. Clearly, F1 = {∅, A, Ac,Ω} and
F2 = {∅, B, Bc, Ω}. Then A ∈ F1, B ∈ F2 but A ∪B = {1, 2} /∈ F1, A ∪B /∈ F2 so
A ∪B /∈ F1 ∪ F2 which contradicts the property (ii) of a σ-field.

Exercise 4.21We have X̂ = E[X | A] and Y is A-measurable. Using the properties
(ii) and (iii) in Proposition 4.8 p.21-22 we find,

E[(X − X̂)Y ] = E
[
(X − E[X | A])Y

]
= E

[
XY − E[XY | A]

]

= E[XY ]− E[
E[XY | A]

]
= E[XY ]− E[XY ] = 0,

which proves (i). To prove (ii) let Y = X̂ + Z for some A-measurable random
variable Z. If we can prove that Z = 0 almost surely, then the statement follows.
We have the squared error,

E
[
(X − Y )2

]
= E

[
(X − X̂ − Z)2

]
= E

[
(X − X̂)2

]− 2E
[
(X − X̂)Z

]
+ E[Z2]

= E
[
(X − X̂)2

]
+ E[Z2],

since E
[
(X − X̂)Z

]
= 0 by (i). We note that this expression is minimized when

E[Z2] = 0, that is Z = 0 almost surely.
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Exercise 4.22 (i) Let FX be the σ-field generated by X. We sometimes write
E[Y | X] for E[Y | FX ]. We will use property (iv) of Proposition 4.8 pp. 21-22.
Since X is assumed to be A-measurable we have FX ⊆ A. Suppose now that
E[Y | A] = X. Then,

E[Y | X] = E[Y | FX ] = {(iv)} = E
[
E[Y | A]

∣∣FX
]

= E[X | FX ] = X.

(ii) We can construct a counterexample as follows. Consider the ’throw of fair die’.
That is, we have the sample space Ω = {1, 2, 3, 4, 5, 6} and P(ω = k) = 1/6 for each
k = 1, . . . , 6. Let A = {1, 2, 3} and X be the random variable

X(ω) =
{

2 if ω ∈ A,
5 if ω ∈ Ac.

Let Y be the random variable Y (ω) = ω and A be the σ-field consisting of all
subsets of Ω. Clearly, X is A-measurable. Furthermore, E[Y | FX ] = X since

E[Y | FX ](ω) = E[Y | A]1A(ω) + E[Y | Ac]1Ac(ω) =
{

2 if ω ∈ A,
5 if ω ∈ Ac.

But E[Y | A](ω) = Y (ω) 6= X(ω) for ω ∈ {1, 3, 4, 6}. This completes the counter
example.

2 Chapters 5-7
Exercise 7.3 Since it is not specified in the exercise we have to assume that
E[|Yn|] < ∞ for each n ≥ 1. Next we check the martingale property in the cases
(i)-(iv).

(i) E[Yn+1 | X1, . . . , Xn] = E[Xn+1 + Yn | X1, . . . , Xn]
= E[Xn+1 | X1, . . . , Xn] + E[Yn | X1, . . . , Xn] = 0 + Yn = Yn.

Hence, (i) is a martingale.

(ii) E[Yn+1 | X1, . . . , Xn] = E[
1

n + 1

n+1∑

i=1

Xi | X1, . . . , Xn]

= E[
1

n + 1
(Xn+1 + nYn) | X1, . . . , Xn]

=
1

n + 1
E[Xn+1 | X1, . . . , Xn] +

n

n + 1
E[Yn | X1, . . . , Xn]

= 0 +
n

n + 1
Yn =

n

n + 1
Yn 6= Yn.

Hence, (ii) is not a martingale.

(iii) E[Yn+1 | X1, . . . , Xn] = E[Xn+1Yn | X1, . . . , Xn]
= E[Xn+1]E[Yn | X1, . . . , Xn] = 0 6= Yn,

since E[Xn+1] = 0. Hence, Yn is not a martingale. However, if we have E[Xi] = 1
for each i ≥ 1, then Yn becomes a martingale.

(iv) If we put Zi = exp(Xi), then this is the same situation as in (iii) with
Yn =

∏n
i=1 Zi. Hence, it is a martingale if E[Zi] = 1. We need to know the distri-

bution of Xi to be able to verify if E[Zi] = 1 or not.
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Exercise 7.4 We begin to verify the martingale property.

E[Sn | X1, . . . , Xn] = E[exp{α
n+1∑

i=1

Xi − (n + 1)α2

2
| X1, . . . , Xn]

= E[exp{α
n∑

i=1

Xi − nα2

2
| X1, . . . , Xn]× E[exp{αXn+1 − α2

2
]

= SnE[exp{αXn+1 − α2

2
}].

It has the martingale property if E[exp{αXn+1− α
2 }] = 1. Since each Xi ∼ N(0, 1)

we have,

E[exp{αXn+1 − α2

2
}] = e−α2/2

∫ ∞

−∞
eαx 1√

2π
e−x2/2dx

= e−α2/2

∫ ∞

−∞

1√
2π

e−
1
2 (x−α)2+α2/2dx

=
∫ ∞

−∞

1√
2π

e−
1
2 (x−α)2dx = 1.

Hence, the martingale property is verified. Finally we need to show that E[|Sn|] < ∞
for each n ≥ 1. Since Sn ≥ 0 for each n we have E[|Sn|] = E[Sn]. The martingale
property yields

E[Sn] = E
[
E[Sn | X1]

]
= E[S1] = 1 < ∞.

Hence, Sn is a martingale.

Exercise 7.5 Since we have assumed that E[|ϕ(Sn)|] < ∞ holds we only need
to verify the sub-martingale property, i.e. that E[ϕ(Sn+1) | X1, . . . , Xn] ≥ ϕ(Sn).
By Jensen’s inequality, Theorem 4.10 p. 23, and the martingale property for Sn we
have

E[ϕ(Sn+1) | X1, . . . , Xn] ≥ ϕ(E[Sn+1 | X1, . . . , Xn]) = ϕ(Sn).

Hence, ϕ(Sn) is a sub-martingale.

3 Chapter 9
Exercise 9.3 First we notice that Sn = s ·∏n

i=1(1 + Ri) and that Bn = (1 + r)n.
(a) Let us verify the martingale property for the sequence Sn/Bn.

