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Chapters 1 to 4

4.1

Show that if A and B belongs to the σ-algebra F then also B\A ∈ F (for
de�nition of σ-algebra, see De�nition 1.3). Also show that F is closed under
countable intersections, i.e. if Ai ∈ F for i = 1, 2, . . . , then ∩∞i=1Ai ∈ F.

Proof. 1) B\A = B ∩ Ac = (Bc ∪ A)c and since Bc ∈ F, Bc ∪ A ∈ F so
(Bc ∪A)c ∈ F.

2) Take Ai ∈ F for i = 1, 2, . . . . Since ∪∞i=1A
c ∈ F it follows that

(∪∞i=1A
c)c = ∩∞i=1A ∈ F

4.6

Though a fair die once. Assume that we only can observe if the number obtained
is �small�, A = {1, 2, 3} and if the number is odd, B = {1, 3, 5}. Describe the
resulting probability space; in particular, describe the σ-algebra F generated
by A and B in terms of a suitable partition (for de�nition of a partition, see
De�nition 1.9) of the sample space.

Proof. Looking at the Venn diagram insert diagram, we conclude that there
are at most four partitions of the space, A∩B = {1, 3}, A∩Bc = {2}, Ac∩B =
{5} and (A ∪ B)c = {4, 6} of which none is an empty sets. These partitions
can be combined in 24 = 16 di�erent ways to generate the σ-algebra F de�ned
below.

F ={∅,Ω, A,B,Ac, Bc, A ∪B,A ∪Bc, Ac ∪B,Ac ∪Bc,
A ∩B,A ∩Bc, Ac ∩B,Ac ∩Bc, (A ∩Bc) ∪ (Ac ∩B), (A ∩B) ∪ (Ac ∩Bc)}

={∅,Ω, {1, 2, 3}, {1, 3, 5}, {4, 5, 6}, {2, 4, 6}, {1, 2, 3, 5}, {1, 2, 3, 4, 6},
{1, 3, 4, 5, 6}, {2, 4, 5, 6}, {1, 3}, {2}, {5}, {4, 6}, {2, 5}, {1, 3, 4, 6}}.

The probability measure on each of the sets in F may be deduced by using
the additivity of the probability measure and the probability measure of each
of the partitions, P (A ∩ B) = 2/6, P (A ∩ Bc) = 1/6, P (Ac ∩ B) = 1/6 and
P ((A ∪B)c) = 2/6.

4.10

Given a probability space (Ω,F,P) and functions X : Ω → R, Y : Ω → R.
De�ne Z = max{X,Y }.

1. Show that Z is F-measurable if both X and Y are F-measurable.

2. Find a special case where Z is F measurable even though neither X nor
Y is.

Proof. 1)

{ω ∈ Ω : Z(ω) ≤ x} = {ω ∈ Ω : max{X(ω), Y (ω)} ≤ x}
= {ω ∈ Ω : X(ω) ≤ x}︸ ︷︷ ︸

∈F

∩{ω ∈ Ω : X(ω) ≤ x}︸ ︷︷ ︸
∈F

∈ F,
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where the last conclusion is based on the result of proposition 3.2.
2) Suppose you threw two coins and our σ-algebra F was generated by the

single setA = {HT, TH}, i.e. F = {∅,Ω, A,Ac} = {∅, {HH,TT,HT, TH}, {HT, TH}, {HH,TT}}.
Let

X =
{

1 if ω ∈ {HT}
0 if ω ∈ {HH,TT, TH} Y =

{
1 if ω ∈ {TH}
0 if ω ∈ {HH,TT,HT} .

Then

Z =
{

1 if ω ∈ {HT, TH}
0 if ω ∈ {HH,TT},

hence X and Y are not F-measurable while Z is.

4.11

Toss a fair soin n = 4 times. describe the sample space Ω. we want to consider
functions X : ω → {−1, 1}.

1. describe the probability space (Ω,F1,P1) thar arises if we want each out-
come to be a legitimate event. How many F1-measurable functions X
with E[X] = 0 are there?

2. Now describe the probability space (Ω,F2,P2) that arises if we want that
only combinations of sets of the type

Ai = {ω ∈ Ω : Number of heads = i}, i = {0, 1, 2, 3, 4}

should be events. How many F2-measurable functions X with E[X] = 0
are there?

3. Solve 2) above for some other n.

Proof. 1) Each coin that is tossed has to possible outcomes, and since there
are four coins to be tossed, there are 24 = 16 possible outcomes, or partitions.
So the sample space is Ω = {HHHH,HHHT,HHTH, etc.} with 16 members
that describes all the information from that four tosses. F1 is the power set

of Ω consisting of all combinations of sets of Ω (don't forget that ∅ allways is
included in a σ-algebra ), hence F1 = σ(Ω). P1 is deduced by �rst observing that
each ω ∈ Ω has P(ω) = 1/16 and then using the additivity och the probability
measure.

For any function X : Ω → {−1, 1} that is measurable with respect to F1

there is a set A ∈ F1 such that

X(ω) =
{ 1 if ω ∈ A
−1 if ω ∈ Ac.

Hence E[X] = P1(A) − P1(Ac) so if E[X] = 0 we must have P1(A) = P1(Ac),
and since there are 16 partitions each with probability measure 1/16, there are
16
8 ways of combining the partitions so that there are equally many of them in

A and Ac, hence there are
16
8 possible �nctions X : Ω → {−1, 1} such that

E[X] = 0.
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2) The sets

A0 = {TTTT}
A1 = {TTTH, TTHT, THTT,HTTT}
A2 = {TTHH,THHT,HHTT,HTTH, THTH,HTHT}
A3 = {HHHT,HHTH,HTHH,THHH}
A4 = {HHHH},

de�nes a partition of Ω. The σ-algebra F2 is the σ-algebra generated by this
partition. De�ne Pi = P(Ai), then P0 = 1/16, P1 = 4/16, P2 = 6/16, P3 = 4/16
and P4 = 1/16. For any function X : Ω → {−1, 1} that is measurable with
respect to F2 there is a a set A ∈ F2 such that

X(ω) =
{ 1 if ω ∈ A
−1 if ω ∈ Ac.

