SOLUTIONS TO SELECTED EXERCISES

27th August 2002

1 Chapters 1-4

Exercise 4.1 We begin by showing that
A,B € F implies AN B € F. (1.1)

We use the properties (i), (ii) and (iii) in Definition 1.3 p.2. Since ANB = (A°UB°)°
(draw a picture) (1.1) follows as the next argument shows. By (iii) A° € F and
B¢ € F. Now, (ii) implies that A°UB¢ € F and (iii) again completes the argument.
Let us show that B\ A € F. Since, B\ A = BN A° this follows from (iii) and
(1.1). To show that N2, A; € F we note that N2, A; = (U2, AS)°. Now (iii) implies
that A¢ € F for each i, (ii) then implies U2, A € F and finally (iii) yields the result.

Exercise 4.6 We have the sample space Q = {1,2,3,4,5,6} and want to find
the o-field generated by the events A = {1,2,3} and B = {2,4,6}. By taking
unions, intersections and complements we find that the o-field is given by

F={0,{2}, {5}, {1,3},{2,5},{4,6},{1,2,3}, {1,3,5}, {2, 4,6}, {4,5,6},
{1,3,4,6},{2,4,5,6},{1,2,3,5},{1,2,3,4,6},{1,3,4,5,6},0}.

Exercise 4.12 We have the sample space Q = {(i,5); ¢ = 1,...,6,j =1,...,6}.
Here i denotes the result of the first throw and j the result of the second throw.
We have the given information

A = “Two sixes” = {(6,6)}

B = “Exactly one six” = {(¢,6), (6,7); i =1,...,5,7=1,...,5}

C =“No sixes” = {(¢,j); i =1,...,5,5=1,...,5}
The o-field, F generated by A, B and C is given by F = {0, A, B, C, A¢, B¢,C°,Q}
(note that A, B and C are disjoint, AUB = C¢, AUC = B¢ and BUC = A°).
The probabilities of these events are

P(A) = (1/6)(1/6) =1/36, P(A°)=1-P(A)=35/36

P(B) =2(1/6)(5/6) = 10/36, P(B¢)=1-P(B)=26/3611/36

P(C) = (5/6)(5/6) = 25/36, P(C°)=1-P(C)=11/36.

Next we determine the F-measurable functions X : Q — {-1,1,2,...} with
E[X] = 0. For X the be F-measurable we require that for each k € {—1,1,2,...},
X7Y(k) = {w | X(w) = k} belongs to F. Since the events A, B and C are disjoint
generate the o-field and AU B U C = 2, we only need to specify X on A, B and C.

Assume X(w) = kg forw € A, X(w) = kp for w € B and X (w) = k¢ for w € C.
Since E[X] = 0 we must have

10 25
— + ko—.

1
=[E[X]| = P(A P(B P = —
0 [(X]=kaP(A) + kpP(B) + kc P(C) kiA36 +k336 "



For this to hold it is neccessary that ko = —1. Now there are three choices for k4
and kp. Either, k4 = 5,kp =2 or ko = 15,kp =1 or k4 = 35, kg = —1. This
corresponds to the fair games:

)

“No sixes” =  You loose 1 unit
“Exactly one six” = You win 2 units
“Two sixes” = You win 5 units
or
“No sixes” =  You loose 1 unit
“Exactly one six” = You win 1 unit
“Two sixes” =  You win 15 units
or
“No sixes” =  You loose 1 unit
“Exactly one six” = You loose 1 unit
“Two sixes” =  You win 35 units

Exercise 4.14 Let 2 denote the sample space and A be a subset of 2. Let G4 be
the collection of o-fields G that contains A. If we show that

F =Ngeg,G

is a o-field, then this is the smallest o-field that contains the set A. We will now
show the slightly more general statement that if A is an index set and F), is a o-field
for each A € A, then F = NycaF) is a o-field. Let us verify the conditions (i), (ii)
and (iii), in Definition 1.3 p.2. ) € F since ) € F) for each A € A. This shows
(i). Next, if A1, Ay, -+ € F then by property (ii) of a o-field U2, A; € F), for each
A € A which implies that U?; A, € F. This proves (ii). Finally if A € F then
A€ € F) for each A € A and hence A€ € F.

A counterexample where F; and F» are o-fields but F; U F5 is not a o-field can
be constructed as follows. Let = {1,2,3} and let F; be the o-field generated
by A = {1} and F, generated by B = {2}. Clearly, F; = {0, A, A¢,Q} and
Fo={0,B,B¢,Q}. Then A€ F;, B€ Fobut AUB={1,2} ¢ F;, AUB ¢& F» so
AU B ¢ F; UF, which contradicts the property (ii) of a o-field.

Exercise 4.21 We have X = E[X | A] and Y is A-measurable. Using the properties
(ii) and (iii) in Proposition 4.8 p.21-22 we find,
E[(X - X)Y] =E[(X - E[X | A))Y] =E[XY — E[XY | A]]
— E[XY] - E[E[XY | 4]] = E[XY] - E[XY] =0,
which proves (i). To prove (ii) let Y = X + Z for some .A-measurable random

variable Z. If we can prove that Z = 0 almost surely, then the statement follows.
We have the squared error,

E[(X —Y)’] =E[(X - X - 2)’] =E[(X — X)?] - 2E[(X — X)Z] + E[2”]
=E[(X - X)?] +E[Z%],

since E[(X — X)Z} = 0 by (i). We note that this expression is minimized when
E[Z?] = 0, that is Z = 0 almost surely.