E[
Sn+1

Bn+1
| Fn] = E[

s
∏n+1

i=1 (1 + Ri)
(1 + r)n+1

| Fn]

= E[
s
∏n

i=1(1 + Ri)
(1 + r)n

· 1 + Rn+1

1 + r
| Fn]

=
Sn

Bn
E[

1 + Rn+1

1 + r
| Fn] =

Sn

Bn
,

if E[Rn] = r. Hence, Sn/Bn has the martingale property if E[Rn] = r. (We have to
assume that the Rn’s are such that E[|Sn/Bn|] < ∞ to make sure it is a martingale).
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(b) Assume E[Rn] = r. We have,

E[
Vn+1

Bn+1
| Fn] = E[

xn+1Sn+1 + yn+1Bn+1

Bn+1
| Fn] = {self-financing condition}

= E[
xnSn+1 + ynBn+1

Bn+1
| Fn] = xnE[

Sn+1

Bn+1
| Fn] + yn

= xn
Sn

Bn
+ yn =

xnSn + ynBn

Bn
=

Vn

Bn
.

Hence, Vn/Bn is a martingale.
(c) Since Vn/Bn is a martingale it follows that E[VN/BN ] = E[V0/B0] = 0. Hence,
E[VN ] = 0. But if P(VN ≥ 0) = 1 and P(Vn > 0) > 0, then we would have E[VN ] > 0
which is impossible since E[VN ] = 0. Thus, there can be not arbitrage-stretegies in
the market.

Exercise 9.4 (a) We get

E[Sn+1 | Fn] = E[Sn + CnXn+1 | Fn] = Sn + CnE[Xn+1 | Fn]
= Sn + Cn(p · 1 + (1− p) · (−1)) = Sn + Cn(2p− 1) ≥ Sn.

(b) Now,

E[Ln+1 | Fn] = E[log Sn+1 − α(n + 1) | Fn]
= E[log(Sn+1 + CnXn+1) | Fn]− α(n + 1)

= E[log Sn+1 + log
(
1 +

Cn

Sn
Xn+1

) | Fn]− α(n + 1)

= log Sn − αn + E[log
(
1 +

Cn

Sn
Xn+1

) | Fn]− α

= Ln + p log
(
1 +

Cn

Sn

)
+ (1− p) log

(
1− Cn

Sn

)− α.

Since 0 ≤ Cn ≤ Sn ⇐⇒ 0 ≤ Cn/Sn ≤ 1 wee see that if we can show that

g(x) = p log(1 + x) + (1− p) log(1− x) ≤ α

for x ∈ [0, 1] and p ∈ ( 1
2 , 1) then we are done. Now g(0) = 0 and

g′(x) =
p

1 + x
− 1− p

1− x
=

2p− 1− x

1− x2

g′′(x) = −x2 + 2(2p− 1)x + 1
(1− x2)2

< 0, x ∈ [0, 1].

Hence, the function g is concave with maximum at x̂ = 2p− 1 and since

g(x) ≤ g(x̂) = p log(1 + 2p− 1) + (1− p) log(1− 2p + 1)
= p log 2 + p log p + (1− p) log 2 + (1− p) log(1− p)

= α

we are done.
(c) We know that Ln = log Sn − αn is a supermartingale;

E[LN ] ≤ E[L0] ⇐⇒ E[log SN − αN ] ≤ E[log S0 − α · 0] = log S0,

and from this we get

E[log SN − log S0] ≤ αN ⇐⇒ E[log(SN/S0)] ≤ αN.
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(d) Now we shall use the explicit strategy Cn = Sn(2p − 1). The chosen strategy
implies

Sn+1 = Sn + Cn ·Xn+1 = Sn[1 + (2p− 1)Xn+1],

and we get

E[log Sn+1 − α(n + 1) | Fn] = E[log Sn + log(1 + (2p− 1)Xn+1) | Fn]− α(n + 1)
= log Sn + p · log(1 + (2p− 1) · 1)

+(1− p) · log(1 + (2p− 1) · (−1))− α(n + 1)
= log Sn − αn + p log(2p) + (1− p) log(2(1− p))− α

= log Sn − αn.

Exercise 9.5 We will use the super-martingale property for Xn, i.e. that E[Xn+1 |
Fn] ≤ Xn or equivalently that E[Xn+1 | Fn]−Xn ≤ 0. We have,

E[IX(C)n+1 | Fn] = E[
n∑

k=0

Ck(Xk+1 −Xk) | Fn]

= E[Cn(Xn+1 −Xn) + IX(C)n | Fn]
= Cn(E[Xn+1 | Fn]−Xn) + IX(C)n

≤ IX(C)n.

4 Chapter 10
Exercise 10.1 We will use Markov’s inequality (see e.g. A. Gut, An intermediate
course in probability p. 12); for a random variable X with mean m and variance σ2

one has for all ε > 0 that

P(|X −m| > ε) ≤ σ2/ε2.

Now, the discrete Brownian motion has mean 0 and variance E[B2
n] = n. Further-

more, it has quadratic variation 〈B〉n = n. Hence,

P
{∣∣ Bn

〈B〉n
∣∣ > ε

}
= P{|Bn| > εn} ≤ n

ε2n2
=

1
ε2n

→ 0, as n →∞.

Exercise 10.2 First note that S̃n = Sn/Bn (this is not well specified in the formu-
lation). We write the discrete Brownian motion as Wn =

∑n
i=1 Xi where the Xi’s

are i.i.d. N(0, 1) random variables. If we put Bn = (1+ r)n with r = exp(σ2/2)−1,
then Bn = exp(nσ2/2). Hence,

S̃n = eσ
Pn

i=1 Xi− 1
2 nσ2

=
eσ
Pn

i=1 Xi

Bn
=

∏n
i=1 eσXi

Bn

=
∏n

i=1(1 + Ri)
Bn

=
Sn

Bn
,

with 1+Ri = eσXi . So the random variable 1+Ri has lognormal distribution with
parameters 0 and σ2. This is usually written as 1 + Ri ∼ lognormal(0, σ2).
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5 Chapter 11
Exercise 11.1 (i) We will use Theorem 11.10 on p. 75 which says that 〈M〉t is
the unique continuous increasing adapted process such that M2

t − 〈M〉t is an {Ft}-
martingale. This means that 〈αM + βN〉t is the unique continuous increasing
adapted process such that (αMt + βNt)2 − 〈αM + βN〉t is a martingale. But we
also have that

(αMt + βNt)2 = α2M2
t + 2αβMtNt + β2N2

t .