Hence E[X] = P2(A) − P2(Ac) so if E[X] = 0 we must have P1(A) = P1(Ac).
We may write E[X] = k0P0 + k1P1 + k2P2 + k3P3 + k4P4 = k0/160 + 4k1/16 +
6k2/16 + 4k3/16 + k4/16 which is zero either if ki = (−1)i or if ki = −(−1)i.
Hence, there are two possible F2-measurable functions X : Ω → {−1, 1} such
that E[X] = 0.

3) Using the same notation as in 2), we conclude that, for any given in-
teger n > 0, A0, A1, . . . , An is a partition of Ω with σ-algebra Fn generated

by this partition, and with Pn(Ai) =
( n
i
)
(1/2)i for i = 0, 1, . . . , n. And

E[X] =
∑n
i=0 ki

( n
i
)
(1/2)i for ki = ±1, where it should be noted that

∑n
i=0

( n
i)

(1/2)i = 1. For any function X : Ω→ {−1, 1} that is measurable with respect
to Fn there is a a set A ∈ Fn such that

X(ω) =
{ 1 if ω ∈ A
−1 if ω ∈ Ac.

Hence E[X] = Pn(A)− Pn(Ac) so if E[X] = 0 we must have Pn(A) = Pn(Ac) =
1/2.

For even n, we have ∑
i=odd

( n
i
)
(1/2)i = 1/2

∑
i=even

( n
i
)
(1/2)i = 1/2

so E[X] = 0 if ki = (−1)i or ki = −(−1)i. For odd n, we have

(n−1)/2∑
i=0

( n
i
)
(1/2)i = 1/2

n∑
i=(n−1)/2+1

( n
i
)
(1/2)i = 1/2

so E[X] = 0 if kn−i = −ki for i = 0, 1, . . . , (n−1)/2 and there are 2(n−1)/2 ways
of combining these. Hence, there are 2(n−1)/2 possible Fn-measurable functions
X : Ω→ {−1, 1} such that E[X] = 0.
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4.13

Consider the probability space (Ω,F,P) where Ω = [0, 1], F is the Borel σ-
algebra on Ω and P is the uniform probability measure on (Ω,F). Show that
the two random variables X(ω) = ω and Y (ω) = 2|ω − 1/2| have the same
distribution, but that P(X = Y ) = 0.

Proof. (For de�nition of distribution function see de�nition 3.4) Since X is
uniform, the distribution function is

P(X ≤ x) = 0 for x ∈ (−∞, 0]
P(X ≤ x) = x for x ∈ [0, 1]
P(X ≤ x) = 1 for x ∈ [1,∞)

so for Y we get, with x ∈ [0, 1],

P(Y ≤ x) = P(2|X − 1/2| ≤ x) = P(|2X − 1| ≤ x) = {by symmetry}
= 2P(0 ≤ 2X − 1 ≤ x) = 2P(1/2 ≤ X ≤ (x+ 1)/2)

= 2((x+ 1)/2− 1/2) = x.

Hence P(X ≤ x) = P(Y ≤ x) = x for x ∈ [0, 1]. But since

P(X = Y ) = P(X = 2|X − 1/2|)
= P({ω ∈ Ω : X = 2X − 1/2} ∪ {ω ∈ Ω : X = −2X + 1/2})
= P({ω ∈ Ω : X = 1} ∪ {ω ∈ Ω : X = 3}) = P(∅) = 0,

we conclude that P (X = Y ) = 0.

4.14

Show that the smallest σ-algebra containing a set A is that intersection of all
σ-algebras containing A. Also, show by counter example that the union of two
σ-algebras is not necessarily a σ-algebra .

Proof. Let GA be the set of all σ-algebras containing A, we want to show that
∩G∈GAG = {ω ∈ Ω : ω ∈ G for every G ∈ GA} = F is a σ-algebra ; if it is,
then it is the smallest σ-algebra since otherwise, there would be a σ-algebra
containing A that was smaller than F , this would be a contradiction since then
this σ-algebra would be included in G and therefore F would not be minimal.
To check that F is a σ-algebra , we simply use De�nition 1.3.

1. ∅ ∈ G ∀G ∈ GA hence ∅ ∈ F.

2. If ω ∈ G ∀G ∈ GA then ωc ∈ G ∀G ∈ GA hence ωc ∈ F.

3. If ω1, ω2, . . . ∈ G ∀G ∈ GA then ∪∞i=1ωi ∈ G ∀G ∈ GA hence ω1, ω2, . . . ∈ F.

so F is a σ-algebra .
To show that the union of two σ-algebras is not necessarily a σ-algebra ,

take F1 = {∅,Ω, A,Ac} and F2 = {∅,Ω, B,Bc} where A ⊂ B. Then F1 ∪ F2 =
{ω ∈ Ω : ω ∈ F1 or F2} = {∅,Ω, A,Ac, B,Bc} is not a σ-algebra since, e.g.
Bc ∪A /∈ F1 ∪ F2.
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4.21

given a probability space (Ω,F,P) and a random variable X. Let A be a sub-σ-

algebra of F, and consider X̂ = E[X|A].

1. Show that E[(X − X̂)Y ] = 0 if Y is an A-measurable random variable.

2. Show that theA-measurable random variable Y that minimize E[(X−Y )2]
is Y = E[X|A].

Proof. 1) Using equality 4 followed by equality 2 in Proposition 4.8 we get

E[(X − X̂)Y ] = E[E[(X − X̂)Y |A]] = E[E[(X − X̂)|A]Y ]

= E[(X̂ − X̂)Y ] = 0.