Exercise 4.22 (i) Let FX be the o-field generated by X. We sometimes write
E[Y | X] for E[Y | FX]. We will use property (iv) of Proposition 4.8 pp. 21-22.
Since X is assumed to be A-measurable we have FX C A. Suppose now that
E[Y | Al = X. Then,

ElY | X] =E[Y | F¥] = {(iv)} =E[E[Y | A] | F¥] =E[X | F¥] = X.

(ii) We can construct a counterexample as follows. Consider the ’throw of fair die’.
That is, we have the sample space 2 = {1,2,3,4,5,6} and P(w = k) = 1/6 for each
k=1,...,6. Let A=1{1,2,3} and X be the random variable

2 ifweA,
X(w)—{ 5 ifwe A°.

Let Y be the random variable Y (w) = w and A be the o-field consisting of all
subsets of Q. Clearly, X is .A-measurable. Furthermore, E[Y | F¥X] = X since

2 ifweA,

E[Y | FX](w) =E[Y | AJLa(w) + E[Y | A1 4c(w) = { 5 ifwe A°

But E[Y | Al(w) = Y(w) # X(w) for w € {1,3,4,6}. This completes the counter
example.

2 Chapters 5-7

Exercise 7.3 Since it is not specified in the exercise we have to assume that
E[|Y,]] < oo for each n > 1. Next we check the martingale property in the cases

(i)-(iv).
(Z) E[Yn—&-l | D CHR 7Xn] = E[Xn-‘rl +Y, | X1, 7X7L]
—E[Xpi1 | X1veeo s X 2 E[Yy | X1v.o o, Xl =04 Y, = Y.

Hence, (i) is a martingale.

n+1
g 1
(i1) E[Ynyr | X1,...,X,] _E[HH ;Xi | X1,..., X,.]

:E[m(XnJ’_l +nYn)|X1,...7Xn}
1 n
= ——FE[X, Xq1,..., X, —E|Y, | X1,..., X,
n+1[+1|1 ]+n+1[ | X1 ]
n n
=0 Y, = Y, #Y,.
Jrn—&—l n—+1 7

Hence, (ii) is not a martingale.

(i11) E[Ypir | X1,.. 0, Xp] = E[Xns1 Yo | X1, .., X0
=E[Xon|E[Y, | X1,...,Xn] =0#Y,,

since E[X,+1] = 0. Hence, Y, is not a martingale. However, if we have E[X;] = 1
for each ¢ > 1, then Y}, becomes a martingale.

(iv) If we put Z; = exp(X;), then this is the same situation as in (iii) with
Y, = H;L:1 Z;. Hence, it is a martingale if E[Z;] = 1. We need to know the distri-
bution of X; to be able to verify if E[Z;] = 1 or not.



Exercise 7.4 We begin to verify the martingale property.

jass (n+1)a?
B[Sy | X1,..., Xn] = Elexp{a > X; — [ X X
i=1
" na’ a?
= E[exp{ai:ZIXi -5 | X1,..., X,] x Elexp{aXp+1 — ?]

o2
= S Elexp{aX,+1 — 7}]

It has the martingale property if Elexp{aX, 11 — §}] = 1. Since each X; ~ N(0,1)
we have,

Elexp{aX o H em’/2 /OO er ! e 2y
X nt1l— 3 = —=
2 oo V2
2 * 1 1 2, 2
— e @ /2/ 76—5(30—&) +a /Qdm
Coo V2T
< 1 1 2
_ —35(z—a) _
= e 2 dr =1.
[m V 27T

Hence, the martingale property is verified. Finally we need to show that E[|S,|] < co
for each n > 1. Since S,, > 0 for each n we have E|[|S,|] = E[S,]. The martingale
property yields

]E[Sn] = ]E[]E[Sn ‘ Xl” = ]E[Sl] =1< 0.
Hence, 5, is a martingale.

Exercise 7.5 Since we have assumed that E[|p(S,)|] < oo holds we only need
to verify the sub-martingale property, i.e. that E[o(S,+1) | X1,...,Xn] > ©(Sn).
By Jensen’s inequality, Theorem 4.10 p. 23, and the martingale property for .S,, we
have

E[@(SnJrl) ‘ Xla s 7Xn] > LP(E[SHJrl | le B Xn]) = QD(SR)

Hence, ¢(S,,) is a sub-martingale.

3 Chapter 9

Exercise 9.3 First we notice that S, = s-[[";(1+ R;) and that B,, = (1 +r)".
(a) Let us verify the martingale property for the sequence S,,/B,,.

n+1 )

Bn+l (1 + T.)n+1 ‘ fn]
"1 ;
:E[SHzZI( +Rl) . 1+Rn+1 |fn]
(14r)m 1+
o Sn 1+Rn+1 o Sn
= Bfﬂﬂﬁ | Ful = B,

if E[R,,] = r. Hence, S,,/B,, has the martingale property if E[R,] = r. (We have to
assume that the R,,’s are such that E[|S,,/B,|] < co to make sure it is a martingale).



(b) Assume E[R,] = r. We have,

B
E[ Vot1 | Fn] = ]E[xn+15n+1 t+ Ynt1n i1 | 7] = {self-financing condition}
Bn+1 Bn+1
ann 1+ yan 1 Sn
:]E[ JrB 1 ~ ‘-,Fn]:an[ :11|fn]+yn
n n
B, T T B, T B,

Hence, V,,/B,, is a martingale.

(c) Since V,,/B,, is a martingale it follows that E[Vy/By]| = E[Vy/By] = 0. Hence,
E[Vn] =0. Butif P(Vy > 0) = 1 and P(V,, > 0) > 0, then we would have E[Vy] > 0
which is impossible since E[Vy]| = 0. Thus, there can be not arbitrage-stretegies in
the market.