It follows that the process α2〈M〉t + 2αβ〈M, N〉t + β2〈N〉t is the unique contin-
uous increasing adapted process such that (αMt +βNt)2−(α2〈M〉t +2αβ〈M,N〉t +
β2〈N〉t) is a martingale. Hence, by uniqeness 〈αM+βN〉t and α2〈M〉t+2αβ〈M, N〉t+
β2〈N〉t must coincide.

(ii) For any sequence of real numbers {aj} and {bj} we have the Cauchy-Schwartz
inequality

∣∣ ∑

j

ajbj

∣∣ ≤
∑

j

|ajbj | ≤
(∑

j

a2
j

)1/2(∑

j

b2
j

)1/2
.

By using the definition of the quadratic covariation we get that

|〈M,N〉t| P= lim
‖Π‖→0

∣∣
n−1∑

k=0

(Mtj+1 −Mtj )(Ntj+1 −Ntj )
∣∣

≤ lim
‖Π‖→0

n−1∑

k=0

|(Mtj+1 −Mtj )(Ntj+1 −Ntj )|

≤ lim
‖Π‖→0

( n−1∑

k=0

(Mtj+1 −Mtj )
2
)1/2 lim

‖Π‖→0

( n−1∑

k=0

(Ntj+1 −Ntj )
2
)1/2

=
√
〈M〉t

√
〈N〉t.

6 Chapter 12
Exercise 12.1 First we remark that the function (ST −K)+ = max(ST −K; 0).
Let us denote the density of a N(0, 1) random variable by ϕ(z) and the distribution
function by Φ(z). Note that

ST = exp{(r − σ2/2)T + σBT } = St exp{(r − σ2/2)(T − t) + σ(BT −Bt)}.

Now we have,

E[max(ST −K; 0) | Ft] = E[max(Ste
{(r−σ2/2)(T−t)+σ(BT−Bt)} −K; 0) | Ft]

=
∫ ∞

z=−∞
max(Ste

{(r−σ2/2)(T−t)+σ
√

T−t·z} −K; 0)ϕ(z)dz

=
∫ ∞

z=d2

(Ste
{(r−σ2/2)(T−t)+σ

√
T−t·z} −K)ϕ(z)dz,

where d2 is the solution to Ste
{(r−σ2/2)(T−t)+σ

√
T−t·d2} −K = 0. That is,

d2 =
ln(K/St)− (r − σ2/2)(T − t)

σ
√

T − t
.
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Continuing the computation above we see that the last expression equals
∫ ∞

z=d2

Ste
{(r−σ2/2)(T−t)+σ

√
T−t·z}ϕ(z)dz −

∫ ∞

z=d2

Kϕ(z)dz

= Ste
r(T−t)

∫ ∞

z=d2

e−σ2(T−t)/2+σ
√

T−t·z 1√
2π

e−z2/2dz −K

∫ ∞

z=d2

ϕ(z)dz

= Ste
r(T−t)

∫ ∞

z=d2

1√
2π

e−
1
2 (z−σ

√
T−t)2dz −K

∫ ∞

z=d2

ϕ(z)dz

= Ste
r(T−t)

∫ ∞

u=d2−σ
√

T−t

1√
2π

e−u2/2du−K

∫ ∞

z=d2

ϕ(z)dz

= Ste
r(T−t)(1− Φ(d2 − σ

√
T − t))−K(1− Φ(d2))

= Ste
r(T−t)Φ(−d2 + σ

√
T − t))−KΦ(−d2).

If we put d1 = d2 − σ
√

T − t we get the expression

E[max(ST −K; 0) | Ft] = Ste
r(T−t)Φ(−d1)−KΦ(−d2).

Exercise 12.2 Let us first show that E[B2
t | Fs] = B2

s + t− s. Let 0 ≤ s < t.

E[B2
t | Fs] = E[(Bt −Bs)2 + 2BtBs −B2

s | Fs] = t− s + 2BsE[Bt | Fs]−B2
s

= B2
s + t− s.

Let 0 ≤ s < t and use the result above to get

E[B3
t | Fs] = E[(Bt −Bs)3 − 3BtB

2
s + 3B2

t Bs + B3
s | Fs]

= 0− 3B2
sE[Bt | Fs] + 3BsE[B2

t | Fs] + B3
s

= −3B3
s + 3Bs(B2

s + t− s) + B3
s

= B3
s + 3(t− s)Bs.

Exercise 12.3 We will use the formulas from Exercise 12.2.
(a) Let 0 ≤ s < t.

E[B3
t − 3tBt | Fs] = E[B3

t | Fs]− 3tE[BtFs]

= B3
s + 3(t− s)Bs − 3tBs

= B3
s − 3sBs.

(b) Let 0 ≤ s < t.

E[B4
t−6tB2

t + 3t2 | Fs] = E[(Bt −Bs)4 + 4B3
t Bs − 6B2

t B2
s + 4BtB

3
s −B4

s − 6tB2
t + 3t2 | Fs]

= 3(t− s)2 + 4BSE[B3
t | Fs]− 6(B2

s + t)E[B2
t | Fs] + 4B4

s −B4
s + 3t2

= 3(t− s)2 + 4Bs(B3
s + 3(t− s)Bs)− 6(B2

s + t)(B2
s + t− s) + 3B4

s + 3t2

= 3(t− s)2 + 4B4
s + 12B2

s (t− s)− 6B4
s − 6B2

s (t− s)− 6tB2
s − 6t(t− s) + 3B4

s + 3t2

= 3t2 − 6ts + 3s2 + B4
s + 6tB2

s t− 6sB2
s − 6tB2

s − 6t2 + 6ts + 3t2

= B4
s − 6sB2

s + 3s2.

7 Chapter 13
Exercise 13.2 There is a misprint in the formulation. It should be

Xt =
∫ t

0

es−tdBs.
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(a) We will use Proposition 13.12 on p. 97 which says that if f is deterministic, then
It(f) ∼ N(0,

∫ t

0
f2(s)ds). Let us put f(s) = es. Then we have,

Xt =
∫ t

0

es−tdBs = e−t

∫ t

0

f(s)dBs.

Hence, Xt has normal distribution with mean 0 and variance

V ar(Xt) = V ar(e−tIt(f)) = e−2t

∫ t

0

f2(s)ds = e−2t

∫ t

0

e2sds =
1− e−2t

2
.

(b) Put Wt =
√

2(t + 1)X(
1
2 log(t+1)

). Since Xt ∼ N(0, 1−e−2t

2 ) we see that X(
1
2 log(t+1)

)
has normal distribution with mean 0 and variance

V ar(X(
1
2 log(t+1)

)) =
1− e−2 1

2 log(t+1)

2
=

1− 1/(t + 1)
2

.

