

SF2970: Repetition 2

Spring 2017

Brownian motion

Q 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let B_t be a standard Brownian motion.

a.) Compute

$$\mathbb{E}[B_t B_s B_u], \quad t, s, u \geq 0.$$

b.) Let $c > 0$. Show that

$$Y_t := c B_{t/c^2}, \quad t \geq 0,$$

is a standard Brownian motion. (In what filtration?)

Q 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $B_t = (B_t^{(1)}, B_t^{(2)})$ be a standard 2-dimensional Brownian motion started at zero. Fix $r > 0$ and let

$$D_r := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq r^2\}.$$

Compute $\mathbb{P}(B_t \in D_r)$, $t \geq 0$.

Stochastic integrals

Q 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $B_t = (B_t^{(1)}, B_t^{(2)})$ be a standard 2-dimensional Brownian motion started at zero. Fix $T > 0$ and set

$$f(t, \omega) = (f^{(1)}(t, \omega), f^{(2)}(t, \omega)) := (\mathbb{1}_{\{B_t^{(1)} < B_t^{(2)}\}}, |B_t^{(1)} - B_t^{(2)}|^{1/2}), \quad 0 \leq t \leq T.$$

Are $f^1(t, \omega)$ and $f^2(t, \omega)$ in $\mathcal{V}[0, T]$? Define

$$K_t := \int_0^t f^{(1)}(s, \omega) dB_s^{(1)}(\omega) + \int_0^t f^{(2)}(s, \omega) dB_s^{(2)}(\omega), \quad 0 \leq t \leq T.$$

Compute the expected value of the bracket process $\langle K \rangle_t$.

Ito Lemma

Q 4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let B_t be a standard Brownian motion. Compute the stochastic differentials of the following processes:

$$\begin{aligned} X_t &= e^{\alpha t + \beta B_t}, & \alpha, \beta \in \mathbb{R}; \\ X_t &= e^{\alpha t/2} \sin(\beta B_t), & \alpha, \beta \in \mathbb{R}; \\ X_t &= \left(\alpha^{1/3} + \frac{1}{3} B_t\right)^3, & \alpha > 0; \\ X_t &= (B_t + t) e^{-B_t - \frac{1}{2}t}; \\ X_t &= (B_t^2 + 1)^{-1}. \end{aligned}$$

Q 5. Let $(\Omega, \mathcal{F}, \underline{\mathcal{F}}, \mathbb{P})$ be a filtered probability space. Let B_t be an $\underline{\mathcal{F}}$ -Brownian motion.

a.) Is

$$X_t = e^{-t/2} \cosh(B_t), \quad t \geq 0,$$

an $\underline{\mathcal{F}}$ -martingale? (Recall that $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$.)

b.) Find $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $Y_t := f(B_t + t)$ is an $\underline{\mathcal{F}}$ -martingale.