2) Using equality 3 followed by equality 2 in Proposition 4.8 we get

E[(X − Y )2] = E[X2]− 2E[XY ] + E[Y 2]

= E[X2]− 2E[E[XY |A]] + E[Y 2]

= E[X2]− 2E[Y E[X|A]] + E[Y 2]

= E[X2]− E[E[X|A]2] + E[E[X|A]2]− 2E[Y E[X|A]] + E[Y 2]

= E[X2]− E[E[X|A]2] + E[(Y − E[X|A])2]︸ ︷︷ ︸
≥0

,

hence E[(X − Y )2] is minimized when Y = E[X|A].

4.22

LetX and Y be two integrable random variables de�ned on the same probability
space (Ω,F,P). Let A be a sub-σ-algebra such that X is A-measurable.

1. Show that E[Y |A] = X implies that E[Y |X] = X.

2. Show by counter example that E[Y |X] = X does not necessarily imply
that E[Y |A] = X.

Proof. (For de�nition of conditional expectation see De�nition 4.6, for proper-
ties of the conditional expectation, see Proposition 4.8.)

1) SinceX isA-measurable, σ(X) ⊆ A hence, using equality 4 in Proposition
4.8, we get

E[Y |X]
∆
= E[Y |σ(X)︸ ︷︷ ︸

⊆A

] = E[E[Y |A]︸ ︷︷ ︸
=X

|X] = E[X|X] = X.

2) Let X and Z be independent and integrable random variables and assume
that E[Z] = 0 and de�ne Y = X + Z. Let A = σ(X,Z), then

E[Y |σ(X)] = E[X + Z|σ(X)] = X + 0 = X,

while

E[Y |A] = E[X + Z|σ(X,Z)] = X + Z 6= X.
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Chapters 5 to 7

7.1

let Xi be a sequence of independent random variables with E[Xi] = 0 and
V (Xi) = E[(Xi − E[Xi])

2] = σ2
i . Show that the sequence

Sn =

n∑
i=1

(X2
i − σ2

i )

is a martingale with respect to F, the �ltration generated by the sequence {Xi}.

Proof. (For de�nition of martingale see De�nition 5.2) We �rst check the inte-
grability os Sn.

E[|Sn|] = E[|
n∑
i=1

X2
i − σ2

i |] ≤ E[

n∑
i=1

|X2
i − σ2

i |] ≤
n∑
i=1

E[|X2
i − σ2

i |]

≤
n∑
i=1

E[X2
i ] + E[σ2

i ] =

n∑
i=1

2σ2
i <∞

hence Sn is integrable.
To check that Sn is Fn -measurable, just observe that since Xi for i =

1, 2, . . . , n are Fn measurable, the sum of them is as well.
What remains to prove is the matringale property.

E[Sn+1|Fn] = E[Sn +X2
n+1 − σ2

n+1|Fn] = E[Sn|Fn] + E[X2
n+1|Fn]− σ2

n+1

= Sn + E[X2
n+1]− σ2

n+1 = E[Sn|Fn] + σ2
n+1 − σ2

n+1

= Sn.

Hence Sn is an F-martingale.

7.4

Let Xi be IID with Xi ∼ N(0, 1) for each i and put Yn =
∑n
i=1Xi. Show that

Sn = exp{αYn − nα2/2}

is an Fn-martingale for every α ∈ R.

Proof. (For de�nition of martingale see De�nition 5.2) We �rst check the in-

tegrability os Sn. Since Sn ≥ 0 and by knowing that E[ecX ] = ec
2/2 for

X ∼ N(0, 1) (moment generating function), we get

E[|Sn|] = E[Sn] = E[exp{α
n∑
i=1

Xi − nα2/2}] = e−nα
2/2

n∏
i=1

E[eαXi ] = 1 <∞.

hence Sn is integrable.
To check that Sn is Fn -measurable, observe that since Xi for i = 1, 2, . . . , n

are Fn measurable, and the exponential of the sum is continuous, so Sn is
measurable as well.
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What remains to prove is the matringale property.

E[Sn+1|Fn] = E[exp{α
n∑
i=1

Xi − nα2/2}|Fn] = E[Snexp{αXn+1 − α2/2}|Fn]

= Sn E[exp{αXn+1 − α2/2}|Fn]︸ ︷︷ ︸
=1 (as in 7.1)

= Sn.

Hence Sn is an F-martingale.

7.13

Let Xi be a sequence of bounded random variables such that

Sn =

n∑
i=1

Xi

is an F-martingale. Show that Cov(Xi, Xj) = 0 for i 6= j.

Proof. By Proposition 5.4 we get that E[Xi] = 0 for i > 1, hence for 1 ≤ n ≤
n+m we have

Cov(Xn, Xn+m) = E[XnXn+m]− E[Xn]E[Xn+m]︸ ︷︷ ︸
=0

= E[E[XnXn+m|Fn]]

= E[XnE[Xn+m|Fn]] = E[XnE[Sn+m − Sn+m−1|Fn]] = 0

where the last equality stems from the fact that Sn is an F-martingale. Hence
the sequence Xi are mutually uncorrelated.