It follows that Wt =
√

2(t + 1)X(
1
2 log(t+1)

) has normal distribution with mean 0

and variance

V ar(Wt) = V ar(
√

2(t + 1)X(
1
2 log(t+1)

)) = 2(t + 1)V ar(X(
1
2 log(t+1)

))

= 2(t + 1)
1− 1/(t + 1)

2
= t.

8 Chapter 15
Exercise 15.2 We will use the Lévy characterization, Corollary 15.6 on p. 117.
Clearly Xt is a continuous martingale since it is a sum of Itô integrals. It remains
to compute the quadratic variation of Xt. First note that

1 = (OOT )ii =
n∑

k=1

OikOT
ki =

n∑

k=1

O2
ik

and for i 6= j

0 = (OOT )ij =
n∑

k=1

OikOT
kj =

n∑

k=1

OikOjk

since O(t) is an orthogonal matrix. Now

〈Xi〉t =
〈 n∑

k=1

∫ ·

0

Oik(s)dBk
s

〉
t
=

∫ t

0

n∑

k=1

O2
ik(s)ds = t

and with i 6= j

〈Xi, Xj〉t =
〈 n∑

k=1

∫ ·

0

Oik(s)dBk
s ,

n∑

l=1

∫ ·

0

Ojl(s)dBl
s

〉
t
=

∫ t

0

n∑

k=1

OikOjk(s)ds

= 0.

Thus, we see that the n-dimensioinal process Xt has quadratic variation that can
be written

〈X〉t =
{

t if i = j,
0 if i 6= j.

9



Hence, by Corollary 15.6, Xt is an n-dimensional Brownian motion.

Exercise 15.3 (a) We want to find ϕ(s, ω) and z such that

B3
T (ω) = z +

∫ T

0

ϕ(s, ω)dB(s).

Put g(x) = x3. Then

dg

dx
= 3x2,

d2g

dx2
= 6x.

Using Itô’s formula we get,

dg(Bt) = 3B2
t dBt + 3Btdt.

Integrating yields,

B3
t = 3

∫ t

0

B2
sdBs + 3

∫ t

0

Bsds.

It remains to rewrite the integral
∫ t

0
Bsds as an Itô integral w.r.t. dB. From Example

14.4 on p. 103 we know that

∫ t

0

Bsds = tBt −
∫ t

0

sdBs =
∫ t

0

(t− s)dBs.

It follows that

B3
T = 3

∫ T

0

B2
sdBs + 3

∫ T

0

Bsds

= 3
∫ T

0

B2
sdBs + 3

∫ T

0

(T − s)dBs

=
∫ T

0

3(B2
s + T − s)dBs.

Hence,

B3
T (ω) = z +

∫ T

0

ϕ(s, ω)dB(s),

with z = 0 and ϕ(s, ω) = 3(B2
s (ω) + T − s).

(b) We want to find ϕ(s, ω) and z such that

∫ T

0

B3
sds = z +

∫ T

0

ϕ(s, ω)dB(s).

Put g(t, x) = tx3. Then

∂g

∂t
= x3,

∂g

∂x
= 3tx2,

∂2g

∂x2
= 6tx.

Using Itô’s formula we get,

dg(t, Bt) = B3
t dt + 3tB2

t dBt + 3tBtdt.
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Integrating yields,

tB3
t =

∫ t

0

B3
sds + 3

∫ t

0

sB2
sdBs + 3

∫ t

0

sBsds.

Rewriting this equation we find that
∫ t

0

B3
sds = tB3

t − 3
∫ t

0

sB2
sdBs − 3

∫ t

0

sBsds. (8.1)

It remains to rewrite the integral
∫ t

0
sBsds and the term tB3

t as Itô integrals
w.r.t. dB. We start with the term

∫ t

0
sBsds. Let us put h(t, x) = t2x. Then,

∂h

∂t
= 2tx,

∂h

∂x
= t2,

∂2h

∂x2
= 0.

Itô’s formula gives,

dh(t, Bt) = 2tBtdt + t2dBt.

Integrating yields,

t2Bt = 2
∫ t

0

sBsds +
∫ t

0

s2dBs.

Hence,
∫ t

0

sBsds =
1
2
t2Bt − 1

2

∫ t

0

s2dBs.

We know from (a) that B3
t =

∫ t

0
3(B2

s + t − s)dBs. Substituting in equation (8.1)
we get

∫ t

0

B3
sds = tB3

t − 3
∫ t

0

sB2
sdBs − 3

∫ t

0

sBsds

= tB3
t − 3

∫ t

0

sB2
sdBs − 3

2

(
t2Bt −

∫ t

0

s2dBs

)

= t

∫ t

0

3(B2
s − s + t)dBs − 3

∫ t

0

sB2
sdBs − 3

2

(
t2Bt −

∫ t

0

s2dBs

)
.

Finally we see that
∫ T

0

B3
sds = T

∫ T

0

3(B2
s − s + T )dBs − 3

∫ T

0

sB2
sdBs − 3

2

(
T 2BT −

∫ T

0

s2dBs

)

=
∫ T

0

{3T (B2
s − s + T )− 3sB2

s −
3
2
T 2 +

3
2
s2}dBs.

Hence,
∫ T

0

B3
sds = z +

∫ T

0

ϕ(s, ω)dB(s),

with z = 0 and ϕ(s, ω) = 3T (B2
s − s + T )− 3sB2

s − 3
2T 2 + 3

2s2.

(c) We want to find ϕ(s, ω) and z such that

eT/2 cosh(BT (ω)) = z +
∫ T

0

ϕ(s, ω)dB(s).

11



Recall that cosh(x) = (ex + e−x)/2. If we can find z1, z2, ϕ1(s, ω) and ϕ2(s, ω)
such that

eBT (ω) = z1 +
∫ T

0

ϕ1(s, ω)dB(s), e−BT (ω) = z2 +
∫ T

0

ϕ2(s, ω)dB(s).

Then we can take z = eT/2(z1 + z2)/2 and ϕ(s, ω) = eT/2(ϕ1(s, ω) + ϕ2(s, ω))/2.
Let us start by finding z! and ϕ1. Put g(t, x) = ex− 1

2 t. Then,

∂g

∂t
= −1

2
ex− 1

2 t,
∂g

∂x
= ex− 1

2 t,
∂2g

∂x2
= ex− 1

2 t.