Exercise 9.4 (a) We get

=S5+ Cu(p-1+(1—p)-(-1)) =Sn+Cn(2p—1) > S,.

(b) Now,

ElLnt1 | Fu] = E[log Spi1 — a(n +1) | Fy]
= E[log(Snt1 + CrnXpny1) | Fu] —a(n+1)

Cy
=Eflog Spy1 +log (1+ = Xnt1) | Fu —a(n+1)

Sn
= log S,, — an + E[log (1 + %X’n+1) | Fn] — «
=L, +plog (1+ ﬁ) +(1—p)log (1- ﬁ) —a.

Sn Sy

Since 0 < Cp, < S, < 0<C,/S,, <1 wee see that if we can show that
g(z) =plog(l+ )+ (1 —p)log(l —z) < a
for z € [0,1] and p € (3,1) then we are done. Now g(0) = 0 and

) = p 1-p 2p—-1-ux

S l4z 1-z 1-—a2

22 +202p - Dz +1
gll(m):_ ( 22
(1—=2?)

g (x

<0, z€]0,1].

Hence, the function g is concave with maximum at & = 2p — 1 and since

g(z) < g(@) = plog(1+2p—1)+ (1 —p)log(l —2p+1)
=plog2+plogp+ (1 —p)log2+ (1 —p)log(l —p)

=

we are done.
(c) We know that L, = logS,, — an is a supermartingale;

E[Ln] < E[Ly] < Ellog Sy — aN] < E[log Sy — « - 0] = log Sp,
and from this we get

Eflog Sy —log So] < aN <= E[log(Sn/So)] < aN.



(d) Now we shall use the explicit strategy C,, = S,,(2p — 1). The chosen strategy
implies

Sn+1 =S,+C,- Xn+1 = Sn[l + (2p — 1)Xn+1],
and we get
E[log Spt1 — a(n+1) | F,] =E[log Sp, +log(1+ (2p — ) X11) | Fu] —a(n+1)
=logS,+p-log(1+(2p—1)-1)
+(1 —p)-log(1+(2p—1)-(~1)) —a(n+1)

= log S, — an + plog(2p) + (1 —p) log(2(1 — p)) — @
=log S,, — an.

Exercise 9.5 We will use the super-martingale property for X, i.e. that E[X,,11 |
Fn] < X, or equivalently that E[X, 1 | F,] — X,, < 0. We have,

E[Ix(C)ns1 | Fnl ch Xir1 = Xi) | Fal
k=0
= E[Cp(Xn41 = Xn) + Ix(O)n | Fo
:CL(E[ n+1 ‘-7:] )+IX(O)n
< Ix(C).

4 Chapter 10

Exercise 10.1 We will use Markov’s inequality (see e.g. A. Gut, An intermediate
course in probability p. 12); for a random variable X with mean m and variance o2
one has for all £ > 0 that

P(|X —m| >¢) < o?/e%

Now, the discrete Brownian motion has mean 0 and variance E[B2] = n. Further-
more, it has quadratic variation (B),, = n. Hence,

P{|<§;n]>s}:P{|Bn|>5n}§EQL:i—>O, as n — 00.

n?  g2n

Exercise 10.2 First note that S,, = Sy /By, (this is not well specified in the formu-
lation). We write the discrete Brownian motion as W,, = Z?:I X; where the X;’s
are i.i.d. N(0,1) random variables. If we put B,, = (1+7)" with r = exp(0?/2) —1,
then B,, = exp(no?/2). Hence,

GZ’L X; n oX;
SRS 3 IS O e |
= =

B, B,
_ I 4+ ) Se

B, B,

with 14 R; = e*. So the random variable 1+ R; has lognormal distribution with
parameters 0 and 2. This is usually written as 1 + R; ~ lognormal(0, o?).



5 Chapter 11

Exercise 11.1 (i) We will use Theorem 11.10 on p. 75 which says that (M), is
the unique continuous increasing adapted process such that M7 — (M), is an {F;}-
martingale. This means that (M + SN); is the unique continuous increasing
adapted process such that (aM; + BN;)? — (oM + BN); is a martingale. But we

also have that
(aM; + BN;)? = o® M + 203M; Ny + B*N?.

It follows that the process a?{M); + 2a3(M, N); + 3%(N); is the unique contin-
uous increasing adapted process such that (aM; +3N;)? — (a*(M);+2a8(M, N),+
(%(N);) is a martingale. Hence, by unigeness (¢ M+3N), and a®(M );+2a3(M, N);+
(3?(N); must coincide.

(ii) For any sequence of real numbers {a; } and {; } we have the Cauchy-Schwartz
inequality

1> abs <3 lagbsl < (D a2) 2 (3o82)
J J J J

By using the definition of the quadratic covariation we get that

n—1
|(M, N = \|1‘1[i|\r20‘ Z(Mth - Mtj)(th+1 - th)|
-y
= Hl'llil\rg() ; (M 0 = My ) (N0 = Ny )|
. = 1/2 = 1/2
= o (kZO(M”“ ~ ML) i, kzz: s~ Ne)')
= V(M) (N)

6 Chapter 12

Exercise 12.1 First we remark that the function (S — K)* = max(St — K;0).
Let us denote the density of a N(0,1) random variable by ¢(z) and the distribution
function by ®(z). Note that

S = exp{(r — 0*/2)T + 0By} = S;exp{(r — 0*/2)(T — t) + o(Br — By)}.
Now we have,
E[max(Sy — K;0) | 7] = E[max(S,el =" /DT =-te(Br=B0} _ .0 | F,]
= /OO max(Ste{(T_°2/2)(T_t)+”m'z} — K;0)p(z)dz