Chapter 8

8.1

Let {Mn} and {Nn} be square integrable F-martingales. Show that

E[Mn+1Nn+1|Fn]−MnNn = 〈M,N〉n+1 − 〈M,N〉n (1)

Proof. (For de�nition of square integrability see De�nition 8.1, for de�nition of
quadratic variatio and covariation see page 54) The right hand side of equality
(1) yields

〈M,N〉n+1 − 〈M,N〉n =

=

n∑
i=0

E[(Mi+1 −Mi)(Ni+1 −Ni)|Fi]−
n−1∑
i=0

E[(Mi+1 −Mi)(Ni+1 −Ni)|Fi]

= E[(Mn+1 −Mn)(Nn+1 −Nn)|Fn]

= E[Mn+1Nn+1 −Mn+1Nn −MnNn+1 +MnNn|Fn].
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Using the martingale property of the two processes {Mn} and {Nn}, and the
measurability of Mn and Nn with respect to Fn, we get

E[Mn+1Nn+1 −Mn+1Nn −MnNn+1 +MnNn|Fn]

= E[Mn+1Nn+1|Fn]− E[Mn+1Nn|Fn]− E[MnNn+1|Fn] + E[MnNn|Fn]

= E[Mn+1Nn+1|Fn]−NnE[Mn+1|Fn]−MnE[Nn+1|Fn] +MnNn

= E[Mn+1Nn+1|Fn]−NnMn,

and the proof is done.

8.2

Let {Mn} and {Nn} be square integrable F-martingales.

1. Let α and β be real numbers. verify that, for every integer n ≥ 0,

〈αM + βN〉n = α2〈M〉n + 2αβ〈M,N〉n + β2〈N〉n.

2. Derive the Cauchy-Schwarz inequality

|〈M,N〉n| ≤
√
〈M〉n

√
〈N〉n, n ≥ 0.

Proof. (For de�nition of square integrability see De�nition 8.1, for de�nition of
quadratic variatio and covariation see page 54) 1) By De�nition 8.3 we get

〈αM + βN〉n =

n−1∑
i=0

E[(αMi+1 + βNi+1 − αMi − βNi)2|Fi]

=

n−1∑
i=0

E[((αMi+1 − αMi) + (βNi+1 − βNi))2|Fi]

=

n−1∑
i=0

E[α2(Mi+1 −Mi)
2 + 2αβ(Mi+1 −Mi)(Ni+1 −Ni) + β2(Ni+1 −Ni)2|Fi]

= α2〈M〉n + 2αβ〈M,N〉n + β2〈N〉n,

which is what we wherev set out to prove.
2) It is easily seen that the quadratic variation is alway positive and by using

this observation, combined with the result from the �rst part of this exercise,
we get, for any λ ∈ R,

0 ≤ 〈M − λN〉n = 〈M〉n − 2λ〈M,N〉n + λ2〈N〉n.

Let λ = 〈M,N〉n/〈N〉n,

0 ≤ 〈M〉n − 2λ〈M,N〉n + λ2〈N〉n
= 〈M〉n − 2〈M,N〉2n/〈N〉n + 〈M,N〉2n/〈N〉n = 〈M〉n − 〈M,N〉2n/〈N〉n

hence

〈M,N〉2n/〈N〉n ≤ 〈M〉n
⇐⇒ 〈M,N〉n ≤

√
〈M〉n

√
〈N〉n

and the proof is done.
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8.3

Let {Mn} and {Nn} be square integrable F-martingales. Check the following
parallellogram equality,

〈M,N〉n =
1

4
(〈M +N〉n − 〈M −N〉n).

Proof. Using the result from part 1) of problem 8.2 we get

〈M +N〉n − 〈M −N〉n
= 〈M〉n + 2〈M,N〉n + 〈N〉n − 〈M〉n + 2〈M,N〉n − 〈N〉n = 4〈M,N〉n,

hence 〈M,N〉n = 1
4 (〈M +N〉n − 〈M −N〉n).

Chapter 9

9.2

Let {Mn} and {Nn} be two square integrable F-martingales and let ϕ and ψ
be bounded F-adapted processes. Derive the Cauchy-Schwarz inequality

|〈IM (ϕ), IN (ψ)〉n| ≤
√
〈IM (ϕ)〉n

√
〈IN (ψ)〉n, n ≥ 0.

Proof. By Proposition 9.3 we have that both IM (ϕ) and IN (ψ) are square in-
tegrable F-martingales, so the proof is identical to the one given in part 2) of
problem 8.2.

9.3

In this problem we look at a simple market with only two assets; a bond and a
stock. The bond price is modelled according to{ Bn = (1 + r)Bn−1 for n = 1, 2, . . . , N

B0 = 1

where r > −1 is the constant rate of return for the bond. The stock price is
asumed to be stochastic, with dynamics{

Sn = (1 +Rn)Sn−1 for n = 1, 2, . . . , N
S0 = s

where s > 0 and {Rn} is a sequence of IID random variables on (Ω,F,P). Fur-
thermore, let {Fn} be the �ltration given by Fn = σ(R1, . . . , Rn) n = 1, . . . , N

a) When is Sn/Bn a martingale with respect to the �ltration {Fn}?

We now look at portfolios consisting of the bond and the stock. For every
n = 0, 1, 2, . . . , N let xn and yn be the number of stocks and bonds respectively
bought at time n and held over the period [n, n+ 1). furthermore, let

Vn = xnSn + ynBn
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by the value of the portfolio over [n, n + 1), and let V0 be our initial wealth.
The rebalancing of the portfolio is done in the following way.

At every time n we observe the value of our old portfolio, composed at time
n − 1, which at time n is xn−1Sn + yn−1Bn. We are allowed to only use this
amount to to rebalance the portfolio at time n, i.e. we are not allowed to
withdraw or add any money to the portfolio. A portfolio with this restriction is
called a self−financingportfolio. Formally we de�ne a self-�nancing portfolio
as a pair {xn, yn} of {Fn}-adapted processes such that

xn−1Sn + yn−1Bn = xnSn + ynBn, n = 1, . . . , N.

b) Show that if Sn/Bn is a martingale with respect to the �ltration {Fn}, then
so is Vn/Bn, where Vn is the portfolio value of any self-�nancing portfolio.