Using Itô’s formula we get,

dg(t, Bt) = −1
2
eBt− 1

2 tdt + eBt− 1
2 tdBt +

1
2
eBt− 1

2 tdt.

Integrating yields,

eBt− 1
2 t − 1 =

∫ t

0

eBs− 1
2 sdBs.

Hence,

eBT = eT/2 + eT/2

∫ T

0

eBs− 1
2 sdBs.

Consequently, z1 = eT/2 and ϕ1(s, ω) = eT/2eBs(ω)− 1
2 s. For the term e−BT we take

g(t, x) = e−x− 1
2 t. Proceeding analogously we find that

e−BT = eT/2 − eT/2

∫ T

0

e−Bs− 1
2 sdBs.

Consequently, z2 = eT/2 and ϕ2(s, ω) = −eT/2e−Bs(ω)− 1
2 s. Combining these two

expressions we get the representation

eT/2 cosh(BT (ω)) = z +
∫ T

0

ϕ(s, ω)dB(s),

with z = eT and

ϕ(s, ω) = eT/2(ϕ1(s, ω) + ϕ2(s, ω))/2 = eT/2(eT/2eBs(ω)− 1
2 s − eT/2e−Bs(ω)− 1

2 s)/2

= eT e−
1
2 s(eBs(ω) − e−Bs(ω))/2 = eT− 1

2 s sinh(Bs(ω)).

Exercise 15.4 (a) We start by defining Mt = exp{B1
t + · · · + Bn

t − nt/2}. Then
F (ω) = MT (ω) exp(nT/2) and by Itô’s formula

dMt =− n

2
exp{B1

t + · · ·+ Bn
t − nt/2}dt +

n∑

i=1

(
exp{B1

t + · · ·+ Bn
t − nt/2}dBi

t

+
1
2

exp{B1
t + · · ·+ Bn

t − nt/2}dt
)

=− n

2
Mtdt + Mt

n∑

i=1

dBi
t +

n

2
Mtdt

=Mt

n∑

i=1

dBi
t.
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Integrating yields,

MT = M0 +
n∑

i=1

∫ T

0

MsdBi
t.

Since MT (ω) = exp(−nT/2)F (ω) and M0 = 1 we get

F (ω) = exp(nT/2) +
n∑

i=1

∫ T

0

exp(n(T − s)/2) exp{B1
t + · · ·+ Bn

t }dBi
s.

Hence, z = exp(nT/2) and ϕi(s, ω) = exp(n(T − s)/2) exp{B1
t + · · ·+ Bn

t }.

(b) Now we define

Mt = (B1
t )3 + · · ·+ (Bn

t )3 − 3tB1
t − · · · − 3tBn

t .

Then, F (ω) = MT + 3T
∑n

i=1 Bi(T ) and using Itô’s formula we get

dMt = −3
n∑

i=1

Bi
tdt + 3

n∑

i=1

(
(Bi

t)
2 − t

)
dBi

t +
1
2

n∑

i=1

6Bi
tdt

= 3
n∑

i=1

(
(Bi

t)
2 − t

)
dBi

t.

Integration yields,

MT = M0 + 3
n∑

i=1

∫ T

0

(
(Bi

s)
2 − s

)
dBi

s.

Since MT (ω) = F (ω)− 3T
∑n

i=1 Bi
T and M0 = 0 we get

F (ω) = 3T

n∑

i=1

Bi
T + 3

n∑

i=1

∫ T

0

(
(Bi

s)
2 − s

)
dBi

s

=
n∑

i=1

∫ T

0

3(T − s + (Bi
s)

2)dBi
s.

Hence, z = 0 and ϕi(s, ω) = 3(T − s + (Bi
s)

2).

Exercise 15.5 Let Zt solve the deterministic ODE

dZt = αtZtdt.

Then we know that

Zt = Z0 exp(
∫ t

0

αsds).

Let us therefore try to find a solution to the original equation of the form Xt(ω) =
Yt(ω)Zt. Using the Itô formula to the function f(y, z) = yz we get

dXt = YtdZt + ZtdYt + d〈Y, Z〉t
= YtαtZtdt + ZtdYt = αtXt + ZtdYt.

Recalling that dXt = αtXtdt + βtXtdBt and Xt = YtZt gives

βtYtZtdBt = ZtdYt.
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We can identify

dYt = βtYtdBt.

The solution to this SDE is the exponential martingale so we get

Yt = Y0 exp{
∫ t

0

βsdBs − 1
2

∫ t

0

β2
sds}.

From this we see that

Xt = exp{
∫ t

0

βsdBs +
∫ t

0

(αs − 1
2
β2

s )ds},

since X(0) = Z(0)Y (0) = 1. To compute the expectation we know that

Xt =
∫ t

0

dXt =
∫ t

0

αsXsds +
∫ t

0

βsXsdBs.

Taking expectation on both sides yields,

E[Xt] =
∫ t

0

αsE[Xs]ds + E[
∫ t

0

βsXsdBs]

=
∫ t

0

αsE[Xs]ds.

If we denote mt = E[Xt] we see that

mt =
∫ t

0

αsmsds.

That is, m solves the differential equation

m′
t = αtmt, m0 = 1

Hence, mt = exp(
∫ t

0
αsds).

(b) Using results from (a) gives

YT = Y0 +
∫ T

0

βsYsdBs

and

XT = YT ZT = [Y0 +
∫ T

0

βsYsdBs]Z0 exp(
∫ T

0

αsds)

= Y0Z0e
(
R T
0 αsds) + Y0Z0

∫ T

0

βse
R s
0 βudBu− 1

2

R s
0 β2

ududBse
(
R T
0 αsds)

= e(
R T
0 αsds) +

∫ T

0

e(
R T
0 αrdr)βse

R s
0 βudBu− 1

2

R s
0 β2

ududBs

Hence, z = e(
R T
0 αsds) and ϕ(s, ω) = e(

R T
0 αrdr)βse

R s
0 βudBu− 1

2

R s
0 β2

udu.

Exercise 15.6 Put Mt =
∫ f(t)

0
1√
1+s

dBs. We will use Theorem 15.4 on p. 116.
Clearly Mt is a continuous martingale and it has quadratic variation

〈M〉t =
∫ f(t)

0

1
1 + s

ds = log(1 + f(t)) =
t2

2
=

∫ t

0

sds.
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Hence, there exists another Brownian motion B̃ such that

Mt =
∫ t

0

√
sdB̃s

Exercise 15.7 Put Mt =
∫ f(t)

0

√
arctan s
1+s2 dBs. We will use Theorem 15.4 on p. 116.