=—00

= /OO (Ste{(r—ﬂz/z)(T_t)+”m'z} _K)@(z)dZ,
z=da

where ds is the solution to Ste{(r"’Q/z)(T’t)*”VTft'dz]’ — K = 0. That is,

In(K/Sy) — (r — o?/2)(T — t).

d =
2 oI —t




Continuing the computation above we see that the last expression equals

/ Ste{(r—(rz/2)(T—t)+a\/T—t-z}w(z)dz _ Kgo(z)dz
z= dg
:SGT(T%)/ oMty /240 T—1z_ L 22y, —K/
‘ Z:dg \/
> 1 1 TE
:SeT(T_t)/ e~ 5(oVT=07 g, K/ z)dz
! Z—dg V27T

= SperT=0 /uiodg—a\/ﬂ \/%e_“ 12 du — K-/z—dz p(2)dz
ST = D(dy — VT — 1)) — K(1 - 0(da)
= 5,e" T P(—dy + oVT — t)) — KB(—dy).
If we put di = do — 0/T — t we get the expression
E[max(Sy — K;0) | 7] = S;e"TDd(—d;) — K®(—dy).

Exercise 12.2 Let us first show that E[B? | F] = B2+t —s. Let 0 < s < t.
E[Bf | o] =E[(B; — B.)* + 2B:B, — B} | F.] =t — s + 2B.E[B, | F.] — B2
=B2+t—s.
Let 0 < s < t and use the result above to get
E[B} | ] = E[(B: — B,)* = 3B.B{ + 3B By + B{ | 7]
=0-3BIE(B, | .| + 3BE[B} | 7] + B!
= —3B%+3B,(B2+t—s)+ B2
= B3 +3(t — s5)B,.

Exercise 12.3 We will use the formulas from Exercise 12.2.
(a) Let 0 < s < t.

E[B? — 3tB; | F,] = E[B? | F,] — 3tE[B,F]
= B? 4 3(t — s) B, — 3t B,
= B? - 3sB,.

(b) Let 0 < s < t.
E[B}—6tB? + 3t | .| = E[(B; — B,)* +4B2B, — 6B?B? + 4B,B — B} — 6tB? + 3t* | F]
=3(t — 5)® + ABsE[B} | F] — 6(B2 + t)E[B} | F,| + 4B* — B + 3t*
= 3(t — 5)> + 4B, (B3 + 3(t — 5)B,) — 6(B? +t)(B%2 +t — s) + 3B + 3t?
= 3(t —s5)> + 4B + 12B%(t — s) — 6B} — 6B2(t — 5) — 6tB? — 6t(t — s) + 3B + 3t*
= 3t% — 6ts + 35> + BY + 6tB%t — 6sB? — 6tB2 — 61> + 6ts + 3t*
= B! — 6sB2 + 3s°.

7 Chapter 13

Exercise 13.2 There is a misprint in the formulation. It should be

t
Xt:/ S tdB,.
0



(a) We will use Proposition 13.12 on p. 97 which says that if f is deterministic, then
Ii(f) ~ N(0 fo f?(s)ds). Let us put f(s) = €. Then we have,

¢ ¢
X = / e tdB, = e*t/ f(s)dB
0 0

Hence, X; has normal distribution with mean 0 and variance

t 1— e—Qt
Var(X;) = Var(e 'I(f / 2(s) - t/ e*ds = —
0
. 2t
(b) Put Wi = /2(t + 1)X( £(41) Since X; ~ N (0, 2=5—) we see that X(% log(t+1))

has normal distribution with mean 0 and variance

1—e 230080+ 1 _1/(¢t+1)

Var(X(%lOg(t“rl))) = 2 - 2

It follows that W = /2(t + 1)X

and variance

Var Wt Var mX( log( t+1)) = 2(t+ I)VaT(X(%log(iH,l)))

1—-1/(t+1)
— =

has normal distribution with mean 0
(4 10g(t+1))

=2(t+1)

8 Chapter 15

Exercise 15.2 We will use the Lévy characterization, Corollary 15.6 on p. 117.
Clearly X; is a continuous martingale since it is a sum of It6 integrals. It remains
to compute the quadratic variation of X;. First note that

1=(007); Zomo => 03
k=1
and for i # j

0=(00")i; = > 0i0f; = OOy

k=1

since O(t) is an orthogonal matrix. Now

X1}, = <; | owtat) = [ téoms)ds -

and with 7 # j

(X', X7), <§ :/'oik )dBE, § j/ 0;1(s)dB! :/t §n:oikojk(s)ds
=170 0 k=1
0.

Thus, we see that the n-dimensioinal process X; has quadratic variation that can
be written

ot ifi=j,
<X>t_{o i£i .



Hence, by Corollary 15.6, X; is an n-dimensional Brownian motion.

Exercise 15.3 (a) We want to find ¢(s,w) and z such that

Bi(w) =z +/0 (s, w)dB(s).

Put g(z) = 23. Then

dg 2
— =3
dz v

d?g
Using It6’s formula we get,
dg(B;) = 3B2dB; + 3B,dt.

Integrating yields,

t t
B} = 3/ B2dB,+3 | Bads.
0 0

It remains to rewrite the integral fot Bgds as an It6 integral w.r.t. d B. From Example
14.4 on p. 103 we know that

t t t
/ B,ds =tB; — / sdBg = / (t — s)dBs.
0 0 0

T T
B3 = 3/ B2dB, + 3/ Bgds
0 0

It follows that

T T
=3/ Bgst+3/ (T — s)dBs
0 0
T
:/ 3(B? + T — s)dB.
0

Hence,

T
Bhw) =+ [ elsw)dBl),
0
with z = 0 and ¢(s,w) = 3(B2(w) + T — s).
(b) We want to find ¢(s,w) and z such that
T T
/ Bids = z—l—/ o(s,w)dB(s).
0 0
Put g(t,z) = tz®. Then

@— 3 @2325%2

= = 6tx.
ot Ox .