Finally we look at a type of self-�nancing portfolios called arbitrage strategies.
A portfolio {xn, yn} is called an arbitrage if we have

V0 = 0

P(VN ≥ 0) = 1

P(VN > 0) > 0

for the value process of the portfolio. The idea formalized in an arbitrage port-
folio is that with an initial wealth of 0 we get a non-negative portfolio value
at time N with probability one, i.e. your are certain to make money on your
strategy. We say that a model is arbitrage free if the model permits arbitrage
portfolios.

c) Show that if Sn/Bn is a martingale then every self-�nancing portfolio is
arbitrage free.

Let Qn be a square integrable martingale with respect to the �ltration {Fn}
such that Qn > 0 a.s. and Q0 = 1 a.s..

d) Show that even if Sn/Bn is not a martingale with respect to the �ltration
{Fn}, �nding a process Qn as de�ned above such that SnQn/Bn, will give that
VnQn/Bn is a martingale with respect to the �ltration {Fn}, and furthermore,
that Vn is arbitrage free.

Even though the multiplication of the positive martingale Qn might seem unim-
portant, we will later in the course see that this is in fact a very special action
which gives us the ability to change measure. In �nancial applications, this
is important since the portfolio pricing theory say that a portfolio should be
priced under a risk neutral measure, a measure where all portfolios, divided by
the bank process Bn should be a martingale. The reason for this is that the
theory is based on a no-arbitrage assumption, which hold if Sn/Bn or SnQn/Bn
is a martingale as proven in this exercise. So the existence of Qn guarantees
that Vn is arbitrage free, and using a change of measure closely related to Qn
we may price any portfolio Vn consisting of Sn and Bn in a consistent way.

Proof. a) Use De�nition 5.2 to conclude that Sn/Bn is an {Fn}-martingale if
the process is integrable, measurable and have the martingale property, i.e. that
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E[Sn+1/Bn+1|Fn] = Sn/Bn. Since Sn/Bn ≥ 0 for every n, Bn is deterministic
and the Rn's are IID we get

E[|Sn/Bn|] = E[Sn/Bn] =

∏n
i=1 E[1 +Rn]∏n
i=1(1 + r)

=

n∏
i=1

E[1 +Rn]

1 + r
, (2)

hence Sn/Bn is integrable if Rn is. Since Fn = σ(R1, . . . , Rn), and the the
produkt is a continuous mapping, Sn/Bn is Fn-measurable. To check the mar-
tingale property, just add a conditioning to (2),

E[Sn+1/Bn+1|Fn] =
SnE[1 +Rn+1|Fn]

Bn(1 + r)
=
Sn
Bn

E[1 +Rn|Fn]

1 + r
=
Sn
Bn

1 + E[Rn|Fn]

1 + r
.

To get the martingale property E[Sn+1/Bn+1|Fn] = Sn/Bn we must have

1 + E[Rn|Fn]

1 + r
= 1,

or equivalently that E[Rn+1|Fn] = r. Hence Sn/Bn is an {Fn}-martingale if
E[Rn+1|Fn] = r.

b) Since the de�nition of a self-�nancing portfolio is that

xn−1Sn + yn−1Bn = xnSn + ynBn, n = 1, . . . , N.

we get, by the de�nition of Vn,

E[
Vn+1

Bn+1
|Fn] = E[

xn+1Sn+1 + yn+1Bn+1

Bn+1
|Fn] = E[

xnSn+1 + ynBn+1

Bn+1
|Fn]

= xnE[
Sn+1

Bn+1
|Fn] + yn

Bn+1

Bn+1

since {xn, yn} are Fn-measurable. Under the assuption that Sn/Bn is an Fn-
martingale we get

E[
Vn+1

Bn+1
|Fn] = E[

xnSn+1 + ynBn+1

Bn+1
|Fn] =

xnSn + ynBn
Bn

=
Vn
Bn

,

so Vn/Bn is an Fn-martingale if Sn/Bn is.

c) From b) we have that any self-�nancing portfolio Vn = xnSn + ynBn is
such that Vn/Bn is a martingale if Sn/Bn is. To check that any self-�nancing
portfolio Vn is arbitrage free, we must have V0 = x0S0 + y0B0 = 0. Let Sn/Bn
be a martingale, then by Proposition 5.4 a) we have

E[Vn+1/Bn+1] = V0/B0 = V0 = 0.

Assume that P (Vn ≥ 0) = 1 and P (Vn > 0) > 0. Since E[Vn/Bn] = 0 and
Bn <∞ for any n we get

E[
Vn
Bn

] = E[
Vn
Bn

I{Vn=0}]︸ ︷︷ ︸
=0

+E[
Vn
Bn

I{Vn>0}]︸ ︷︷ ︸
>0

> 0,

12



where I{·} is the indicator function. This is a contradiction to E[Vn/Bn] = 0,
hence there are no arbitrage strategies Vn.

d) Following the same lines as in b) we get that if SnQn/Bn is a martingale
with respect to the �ltration {Fn} and Vn is self �nancing,

E[
Vn+1Qn+1

Bn+1
|Fn] = E[

xnSn+1Qn+1 + ynBn+1Qn+1

Bn+1
|Fn] =

xnSnQn + ynBnQn
Bn

=
VnQn
Bn

,

so VnQn/Bn is an Fn-martingale if SnQn/Bn is. And following the same lines
as the proof of c),

E[
Vn+1Qn+1

Bn+1
] =

V0Q0

B0
= V0 = 0.

Assume that P (Vn ≥ 0) = 1 and P (Vn > 0) > 0. Since E[VnQn/Bn] = 0 and
Qn > 0, Bn <∞ for any n we get

E[
VnQn
Bn

] = E[
VnQn
Bn

I{Vn=0}]︸ ︷︷ ︸
=0

+E[
VnQn
Bn

I{Vn>0}]︸ ︷︷ ︸
>0

> 0,

where I{·} is the indicator function. This is a contradiction to E[VnQn/Bn] = 0,
hence there are no arbitrage strategies Vn.