Clearly Mt is a continuous martingale and it has quadratic variation

〈M〉t =
∫ f(t)

0

arctan s

1 + s2
ds = {u = arctan s}

=
∫ arctan f(t)

0

udu =
∫ t+2nπ

0

udu =
(t + 2nπ)2

2
=

∫ t

0

(s + 2nπ)ds,

for some n = . . . ,−1, 0, 1, . . . . Hence, there exists another Brownian motion B̃ such
that

Mt =
∫ t

0

√
s + 2nπdB̃s

9 Chapter 16
Exercise 16.1 (a) Put

Yt = S−1
t = exp{(σ2

2
− α)t− σBt},

and let

g(t, x) = exp{(σ2

2
− α)t− σx}.

Itô’s formula yields,

dYt = (σ2 − α)Ytdt− σYtdBt.

(b) Itô’s formula yields,

d(XtYt) = XtdYt + YtdXt + d〈X, Y 〉t
= Xt

(
(σ2 − α)Ytdt− σYtdBt

)
+ Yt

(
(αXt + β)dt + (σXt + γ)dBt

)
+ (−σYt(σXt + γ))dt

= (β − σγ)Ytdt + γYtdBt.

(c) Integrating the last equation yields,

Xt

St
=

∫ t

0

β − σγ

Sr
dr +

∫ t

0

γ

Sr
dBr.

Hence,

Xt = St

( ∫ t

0

β − σγ

Sr
dr +

∫ t

0

γ

Sr
dBr

)
.

Exercise 16.2 The Markov property implies that

u(t,Xt) = E[f(XXt,t
T )] = E[f(XT ) | Xt] = E[f(XT ) | Ft].

Now with Mt = u(t, Xt) we find that

E[Mt+h | Ft] = E[u(t + h, Xt+h) | Ft] = E
[
E[f(XT ) | Ft+h]

∣∣Ft

]

= E[f(XT ) | Ft] = u(t,Xt) = Mt.

Hence, Mt has the martingale property. Since f is bounded Mt = E[f(XT ) | Ft]
is bounded almost surely and it follows that E[|Mt|] < ∞. Therefore Mt is a
martingale.
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10 Chapter 17
Exercise 17.1 We have the general formula as in Theorem 17.2 on p. 140. In this
exercise we are in the 1-dimensional case and we can identify the functions b(t, x)
and σ(t, y) as

b(t, x) = α + θx, σ(t, x) = ψ(x).

Hence, the infinitesimal generator is

Af(x) = (α + θx)
df

dx
+

1
2
ψ2(x)

d2f

dx2
.

Exercise 17.2 We have the general formula as in Theorem 17.2 on p. 140. In this
exercise we are in the 1-dimensional case and we can identify the functions b(t, x)
and σ(t, y) as

b(t, y) = θ
y√

1 + y2
, σ(t, x) = σ.

Hence, the infinitesimal generator is

Af(y) = θ
y√

1 + y2

df

dy
+

1
2
σ2 d2f

dy2
.

Exercise 17.3 (a) We have Rt =
√

(B1
t )2 + (B2

t )2 + (B3
t )2 where Bt = (B1

t , B2
t , B3

t )
is a 3-dimensional Brownian motion. If we put x = (x1, x2, x3) and r(x) =√

x2
1 + x2

2 + x2
3. Then we see that Rt = r(Bt). Hence, f(Rt) = f(r(Bt)) and

we know that the infinitesimal generator for Bt is

Ãh(x1, x2, x3) =
1
2

3∑

j=1

∂2h

∂x2
j

.

With h(x) = f(r(x)) we get using the chain rule that

∂2h(x)
∂x2

j

=
d2f

dr2
(r(x))

( ∂r

∂xj
(x)

)2

+
df

dr
(r(x))

∂2r

∂x2
j

(x).

Thus, we get

Ãh(x1, x2, x3) =
1
2

3∑

j=1

∂2h

∂x2
j

=
1
2

3∑

j=1

d2f

dr2
(r(x))

( ∂r

∂xj
(x)

)2

+
df

dr
(r(x))

∂2r

∂x2
j

(x)

=
1
2

3∑

j=1

d2f

dr2
(r(x))

( xj

r(x)

)2

+
df

dr
(r(x))

r(x)− xj
∂r
∂xj

(x)

r(x)2

=
1
2

3∑

j=1

d2f

dr2
(r(x))

( xj

r(x)

)2

+
df

dr
(r(x))

r(x)− x2
j

r(x)

r(x)2

=
1
2

(d2f

dr2
(r(x)) +

2
r(x)

· df

dr
(r(x))

)
.
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Finally, since Rt = r(Bt) we get the infinitesimal generator of Rt as

Af(r) =
1
2

(d2f

dr2
(r) +

2
r
· df

dr
(r)

)
.

(b) Let us first derive the SDE satisfied by Rt. Using Itô’s formula on r(x) (this is
possible even though r is not two times continuously differentiable at 0 because the
probability of Rt hitting 0 is zero). We get

dRt = dr(Bt) =
3∑

j=1

∂r

∂xj
(Bt)dBj

t +
1
2

3∑

i,j=1

∂2r

∂xi∂xj
(Bt)d〈Bi, Bj〉t

=
3∑

j=1

∂r

∂xj
(Bt)dBj

t +
1
2

3∑

j=1

∂2r

∂x2
j

(Bt)dt

=
3∑

j=1

Bj
t

r(Bt)
dBj

t +
1
2

3∑

j=1

r(Bt)− (Bj
t )2

r(Bt)

r2(Bt)
dt

=
3∑

j=1

Bj
t

r(Bt)
dBj

t +
2

2r(Bt)
dt.

Introduce the process B̃t =
∑3

j=1

∫ t

0
Bj

s

r(Bs)dBj
s . Then we can write

dRt =
1
Rt

dt + dB̃t.

Now we can show that B̃t is in fact a Brownian motion! We use Lévy’s characteriza-
tion, Corollary 15.6 on p. 117 to prove this claim. First note that B̃t is a continuos
martingale since it is a sum of Itô integrals which are themselves continuous mar-
tingales. Second, B̃t has the quadratic variation process

〈B̃〉t =
∫ t

0

d〈B̃〉s =
∫ t

0

3∑

i,j=1

Bi
sB

j
s

r2(Bs)
d〈Bi, Bj〉s

=
∫ t

0

3∑

i=1

(Bi
s)

2

r2(Bs)
ds =

∫ t

0

1 ds = t.