’g
Ox?
Using Ité’s formula we get,

dg(t, B;) = B}dt + 3tB?dB; + 3tB,dt.

10



Integrating yields,

t t t
th’:/ des+3/ sBﬁst+3/ sBsds.
0 0 0

Rewriting this equation we find that
t t t
/ B3ds =tB} — 3/ sB2dB, — 3/ sBgds. (8.1)
0 0 0
It remains to rewrite the integral fot sBsds and the term tB} as It6 integrals

w.r.t. dB. We start with the term fot sBgds. Let us put h(t,z) = t?>z. Then,

@ = 2tx, Oh

oh %h _
ot Ox B

2
= Ox?

Ito’s formula gives,
dh(t, By) = 2tB,dt + t*dB,.

Integrating yields,

t t
2B, :2/ sBSds+/ s2dB;.
0 0

Hence,

t 1 1 t
/ sBsds = ~t2B; — 7/ s2dB,.
0 2 2 0

We know from (a) that B} = fg 3(B2% + t — s)dBs. Substituting in equation (8.1)
we get

t t t
/ Bids =tB} —3/ sB2dB, —3/ sB,ds
0 0 0

t t
= B3 — 3/ sB2dB, — §(t23t — / sdes)
0 2 0

t t 3 t
:t/ 3(B? — s+ t)dB, —3/ sB?dB, — —(tQBt —/ SQdBS).
0 0 2 0

Finally we see that

T T T 3 T
/ B3ds = T/ 3(B2 — s +T)dB, — 3/ sB2dB, — f(TQBT - / sdeS>
0 0 0 2 0
r 3 3
= / {(3T(B2 —s+T)—3sB2 — 5T2 + 552}st.
0

Hence,
T T
/ B3ds =z —|—/ o(s,w)dB(s),
0 0
with z = 0 and ¢(s,w) =3T(B2 — s+ T) — 3sB2 — 372 + 352

(c) We want to find ¢(s,w) and z such that

T
e’/? cosh(Br(w)) = z —|—/0 o(s,w)dB(s).

11



Recall that cosh(z) = (e* 4+ e~ z)/2. If we can find 21, 22, ¢1(s,w) and pa(s,w)
such that

T T
eBr@) — 5 —|—/ w1(s,w)dB(s), e Br@) = 4, —|—/ wa(s,w)dB(s).
0 0

Then we can take z = €7/2(z; 4 23)/2 and @(s,w) = eT/2(p1(s,w) + Pa(s,w))/2.
Let us start by finding 2z and ¢1. Put g(¢,z) = e 3t Then,

69 o 1 1 8g _ a1t 829 L '

o0~ 2 0 e © T a2

Using It6’s formula we get,
1 1
dg(t, By) = —ieBt_%tdt +ePr3tdB, + §e3t—%tdt.
Integrating yields,
t
ePrmst 1 = / ePe=3%dB,.

0

Hence,

T
_1
eBr = T/2 +eT/2/ eBs—354B,.
0

Consequently, z; = e?/2? and p1(s,w) = eT/2eB:(“)=35_ For the term e~ BT we take

g(t,x) = e~*~ 3!, Proceeding analogously we find that
T
e Br = ¢T/2 _ eT/Q/ e_Ba‘_%Sst.
0
Consequently, zo = ¢7/2 and wa(s,w) = —eT/2¢=Bs(w)=3s, Combining these two

expressions we get the representation
T
e’/2 cosh(Br(w)) = 2 + / o(s,w)dB(s),
0

with z = ¢T and

p(5,w) = €72 (p1(5,0) + pa(s,w)) 2 = /2T 2P I8 — T2 B30 o

— eTe—%S(eBs(w) — e_BS(u))/Q = eT_%S Slnh(BS(w))'

Exercise 15.4 (a) We start by defining M; = exp{B} + --- + B — nt/2}. Then
F(w) = Mr(w) exp(nT/2) and by 1t&’s formula

n

5 OXP{B + o+ By —nt/2}dt + > (exp{B} + -+ B} — nt/2}dB}

i=1

1
+5 exp{B} + -+ + B}' — nt/2}dt)

th ==

n a i on
= — 5 Mydt + M, ;dBt + 5 Mydt

=M, Zn: dB!.
=1

12



Integrating yields,

n T
My = My + Z/ M,dB;.
=170

Since M7 (w) = exp(—nT/2)F(w) and My = 1 we get
noo.T
F(w) = exp(nT/2) + Z/o exp(n(T — 5)/2) exp{B} + --- + B"}dB..

Hence, z = exp(nT/2) and ¢;(s,w) = exp(n(T — s)/2) exp{B} + -+ + BI'}.

(b) Now we define
M, = (B}H?+--- 4 (BM"? —3tB} — ... — 3tBI".

Then, F(w) = My + 3T Y. | BY(T) and using It6’s formula we get

dM, = —3ZBldt+3Z t)dB; + = Z6Bdt

i=1
:3i dBZ

i=1

Integration yields,
n T . .
My = My + 32/ ((B})? - s)dB..
Since Mr(w) = F(w) — 3T Y., B% and My = 0 we get
W) = BTZB’T + 32/ ((B')® — 5)dB!
_Z/ T — s+ (B)?)dB:.

Hence, z = 0 and ¢;(s,w) = 3(T — s + (B%)?).
Exercise 15.5 Let Z; solve the deterministic ODE

dZt = attht.