9.4

A coin is tossed N times, where the number N is known in advance. 1 unit
invested in a coin toss gives the net pro�tof 1 unit with probability p ∈ (1/2, 1]
and the net pro�t of −1 with probability 1− p. If we let Xn n = 1, 2, . . . , N be
the net pro�t per unit invested in the nth coin toss, then,

P(Xn = 1) = p and P(Xn = −1) = 1− p,

and the Xn's are independent of each other. Let Fn = σ(X1, . . . , Xn)and let
Sn, n = 1, 2, . . . , N ne the wealth of the investor at time n. Assume further
that the initial wealth S0 is a given constant. Any non-nergative amount Cn can
be invested in coin toss n+ 1, n = 1, . . . , n− 1, but we assume that borrowing
money is not allowed so Cn ∈ [0, Sn]. Thus we have

Sn+1 = Sn + CnXn+1, n = 1, . . . , N − 1 and Cn ∈ [0, Sn].

Finally assume that the objective of the investor is to maximize the expected
rate of return E[(1/N) log(SN/S0)].

a) Show that Sn is a submartingale with respect to the �ltration {F}.

b) Show that whatever strategy Cn the investor use in the investment game,
Ln = log(Sn) − nα where α = p log(p) + (1 − p) log(1 − p) + log(2) is a super-
martingale with respect to the �ltration {Fn}.

Hint: At some point you need to study the function

g(x) = p log(1 + x) + (1− p) log(1− x) for x ∈ [0, 1] and p ∈ (1/2, 1).

13



c) Show that the fact that log(Sn)− nα is a supermartingale implies that

E[[] log(SN/S0)] ≤ Nα.

d) Show that if Cn = Sn(2p− 1), Ln is an {F}-martingale.

Proof. (For de�nition of submartingale and supermartingale see the text follow-
ing De�nition 5.2) a) To show that Sn is a submartingale w.r.t. {F} we want
to show that E[Sn+1|Fn] ≥ Sn,

E[Sn+1|Fn] = E[Sn + CnXn+1|Fn] = {Cn and Sn are Fn-measurable}
= Sn + CnE[Xn+1|Fn] = {Xn+1 independent of Fn}
= Sn + CnE[Xn+1] = Sn + Cn︸︷︷︸

≥0

(1 · p− 1 · (1− p))︸ ︷︷ ︸
>0

≥ Sn,

hence Sn is a submartingale w.r.t. {Fn}.

b) We now want to show that E[Ln+1|Fn] ≤ Ln,

E[Ln+1|Fn] = E[log(Sn+1)− (n+ 1)α|Fn] = E[log(Sn + CnXn+1)|Fn]

− (n+ 1)α = E[log(Sn(1 + CnXn+1/Sn))|Fn]− (n+ 1)α

= E[log(Sn) + log(1 + CnXn+1/Sn))|Fn]− (n+ 1)α

= log(Sn)− nα︸ ︷︷ ︸
=Ln

+E[log(1 + CnXn+1/Sn))|Fn]− α

= Ln + p log(1 + Cn/Sn) + (1− p) log(1− Cn/Sn)︸ ︷︷ ︸
=g(Cn/Sn)

−α = Ln + g(Cn/Sn)− α.

Since g′′(x) = −p/(1+x2)−(1−p)/(1−x2) < 0 for x ∈ [0, 1), g is concave in that
region, and the maximum is x̂ = 2p−1 since g′(x̂) = p/(1+x̂)−(1−p)/(1−x̂) = 0
so g(x) ≤ g(x̂) for all x ∈ [0, 1]. Since Cn/Sn ∈ [0, 1],

g(Cn/Sn) ≤ g(x̂) = g(2p− 1) = p log(p) + (1− p) log(1− p) + log 2 = α,

hence

E[Ln+1|Fn] = Ln + g(Cn/Sn)− α ≤ Ln + α− α = Ln,

so Ln is a supermartingale w.r.t. {Fn}.

c) We have just shown that Ln = log(Sn) − nα is a supermartingale w.r.t.
{Fn}. Because of this we also have that E[Ln] ≤ L0 so

E[log(SN )−Nα] ≤ log(S0)− 0 · α⇐⇒ E[log(SN/S0)] ≤ Nα.

d) For Cn = SN (2p− 1) we get

E[Ln+1|Fn] = Ln + g(Cn/Sn)− α = Ln + g(2p− 1)− α = Ln,

hence Ln is a {Fn}-martingale using the strategy Cn = Sn(2p− 1).

14



9.5

Assume that Xn n = 0, 1, 2, . . . is that price of a stock at time n and assume that
Xn is a supermartingale with respect to the �ltration {Fn}. This means that if
we buy one unit of stock at time n, paying Xn, the expected price of the stock
tomorrow (represented by the time n + 1) given the information Fn is lower
than today's price. in other words, we expect the price to go down. Investing in
the stock does not seem to be a good idea, but is it possible to �nd a strategy
that performs better? The answer is no, and the objective of this exercise is to
show that. Let Cn be a process adapted to {Fn} with 0 ≤ Cn n = 0, 1, 2, . . .,
representing our investment strategy. We know that the gain of our trading
after n days is given by IX(C)n, the sochastic integral of C with respect to
X. Now, show that for any supermartingale Xn and any positive, adapted and
bounded process Cn

E[IX(C)n+1|Fn] ≤ IX(C),

i.e. that IX(C)n is also a supermartingale.

Proof. (For de�nition of the stochastic integral IX(C) see De�nition 9.1) We

may write the stochastic integral as IX(C)n =
∑n−1
i=0 Ci(Xi+1 −Xi) so taking

the conditional expectation of the stochastic integral we get

E[IX(C)n+1|Fn] = E[

n∑
i=0

Ci(Xi+1 −Xi)|Fn]

= E[

n−1∑
i=0

Ci(Xi+1 −Xi) + Cn(Xn+1 −Xn)|Fn]

= E[IX(C)n + Cn(Xn+1 −Xn)|Fn] = {IX(C)n is Fn -measurable}
= IX(C)n + E[Cn(Xn+1 −Xn)|Fn] = {Cn and Xn are {Fn }-adapted}
= IX(C)n + Cn(E[Xn+1|Fn]−Xn) ≤ {Xn is supermartingale and Cn ≥ 0}
≤ IX(C)n + Cn(Xn −Xn) = IX(C)n.