Note that from the representation of Rt as the solution to

dRt =
1
Rt

dt + dB̃t,

we can easily derive the expression for the infinitesimal generator in (a).
Let us continue to prove that Zt = sinh(Rt)

Rt
e−t/2 is a martingale. Put f(t, r) =

sinh(r)
r e−t/2. The partial derivatives of f can be computed as

∂f

∂t
= −1

2
f(t, r),

∂f

∂r
= e−t/2

(cosh(r)
r

− sinh(r)
r2

)
,

∂2f

∂r2
= e−t/2

( sinh(r)
r

− 2
cosh(r)

r2
+ 2

sinh(r)
r3

)
.

Combining these expressions we see that

∂f(t, r)
∂t

+
1
r
· ∂f(t, r)

∂r
+

1
2
· ∂2f(t, r)

∂r2
= 0.
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Applying Itô’s formula we get

df(t, Rt) =
∂f(t, Rt)

∂t
dt +

∂f(t, Rt)
∂r

dRt +
1
2
· ∂2f(t, Rt)

∂r2
d〈R〉t

=
(∂f(t, Rt)

∂t
+

1
Rt

· ∂f(t, Rt)
∂r

+
1
2
· ∂2f(t, Rt)

∂r2

)
dt +

∂f(t, Rt)
∂r

dB̃t

=
∂f(t, Rt)

∂r
dB̃t.

Integrating yields,

Zt − Z0 = f(t, Rt)− f(0, R0) =
∫ t

0

∂f(s,Rs)
∂r

dB̃s,

which is an Itô integral and hence Zt is a martingale.

Exercise 17.5 (a) We have the general formula as in Theorem 17.2 on p. 140.
In this exercise we are in the 1-dimensional case and we can identify the functions
b(t, x) and σ(t, x) as

b(t, x) = µx, σ(t, x) = σxγ .

Hence, the infinitesimal generator is

Af(x) = µx
df

dx
+

1
2
σ2x2γ d2f

dx2
.

(b) We have Xt = log St or equivalently St = eXt . Using Itô’s formula on g(x) =
log x we get

dXt =
1
St

dSt +
1
2
· (− 1

S2
t

)
d〈S〉t

= µdt + σSγ−1
t dBt − 1

2
σ2S

2(γ−1)
t dt

=
(
µ− 1

2
σ2S

2(γ−1)
t

)
dt + σSγ−1

t dBt

=
(
µ− 1

2
σ2e2(γ−1)Xt

)
dt + σe(γ−1)XtdBt.

Exercise 17.6 (a) We need to show that
∫ t

0

eβ(t−s)dXs = Xt + β

∫ t

0

eβ(t−s)Xsds,

or equivalently that

e−βtXt =
∫ t

0

e−βsdXs − β

∫ t

0

e−βsXsds.

Itô’s formula applied on e−βtXt gives,

d(e−βtXt) = −βe−βtXtdt + e−βtdXt,

and integrating yields the desired result.
(b) We have

e−βtYt = x +
∫ t

0

e−βsdXs,
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so applying Itô’s formula to e−βtYt gives

d(e−βtYt) = −βe−βtYtdt + e−βtdYt.

On the other hand we also have

d(e−βtYt) = e−βtdXt = e−βtdBt + ce−βtdt.

Putting these two expressions equal and solving for dYt yields

dYt = (βYt + c)dt + dBt.

Hence, by applying Theorem 17.2 on p. 140 we identify the infinitesimal generator
of Yt as

Af(y) = (βy + c)
df

dy
(y) +

d2f

dy2
(y).

(c) Since we have dXs = dBs + cds we see that

Yt = eβtx +
∫ t

0

eβ(t−s)dBs + c

∫ t

0

eβ(t−s)ds.

We know that

eβ(t−s)dBs ∼ N
(
0,

∫ t

0

e2β(t−s)ds
)
,

which implies that

Yt ∼ N
(
eβtx + c

∫ t

0

eβ(t−s)ds,

∫ t

0

e2β(t−s)ds
)
.

Exercise 17.7 (a) We have the general formula as in Theorem 17.2 on p. 140. In
this exercise we are in the 1-dimensional case and we can identify the functions
b(t, x) and σ(t, x) as

b(t, x) = µ(x), σ(t, x) = σx(1− x).

Hence, the infinitesimal generator is

Af(x) = µ(x)
df

dx
+

1
2
σ2x2(1− x)2

d2f

dx2
.

(b) The SDE to solve is

dXt = −X2
t (1−Xt)dt + Xt(1−Xt)dBt.

Let g(x) = x(1− x). Then g′(x) = 1− 2x and we get

1
2
g(x)g′(x) =

1
2
x(1− x)(1− 2x)

Now, since

1
2
g(x) +

1
2
g(x)g′(x) = −x2(1− x)
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we can use the first extension of the Doss and Sussman technique. The solution to
the SDE is therefore given by

Xt = h−1
(− 1

2
t + Bt

)
,

where h(x) =
∫ x

x0

1
g(y)dy. It remains to determine h−1(x).

h(x) =
∫ x

x0

1
y(1− y)

dy =
∫ x

x0

(1
y
− 1

1− y

)
dy = log

( x

x0

)− log
( x− 1
x0 − 1

)

= log
(1− x0

x0
· x

1− x

)
.

From this we get

x

1− x
=

1− x0

x0
eh(x),

from which it follows that

h−1(x) =
x0e

x

1− x0 + x0ex
.

Using this we can write the solution as

Xt =
x0e

−t/2+Bt

1− x0 + x0e−t/2+Bt
.

Exercise 17.8 To determine the probability law we negin by solving the SDE. First
note that the n-dimensional SDE is nothing but n independent SDE’s.

dXi
t = −1

2
βtX

i
tdt +

1
2
σtdBi

t, i = 1, . . . , n.

To solve these SDE’s we consider the process Xi
te

1
2

R t
0 βsds. Applying Itô’s formula

yields,

d
(
Xi

te
1
2

R t
0 βsds

)
=

1
2
βte

1
2

R t
0 βsdsXi

tdt + e
1
2

R t
0 βsdsdXi

t .

Inserting the expression for dXi
t and integrating gives

Xi
te

1
2

R t
0 βsds = xi +

1
2

∫ t

0

e
1
2

R s
0 βuduσsdBi

s,

or equivalently

Xi
t = e

1
2

R t
0 βsds

(
xi +

1
2

∫ t

0

e
1
2

R s
0 βuduσsdBi

s

)
.