Then we know that

t
= Zoexp(/ asds).
0

Let us therefore try to find a solution to the original equation of the form X;(w) =
Y:(w)Z;. Using the Itd formula to the function f(y, z) = yz we get

X, = YidZ, + ZdY; + d(Y, Z),
= }/;Oéttht + th}/} = OétXt + thY;g

Recalling that dX; = oy Xydt + B: X:dB; and X; = Y1 Z; gives

BeYiZ1dBy = ZpdYs.

13



We can identify
dY; = 3,Y,dBy.
The solution to this SDE is the exponential martingale so we get
t 1 [t
Y= Yoesp{ [ fudB. - [ pds)
0 2 Jo
From this we see that
t t 1
X, = exp / BodB, + / (0 — 502},
0 0
since X(0) = Z(0)Y(0) = 1. To compute the expectation we know that

t t t
Xy = / dX; = / as Xgds +/ Bs XsdBs.
0 0 0

Taking expectation on both sides yields,
t t
E[Xy] :/ asE[X]ds —|—E[/ Bs X sdBg]
0 0

t
= / asE[X;]ds.
0

If we denote m; = E[X;] we see that

t
mt:/ asmsds.
0

That is, m solves the differential equation
my = aymy, mo =1
Hence, m; = exp(fot asds).

(b) Using results from (a) gives
T
Yr=Yo+ | BY.dB.
0
and
T T
XT = YTZT = [YO +/ ﬂé)/édBé]Zo exp(/ ozsds)
0 0
T
— YoZoe(f”T asds) 1y, 70 / Bsedo BudBu—3% [3 Bzduste(foT asds)
0
T T T 5 s 02
— U ands) / (U ardn) g oS BudBu—} 5 Brdugp
0
Hence, z = e(Jo @sd5) and o(s,w) = elfs ardr) g ofs BudBu—3 [§ Bidu,

Exercise 15.6 Put M; = fof(t) \/11?st' We will use Theorem 15.4 on p. 116.

Clearly M, is a continuous martingale and it has quadratic variation

f(t) 1 t2 t
<M>t=/0 1+sds=10g(1+f(t)):5:/0 sds.

14



Hence, there exists another Brownian motion B such that
t
M, = / V/'sdB;
0

Exercise 15.7 Put M; = fof(t) arICjzngBs. We will use Theorem 15.4 on p. 116.

Clearly M; is a continuous martingale and it has quadratic variation

f(#) t
(M) = / aCAns e — {u = arctan s}
0

1+ s2
arctan f(t) t+2nm t4+9 2 t
= / udu = / udu = (t+2nm)” = / (s + 2nm)ds,
0 0 2 0
for somen = ...,—1,0,1,.... Hence, there exists another Brownian motion B such
that

t
M; = / Vs + 2nmd B,
0

9 Chapter 16

Exercise 16.1 (a) Put

2
_ o
Y, =5, L= exp{(? —a)t — o B},

and let
2

g(t,x) = exp{(% —a)t — oz}
t6’s formula yields,
dY; = (02 — a)Yidt — oY;dB;.
(b) Ito’s formula yields,
d(X,Y;) = XedYy + Yed X, + d(X, Y
= X;((0? — )Yidt — 0Y1dBy) + Y, ((aXy + B)dt + (0X; +7)dBy) + (—oYi (0 X, +7))dt
= (B — 07)Yidt +7Y;dB;.
(c) Integrating the last equation yields,

/B_Md +/ L dB,.

X = St/ﬁ_opyd +/ PydB

Exercise 16.2 The Markov property implies that
u(t, Xe) = E[f (X7 = E[f (X7) | Xi] = E[f(X7) | 7).
Now with M; = u(t, X;) we find that
E[Mysn | Fi] = Elu(t + h, Xeqn) | Fi] = E[E[f(X1) | Fosn] | 7]
=E[f(Xr) | 72| = u(t, X;) = M.

Hence, M; has the martingale property. Since f is bounded M; = E[f(Xr1) | F]
is bounded almost surely and it follows that E[|[M;|] < oco. Therefore M; is a
martingale.

Hence,

15



10 Chapter 17

Exercise 17.1 We have the general formula as in Theorem 17.2 on p. 140. In this
exercise we are in the 1-dimensional case and we can identify the functions b(t, z)
and o(t,y) as

b(t,z) = a+ Oz, o(t,z) = ().
Hence, the infinitesimal generator is

d?f
dx?’

Af(@) = (a4 0m) Ty Z2() TS

Exercise 17.2 We have the general formula as in Theorem 17.2 on p. 140. In this
exercise we are in the 1-dimensional case and we can identify the functions b(t, z)
and o(t,y) as

Y

b(t,y) = 0 ——, o(t,z) =o.
=0 e ot
Hence, the infinitesimal generator is
oy df f
Afly) = +

\/1+y dy 2 d

Exercise 17.3 (a) We have R; = \/(B})2 + (B?)2 + (B})2 where B, = (B}, B, B})
is a 3-dimensional Brownian motion. If we put & = (x1,22,23) and r(z) =

2?2 + 23 + 23. Then we see that R, = r(B;). Hence, f(R;) = f(r(B:)) and
we know that the infinitesimal generator for By is

62

Ah(%‘l,l‘g,.ﬁg) (91' .

