SF2970: Repetition 1

Spring 2017

Conditional expectation

Q 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subset \mathcal{F}$ be a σ -subalgebra.

- a.) Let X be an integrable random variable (i.e., $\mathbb{E}|X| < \infty$). Give the definition of $\mathbb{E}[X|\mathcal{G}]$.
- b.) Let Y be another integrable random variable. Assume now that X is independent of \mathcal{G} and that Y is \mathcal{G} -measurable. Let $h : \mathbb{R}^2 \to \mathbb{R}$ be a bounded Borel function. How can you compute $\mathbb{E}[h(X,Y)|\mathcal{G}]$?

Q 2. Let X_1, \ldots, X_n be iid random variables. Set $S_i := \sum_{k=1}^i X_k$, $1 \le i \le n$. Compute $\mathbb{E}[S_n | \sigma(S_i)]$.

Q 3. Let *A* and *B* be two random variables whose joint distribution is uniform on the triangle $\{(a, b) \in \mathbb{R}^2 : 0 \leq b \leq a \leq 1\}$. Compute the distribution of *B*/*A*. Show that *B*/*A* and *A* are independent. Compute the conditional expectation $\mathbb{E}[B|\sigma(A)]$.

Martingales in discrete time

- **Q** 4. a.) Let $(\Omega, \mathcal{F}, \underline{\mathcal{F}}, \mathbb{P})$ be a filtered probability space. Let M_n , n = 0, 1, 2, ..., be an $(\underline{\mathcal{F}}, \mathbb{P})$ martingale. Show that $\mathbb{E}M_n = \mathbb{E}M_0$, for all $n \ge 0$.
 - b.) An urn initially contains one blue and one yellow ball. At each discrete time step n = 1, 2, ..., we select a ball from the urn (uniformly at random) and replace it with two balls of the same color. Let (Y_n) , n = 1, 2... be the number of yellow balls, with $Y_1 = 1$. Show that

$$M_n := \frac{Y_n}{n+1}$$

is a martingale in the natural filtration. Moreover, compute the distribution of M_n . (Hint: Prove by induction that $\mathbb{P}(Y_n = k) = 1/n$, for k = 1, ..., n.)

Q 5. Let $(\Omega, \mathcal{F}, \underline{\mathcal{F}}, \mathbb{P})$ be a filtered probability space. Let $M_n, n = 0, 1, 2, ...$ be a square integrable martingale.

- a.) Show that M_n^2 is a sub-martingale, i.e., show that $\mathbb{E}[M_{n+1}^2|\mathcal{F}_n] \geq M_n^2$, $n = 0, 1, 2, \ldots$
- b.) Show that $\operatorname{cov}(M_{n+1} M_n, M_n) = 0$, $n = 0, 1, 2, \ldots$, where $\operatorname{cov}(X, Y) := \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$, for arbitrary random variables X and Y. Thus $M_{n+1} M_n$ and M_n are uncorrelated (but not necessarily independent).
- c.) The quadratic variation of M_n is defined as

$$\langle M \rangle_n := \sum_{i=0}^{n-1} \mathbb{E}[(M_{i+1} - M_i)^2 | \mathcal{F}_i], \qquad n \ge 1,$$

$$\langle M \rangle_0 := 0.$$

Argue that $\langle M \rangle_n$ is \mathcal{F}_{n-1} measurable. Show that $M_n^2 - \langle M \rangle_n$, $n = 0, 1, 2, \ldots$, is a martingale, i.e,

$$\mathbb{E}[M_{n+1}^2 - \langle M \rangle_{n+1} | \mathcal{F}_n] = M_n^2 - \langle M \rangle_n$$

Discrete stochastic integral

Q 6. In the lecture we considered a simple discrete time model of a market with a stock and a bond. The stock price $(S_n)_{n\geq 0}$ was assumed to be given by

$$S_n = \exp\left[\left(\mu - \frac{1}{2}\sigma^2\right)n + \sigma W_n\right]S_0,$$

with $S_0 > 0$ the deterministic initial price, and constants $\mu \in \mathbb{R}$ and $\sigma > 0$. Here, (W_n) is a standard discrete Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with \mathbb{P} the "market measure".

The bond's price $(B_n)_{n>0}$ is assumed to be deterministic and given by

$$B_n = \mathrm{e}^{nr} B_0 \,,$$

with $B_0 > 0$ the deterministic initial price, and $r \in \mathbb{R}$ the bond's rate.

a.) Fix some (large) final time $N \in \mathbb{N}$. Using Girsanov's theorem, we showed in class that S_n can be written as

$$S_n = \exp\left[\left(r - \frac{1}{2}\sigma^2\right)n + \sigma\widetilde{W}_n\right]S_0, \qquad 0 \le n \le N,$$

with \widetilde{W}_n a discrete Brownian motion under the "risk-neutral" measure $\widetilde{\mathbb{P}}$. Give the definition of $\widetilde{\mathbb{P}}$ in terms of \mathbb{P} , W_N and $\theta := (\mu - r)/\sigma$.

Consider now a self-financing portfolio. Let $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ be the number of stocks respectively bonds bought at times n and hold over the time intervals [n, n + 1). We assume that $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ are bounded $\underline{\mathcal{F}}$ -adapted stochastic processes, where $\underline{\mathcal{F}}$ is the filtration generated by $(W_n)_{n\geq 0}$, i.e., $\underline{\mathcal{F}} := (\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots)$ with $\mathcal{F}_n = \sigma(\widetilde{W}_i : 0 \leq i \leq n) = \sigma(W_i : 0 \leq i \leq n)$.

The value of the portfolio over the time intervals [n, n+1) is

$$V_n := X_n S_n + Y_n B_n , \qquad 1 \le n \le N ,$$

with V_0 its initial value.

- b.) What does it mean that the portfolio is self-financing?
- c.) Show that V_n can be written as

$$V_n = I_S(X)_n + I_B(Y)_n + V_0, \qquad 1 \le n \le N.$$

where $I_S(X)$ is the discrete stochastic integral of (X_n) against (S_n) , etc. Are $(I_S(X)_n)$ and $(I_B(Y)_n)$ $(\underline{\mathcal{F}}, \widetilde{\mathbb{P}})$ -martingales? (Warning: Here, (B_n) is the bond price and not a discrete Brownian motion.)

In class we showed that the discounted portfolio value $\widetilde{V}_n := V_n/B_n$ and the discounted stock price $\widetilde{S}_n := S_n/B_n$ are both $(\underline{\mathcal{F}}, \widetilde{\mathbb{P}})$ -martingales for $0 \le n \le N$.

d.) Find the adapted bounded process $(L_n)_{n>0}$ such that

$$\widetilde{V}_n = I_{\widetilde{S}}(L)_n + \widetilde{V}_0, \qquad 1 \le n \le N.$$

Is $(I_{\widetilde{S}}(L)_n)$ an $(\underline{\mathcal{F}}, \widetilde{\mathbb{P}})$ -martingale for $0 \le n \le N$?