We know that if f(x) is a deterministic function with
∫ t

0
f2(s)ds < ∞, then

∫ t

0

f(s)dBs ∼ N(0,

∫ t

0

f2(s)ds).

It follows since all the SDE’s are independent that

Xt ∼ N(xe−
1
2

R t
0 βsds, Σ)
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where the covariance matrix Σ is diagonal with

Σii =
1
4
e−
R t
0 βsds

∫ t

0

e
R s
0 βuduσ2

sds.

(b) We have

rt = ‖Xt‖2 = (X1
t )2 + · · ·+ (Xn

t )2.

Using Itô’s formula gives

drt =
n∑

i=1

2Xi
tdXi

t +
1
2

n∑

i=1

2d〈Xi〉t

= −βt

n∑

i=1

(Xi
t)

2dt + σt

n∑

i=1

Xi
tdBi

t +
1
4

n∑

i=1

σ2
t dt

=
(σ2

t

4
− βtrt

)
dt + σt

n∑

i=1

Xi
tdBi

t.

Now we observe that

〈
∫ ·

0

n∑

i=1

Xi
sdBs〉t =

∫ t

0

n∑

i=1

(Xi
s)

2ds =
∫ t

0

rsds.

So by Theorem 15.4 on p. 116 there exists a Brownian motion B̃t such that

∫ t

0

n∑

i=1

Xi
sdBs

d=
∫ t

0

√
rsdB̃s.

This gives the Cox-Ingersoll-Ross model

drt =
(σ2

t

4
− βtrt

)
dt + σt

√
rtdB̃t.

Exercise 17.9 Using the integration by parts formula on (X1
t )2, X1

t X2
t and (X2

t )2

gives




(X1
t )2 = x2

1 + 2
∫ t

0
X1

s X2
s ds,

X1
t X2

t = x1x2 −
∫ t

0
(X1

s )2ds + c
∫ t

0
(X1

s )2dBs +
∫ t

0
(X2

s )2ds,

(X2
t )2 = x2

2 − 2
∫ t

0
X1

s X2
s ds + 2c

∫ t

0
X1

s X2
s dBs + c2

∫ t

0
(X1

s )2ds.

Taking expectation of each equation and using the fact that Itô integrals have
expectation 0 gives us,





m1(t) = x2
1 + 2

∫ t

0
m2(s)ds,

m2(t) = x1x2 −
∫ t

0
m1(s)ds +

∫ t

0
m3(s)ds,

m3(t) = x2
2 − 2

∫ t

0
m2(s)ds + c2

∫ t

0
m1(s)ds.

Differentiation finally yields with m(t) = (m1(t),m2(t),m3(t))T ,

dm

dt
(t) =




0 2 0
−1 0 1
c2 −2 0


m(t), m(0) =




x2
1

x1x2

x2
2


 .
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11 Chapter 18
Exercise 18.1 We use the Feynman-Kac formula with f(x) = 1 and let Xt be an
n-dimensional Brownian motion Bt. We know that the infinitesimal generator of an
n-dimensional Brownian motion is given by A = 1

2∆ where ∆ is the n-dimensional
Laplace operator. It follows from the Feynman-Kac theorem (Theorem 18.5 p. 149)
that u(t, x) solves

{
∂u
∂t = 1

2∆u− qu, t > 0, x ∈ Rn

u(x, 0) = 1, x ∈ Rn.

Using the PDE above and u(t, x) = e−V (t,x), V (t, x) = − log(u(t, x)) gives

∂V

∂t
= − 1

u
· ∂u

∂t
= − 1

u

(1
2
∆u− qu

)
= −1

2
eV ∆(e−V ) + q

Let us now compute

∆(e−V (t,x)) =
n∑

i=1

∂2

∂x2
i

e−V (t,x),

where x = (x1, . . . , xn). We have for i = 1, . . . , n

∂2

∂x2
i

e−V (t,x) =
∂

∂xi

(− ∂V

∂xi
e−V

)
=

∂2V

∂x2
i

e−V +
( ∂V

∂xi

)2
e−V ,

and hence

∆e−V = e−V
(
(∇V )2 −∆V

)
,

where (∇V )2 = ∇V · ∇V is the inner product of ∇V with itself. Note now that
V (0, x) = 0 for x ∈ Rn. This gives the PDE for V (t, x)

{
∂V
∂t = ∆V − (∇V )2 + q,
V (x, 0) = 0, x ∈ Rn.

Exercise 18.2 Using the general case of the Feynman-Kac formula we can identify

q(x) = −V (x), g(x) = g(x),

and we arrive at the following PDE for u(t, x)
{

∂u
∂t (t, x) = Au(t, x) + V (x)u(t, x) + g(x),
u(0, x) = f(x).

Exercise 18.3 Assume Xt is the solution the the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dBt, X0 = x0.

Using Itô’s formula on Mt = ϕ(t,Xt) we get

dMt = dϕ(t,Xt) =
∂ϕ

∂t
(t,Xt)dt +

∂ϕ

∂x
(t,Xt)dXt +

1
2
· ∂2ϕ

∂x2
(t,Xt)d〈X〉t

=
∂ϕ

∂t
(t, Xt)dt +

∂ϕ

∂x
(t,Xt)dXt +

1
2
· ∂2ϕ

∂x2
(t,Xt)σ2(t,Xt)dt

=
(∂ϕ

∂t
(t,Xt) +

1
2
· ∂2ϕ

∂x2
(t,Xt)σ2(t, Xt)

)
dt +

∂ϕ

∂x
(t,Xt)dXt

=
∂ϕ

∂x
(t, Xt)dXt,

22



if ∂ϕ
∂t (t,Xt) + 1

2 · ∂2ϕ
∂x2 (t, Xt)σ2(t,Xt) = 0. Computing the partial derivatives yields

∂ϕ

∂t
(t, x) =

ϕ(t, x)
2(1− t)

(
1− x2

1− t

)
,

∂2ϕ

∂x2
(t, x) = −ϕ(t, x)

(1− t)
(
1− x2

1− t

)

Hence, ∂ϕ
∂t (t, Xt) + 1

2 · ∂2ϕ
∂x2 (t,Xt)σ2(t,Xt) = 0 if σ(t,Xt) = 1. It follows that Xt

must be of the form

dXt = b(t,Xt)dt + dBt, X0 = x0.
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