With h(z) = f(r(z)) we get using the chain rule that

2h(z 2 r 2
38';(5) @) (@) + ot ))ax (2).
Thus, we get
3. 92
Ah($17$2,$3) ; %
3 . )
—i;%u))(iﬂ()) jﬁ(())axm
1 d2f o \2 df, (@) - e g (x)
:5]2?(7"( ))(Tx)) +$(r(:p) )
L~ &f r \* L, df T(CE)_r(z)
zigﬁ(r( W5) + GO
— 5 (G + 5 Low)



Finally, since R; = r(B;) we get the infinitesimal generator of R; as

1/d>f 2 df
A= (L 2.8 )
=3 (S +2 L
(b) Let us first derive the SDE satisfied by R;. Using It6’s formula on r(z) (this is
possible even though r is not two times continuously differentiable at 0 because the

probability of R; hitting 0 is zero). We get

d dB—daBdleg Pr_ pyupi B
Ry = dr( t—zai t) QZm(t)< B )t

ij=1

Il

; (B,)dBJ + Z

j=1
3 j (B))?
B! o1 r(Bt) — r(By)
-3t + )3
= T(Bt) 2 = r (Bt)
3 .
B! ;
= dB] + dt.
j; T(Bt) ¢ 27'(Bt)
Introduce the process B, = j 1 fo o dB Then we can write

1 -
dR; = —dt + dB;.
t i + a5y

Now we can show that B, is in fact a Brownian motion! We use Lévy’s characteriza-
tion, Corollary 15.6 on p. 117 to prove this claim. First note that B, is a continuos
martingale since it is a sum of It integrals which are themselves continuous mar-
tingales. Second, B, has the quadratic variation process

<B>t—/ (B / Z a(B' BY),
:/otirg(B)s)ds_/o et

Note that from the representation of R, as the solution to

1 -
dR; = —dt + dB
t R, + dby,

we can easily derive the expression for the infinitesimal generator in (a).

Let us continue to prove that Z; = %e‘tﬂ is a martingale. Put f(¢,r) =

%64/2‘ The partial derivatives of f can be computed as

of _ 1 Of _ _yjp cosh(r)  sinh(r)
ot 2f(t,r), ar ¢ ( r r2 ),
0°f _ _,psinh(r)  cosh(r) _sinh(r)
w:etﬂ( T -2 72 +2 r3 )

Combining these expressions we see that

8f(t,r)+l.6f(t,r)+ 9% f(t,r)

1
ot r or 2" a2 0-

17



Applying It6’s formula we get

_ Of(t,Ry) af(t, Ry) 1 0%f(t, Ry)

df(t, Ry) = 5 A+t —5 th—f—g-Td(R)t
_Of(t,Ry) 1 Of(t,Ry) 1 0?f(t,Ry) Af(t, Ry) =~
= tE e taae Ut b
7af(taRt) H
= 5 —dB.

Integrating yields,
t
of(s,Rs) =
2= 20 = (0. R) — 50, F0) = [ 5 ap,
0 T
which is an It6é integral and hence Z; is a martingale.

Exercise 17.5 (a) We have the general formula as in Theorem 17.2 on p. 140.
In this exercise we are in the 1-dimensional case and we can identify the functions
b(t,x) and o(t,x) as

b(t, z) = ux, o(t,x) = ox”.
Hence, the infinitesimal generator is

df 1, 5 d°f
(b) We have X; = logS; or equivalently S; = eX¢. Using It&’s formula on g(z) =
log z we get
el

Stdst+ 5 (- S—g)d<s>t

1 _
= pdt + 0SB, — 50253(” Yat

dX

1 _
= (n— 50253(” NVt + 05)dB,

1
= (’u — 50-262(’Y*1)Xt)dt + O.e(’Y*l)XtdBt.
Exercise 17.6 (a) We need to show that
t t
/ PaX, = X, + 5/ P9 X ds,
0 0
or equivalently that
t t
e PtX, :/ e PdX, —5/ e P8 X ds.
0 0

It6’s formula applied on e~ ?* X, gives,
de Pt X,) = —pe Pt X dt + e PtdX,,

and integrating yields the desired result.
(b) We have

t
eiﬁt}/;:x—k/ e P dX,,
0

18



so applying Ité’s formula to e =AY, gives
d(e=PY,) = —Be P, dt + e~ PtdY;.
On the other hand we also have
d(ePtY;) = e PtdX, = e PtdB, 4 ce PldL.
Putting these two expressions equal and solving for dY; yields
dY; = (BY: + ¢)dt + dB,.

Hence, by applying Theorem 17.2 on p. 140 we identify the infinitesimal generator
of Y; as

Af(y) = (By + c>;’—f;<y> " %y).

(c) Since we have dX, = dB; + cds we see that

t t
Y, = Pty +/ Pt=9)4B, + c/ eBt=9)gs.
0 0
We know that

t
?=)dB, ~ N (0, / 2= gs),
0

which implies that

t t
Y, ~ N(eﬁtx + c/ eﬁ(t_s)ds,/ eQB(t_S)ds).
0 0

Exercise 17.7 (a) We have the general formula as in Theorem 17.2 on p. 140. In
this exercise we are in the 1-dimensional case and we can identify the functions
b(t,x) and o(t,x) as

b(t,z) = p(x), o(t,z) =ox(l — x).
Hence, the infinitesimal generator is

Af(x) = u(x)% + %a%z(l — m)zg
(b) The SDE to solve is

dX; = —X7(1 — Xy)dt + X (1 — X;)dBy.
Let g(x) = z(1 — z). Then ¢'(x) =1 — 22 and we get

1

S9(@)g'(x) = Lol —x)(1 ~ 22)

Now, since
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we can use the first extension of the Doss and Sussman technique. The solution to
the SDE is therefore given by

X, :h*l(fltﬂat),

2
where h(z) = ffo ﬁdy. It remains to determine h~1(x).
¢ 1 1 1 T z—1
hx:/id:/ ————)dy=log(—) —lo
( ) zo y(l_y) Y zo (y ]-_y) Y g(ﬁﬁo) g(:170_]-)
1—x T
=1 . .
8 ( To 1-— x)
From this we get
s o 1-— i) eh(x)7
1—=z o
from which it follows that
Toe”

ht =
(@) 1—xz9+ xpe®

Using this we can write the solution as
zoe— /2B
1 — g + wee~t/2+B:”

Xy

Exercise 17.8 To determine the probability law we negin by solving the SDE. First
note that the n-dimensional SDE is nothing but n independent SDE’s.