Hence IX(C)n is a supermartingale with respect to {Fn} if Xn is.

Chapter 10

10.1

Let Bn, n = 0, 1, 2, . . . be a discrete Brownian motion. Show that

Bn
〈B〉n

P−→ 0 as n→∞,

that is for every ε > 0

P
(∣∣∣∣ Bn〈B〉n

∣∣∣∣ > ε

)
→ 0 as n→∞.
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Proof. Recall that for a square integrable random variable X,the Chebyshev's
inequality is

P(|X| > ε) ≤ E[X2]

ε2
.

Since 〈B〉n = n, wich is given in the text at page 64 if needed, we get

P
(∣∣∣∣ Bn〈B〉n

∣∣∣∣ > ε

)
= P

(∣∣∣∣Bnn
∣∣∣∣ > ε

)
= P (|Bn| > nε) ≤ E[B2

n]

(nε)2
=

n

(nε)2

=
1

ε2
1

n
→ 0 as n→∞.

Hence

Bn
〈B〉n

P−→ 0 as n→∞.

10.2

(Continuation of Exercise 9.3) Assume the value of the bond's rate of return

is r = e
1
2σ

2 − 1 for some constant σ. What should be the distribution of the

random variable (1+Rn) in order to model S̃n
∆
= Sn/Bn as a geometric Brownian

motion i.e.

S̃n = seσWn−
1
2nσ

2

, S̃0 = s,

where Wn is a discrete Brownian motion.

Proof. from the de�nition of S̃n we get

S̃n =
Sn
Bn

=
(1 +Rn)Sn−1

(1 + r)Bn−1
=

(1 +Rn)Sn−1

e
1
2σ

2
Bn−1

.

We get

S̃n+1

S̃n
=

(1 +Rn+1)

e
1
2σ

2
=

(1 +Rn+1)

e
1
2σ

2
,

so letting S̃n be a geometric Brownian motion, we must have

S̃n+1

S̃n
=
seσWn+1−

1
2(n+1)σ2

seσWn−
1
2nσ2

= seσ(Wn+1−Wn)−
1
2σ

2

.

Combining the two results we get

S̃n+1

S̃n
= seσ(Wn+1−Wn)−

1
2σ

2

=
(1 +Rn+1)

e
1
2σ

2
,

which holds if

1 +Rn+1 = seσ(Wn+1−Wn).
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Chapter 11

11.1

Let {Mt} and {Nt} be square integrable Ft-martingales.

1. Let α and β be real numbers. verify that, for every t ≥ 0,

〈αM + βN〉t = α2〈M〉t + 2αβ〈M,N〉t + β2〈N〉t.

2. Derive the Cauchy-Schwarz inequality

|〈M,N〉t| ≤
√
〈M〉t

√
〈N〉t, t ≥ 0.

Proof. (For de�nition of square integrability see De�nition 11.3, for de�nition
of quadratic variation and covariation see pages 74-75) 1) We use the de�nition
of the covariation process to get

〈αM + βN〉t = lim
‖Π‖→0

n−1∑
i=0

(αMi+1 + βNi+1 − αMi − βNi)2

= lim
‖Π‖→0

n−1∑
i=0

((αMi+1 − αMi) + (βNi+1 − βNi))2

= lim
‖Π‖→0

n−1∑
i=0

α2(Mi+1 −Mi)
2 + 2αβ(Mi+1 −Mi)(Ni+1 −Ni) + β2(Ni+1 −Ni)2

= lim
‖Π‖→0

n−1∑
i=0

α2(Mi+1 −Mi)
2 + 2 lim

‖Π‖→0

n−1∑
i=0

αβ(Mi+1 −Mi)(Ni+1 −Ni)

+ lim
‖Π‖→0

n−1∑
i=0

β2(Ni+1 −Ni)2

α2〈M〉t + 2αβ〈M,N〉t + β2〈N〉t,

which is what we wherev set out to prove.

2) Recall the Cauchy-Schwarz inequality for n-dimensional euclidean space

n∑
i=1

aibi ≤

√√√√ n∑
i=1

a2
i

n∑
i=1

b2i .

We have

〈M,N〉t = lim
‖Π‖→0

n−1∑
i=0

(Mi+1 −Mi)(Ni+1 −Ni)

≤ lim
‖Π‖→0

√√√√n−1∑
i=0

(Mi+1 −Mi)2

n−1∑
i=0

(Ni+1 −Ni)2
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and since
√
· is continuous the limit may be passed inside the root sign

〈M,N〉t ≤

√√√√ lim
‖Π‖→0

n−1∑
i=0

(Mi+1 −Mi)2

n−1∑
i=0

(Ni+1 −Ni)2

=
√
〈M〉t〈N〉t

and the proof is done.

11.2

Let {Mt} and {Nt} be square integrable Ft-martingales. Check the following
parallellogram equality,

〈M,N〉t =
1

4
(〈M +N〉t − 〈M −N〉t), t ≥ 0.

Proof. Using the result from part 1) of problem 11.1 we get

〈M +N〉t − 〈M −N〉t
= 〈M〉t + 2〈M,N〉t + 〈N〉t − 〈M〉t + 2〈M,N〉t − 〈N〉t = 4〈M,N〉t,

hence 〈M,N〉t = 1
4 (〈M +N〉t − 〈M −N〉t).