. 1 . 1 .
dXtZ:fiﬂtXtZdt+§UtdBtZa z:l,,n

i

To solve these SDE’s we consider the process Xte% Jo Bsds | Applying It6’s formula
yields,

A(Xed I Po) = 2,03 Ji O X 4 o303 P

Inserting the expression for dX; and integrating gives

t
the% fotﬁsds =z + %/ 6% f;ﬂudua_sdB;’
0

or equivalently

t
th = e% fOt Bsds (‘T’L —+ %/ e% f09 ﬁuduo_sdB;)
0

We know that if f(z) is a deterministic function with fot f?(s)ds < oo, then

t t
/ f(s)dBg ~ N(o,/ f2(s)ds).
0 0
It follows since all the SDE’s are independent that

X; ~ N(ze—2JoBeds )
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where the covariance matrix ¥ is diagonal with

t
Yii = %6_ I B*“ds/ elo Budug? g,
0

(b) We have
= | Xel? = (X074 (X2,

Using Itd’s formula gives

n ) ) 1 n ]
dry =Y 2X}dX] + 5 > 2d(X7),
i=1 i=1

n ; n . . 1 n
S Zl(Xt)%lt + 0, ;XtdBt +5 20?6&
2

- (%t — Biry)dt + 0,y XjdB;.
i=1

Now we observe that
R ) t n ) t
([ Yo xian= [ Yo xiyvas = [ s
0 =1 0 =1 0

So by Theorem 15.4 on p. 116 there exists a Brownian motion B, such that

t n t
/ > XidB, = / V/TsdBs.
0 i 0

This gives the Cox-Ingersoll-Ross model

2
g ~
d?"t = (Zt — ,Bt’l”t)dt + O't\/ﬁdBt.

Exercise 17.9 Using the integration by parts formula on (X})?, X} X? and (X?)?
gives

=uz]+ S,

X})2 242 XIXx2d

XIX? = mas — [ (XD2ds + ¢ [y (XD)2dB, + [ (X2)2ds,
(X)? =a}—2[) X1X2ds +2c [ X)X2dB, + ¢ [} (X1)2ds.

Taking expectation of each equation and using the fact that It6 integrals have
expectation 0 gives us,

my(t) =a?+2 fot ma(s)ds,
mao(t) = x1w9 — fot my(s)ds + fg ms(s)ds,
ms(t) =a3—2 fot ma(s)ds + 2 fg ma(s)ds.

Differentiation finally yields with m(t) = (mq(t), ma(t), m3(t))T,

. 0 2 0 22
d—(t) =| -1 0 1 |m(), m(0) = | zi1z2
¢ 2 =20 3
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11 Chapter 18

Exercise 18.1 We use the Feynman-Kac formula with f(z) = 1 and let X; be an
n-dimensional Brownian motion B;. We know that the infinitesimal generator of an
n-dimensional Brownian motion is given by A = %A where A is the n-dimensional
Laplace operator. It follows from the Feynman-Kac theorem (Theorem 18.5 p. 149)
that u(t,x) solves

%1; :%Aufqu, t>0, x € R"”
u(z,0) =1, x € R".

Using the PDE above and u(t,z) = e=V %) V(t,2) = —log(u(t,x)) gives

ov_ 10w 1
ot  uw Ot u'2

Let us now compute

V(t z) Z 7V(t z)
0z?

where © = (z1,...,2,). Wehavefori=1,....,n
02 _y 0 ov 0V ov
Vi) 2 A -V -V
833?6 Ox; ( axie ) Ox? et (5':52) €
and hence

Ae Y =e V((VV)2 = AV),

where (VV)? = VV - VV is the inner product of VV with itself. Note now that
V(0,z) =0 for x € R™. This gives the PDE for V (¢, z)

@ =AV —(VV)? +gq,
V(z,0) =0, x € R™.

Exercise 18.2 Using the general case of the Feynman-Kac formula we can identify

g(z) = =V(z),  g(z)=g(2),

and we arrive at the following PDE for (¢, x)

{ (i) = Ault,x) + V(e)u(t, ) + g(a),
(0.2) = fla).

Exercise 18.3 Assume X; is the solution the the SDE

QQ:

dXt = b(t,Xt)dt + O'(t,Xt)dBt, Xo = Xp.

Using It6’s formula on M; = ¢(t, X;) we get

a dp 1
) a 1 o2
;’ (t, X, )dt + a‘p(t X)dX+ 5 5 T2 4, X,) o2 (t, Xyt
dy 1 0% dy
(at (t, X;) + 5 52 (t, X1)o (t, Xy))dt + == B 92 (t, X,)dX,
g"" (t, X;)dXs,

22



if %—f(t, X))+ % . ngf(t, X;)o?(t, X;) = 0. Computing the partial derivatives yields

o(t, x) z? 0 p(tx) 22
2(1—t)(1_1—t>’ ﬁ(t’x)__(l—t)(l_l—t)

op B
a(tv IE) -

Hence, 22(t, X;) + & - 22(t, X;)02(t, X;) = 0 if o(t, X;) = 1. Tt follows that X;

must be of the form

dX; = b(t, X;)dt +dB,,  Xo = .
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