Chapter 12

12.1

(The value of a European Call Option). In the Black.Scholes model, the price
St of a risky asset (i.e. an asset that has no deterministic payo�)at time t is
given by the formula

St = se(r− 1
2σ

2)t+σBt

where Bt is a Brownian motion and s is a positive constant representing the
initial value of the asset. The value of a European Call option, with maturity
time T and strike price K is (ST −K)+ at time T . If T > t, compute explicitly

E[(ST −K)+|Ft].

Proof. Because of the Markov property of the Brownian motion, any expectation
of a function h of the Brownian motion evaluated at time T , h(BT ), conditioned
on a time t < T is only dependent on the value Bt and the time to maturity
T − t. By Proposition 12.4 we get

E[(ST −K)+|Ft] = E[(Ste
(r−σ2

2 )(T−t)+σ(BT−Bt) −K)+|Ft]

= {Proposition 12.4} = EBt [(Ste(r−σ2

2 )(T−t)+σ(BT−Bt) −K)+]
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and by the time homogeneity we may write BT − Bt =
√
T − tX where X ∼

N(0, 1), so

E[(ST −K)+|Ft] = EBt [(Ste(r−σ2

2 )(T−t)+σ(BT−Bt) −K)+]

= EBt [(Ste(r−σ2

2 )(T−t)+σ
√
T−tX −K)+]

=
1√
2π

∫
R

(Ste
(r−σ2

2 )(T−t)+σ
√
T−tx −K)+e−

x2

2 dx.

Since (·)+ is non-zero only when Ste
(r−σ2

2 )(T−t)+σ
√
T−tx ≥ K which may be

rewritten to get x separated as

x ≥
log
(
K
St

)
− (r − σ2

2 )(T − t)

σ
√
T − t

.

Call the right hand side of the inequality d1, the integral may be written as

E[(ST −K)+|Ft] =
1√
2π

∫ ∞
d1

(Ste
(r−σ2

2 )(T−t)+σ
√
T−tx −K)e−

x2

2 dx

=
1√
2π

∫ ∞
d1

Ste
(r−σ2

2 )(T−t)+σ
√
T−txe−

x2

2 dx−K 1√
2π

∫ ∞
d1

e−
x2

2 dx︸ ︷︷ ︸
P(X≥d1)

=
1√
2π
Ste

r(T−t)
∫ ∞
d1

e−
σ2

2 (T−t)+σ
√
T−tx− x2

2 dx−K 1√
2π

∫ ∞
d1

e−
x2

2 dx︸ ︷︷ ︸
P(X≥d1)

=
1√
2π
Ste

r(T−t)
∫ ∞
d1

e−
1
2 (x−σ

√
T−t)2

dx−KP(X ≥ d1)

= {y = x− σ
√
T − t, dy = dx}

= Ste
r(T−t) 1√

2π

∫ ∞
d1−σ

√
T−t

e−
y2

2 dy︸ ︷︷ ︸
=P(X≤d1−σ

√
T−t)

−KP(X ≥ d1)

= Ste
r(T−t)P(X ≥ d1 − σ

√
T − t)−KP(X ≥ d1).

This is the explicit form of the Call Option price.

12.2

Let Bt be a one dimensional Brownian motion and let Ft be the �ltration
generated by Bt. Show that

E[B3
t |Fs] = B3

s + 3(t− s)Bs.

Proof. We start by separating the process into a part that is measurable with
respect to Fs and one that is independent of Ft, namely

E[B3
t |Ft] = E[(Bt −Bs +Bs)

3|Ft] = E[(Bt −Bs)3 + 3(Bt −Bs)2Bs

+ 3(Bt −Bs)B2
s +B3

s |Ft] = E[(Bt −Bs)3] + 3BsE[(Bt −Bs)2]

+ 3B2
sE[Bt −Bs] +B3

s .
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Bt −Bs ∼ N(0,
√
t− s) and since the normal distribution is symmetric all odd

moments is zero, so

E[B3
t |Ft] = 0 + 3Bs(t− s)2 + 0 +B3

s = B3
s + 3(t− s)Bs.

12.3

Show that the following processes are martingales with respect to Ft,the �ltra-
tion generated by theone dimensional Brownian motion Bt

1. B3
t − 3tBt

2. B4
t − 6tB2

t + 3t2.

Proof. 1) From Exercise 12.2 we have that

E[B3
t |Ft] = B3

s + 3(t− s)Bs.

Using this together with the fact that Bt is an Ft-martingale we get

E[B3
t − 3tBt|Ft] = B3

s + 3(t− s)Bs − 3tBs = B3
s − 3sBs

which proves the martingale property of B3
t − 3tBt with respect to Ft.

2) We start by computing E[B4
t |Fs], and as in Exercise 12.2 we do this by

separating Bt in a part that is measurable with respect to Fs and part that is
independent of Fs

E[B4
t |Fs] = E[(Bt −Bs +Bs)

4|Fs] = E[(Bt −Bs)4 + 4(Bt −Bs)3Bs

+ 6(Bt −Bs)2B2
s + 4(Bt −Bs)B3

s +B4
s |Fs] = E[(Bt −Bs)4]

+ 4BsE[(Bt −Bs)3] + 6B2
sE[(Bt −Bs)2] + 4B3

sE[Bt −Bs] +B4
s .

Recall that Bt−Bs ∼ N(0,
√
t− s) so we may write Bt−Bs =

√
T − sX where

X ∼ N(0, 1) so we may rewrite our expression as

E[B4
t |Fs] = (t− s)2E[X4] + 4Bs

√
t− s3E[X3] + 6B2

s (t− s)E[X2]

+ 4B3
s

√
t− sE[X] +B4

s

and since all odd moments of the standard normal distribution is zero and the
second moment is one we have

E[B4
t |Fs] = (t− s)2E[X4] + 6B2

s (t− s) +B4
s .

To evaluate E[X4] we use the moment generating function of the standard nor-
mal distribution

ΨX(u) = E[euX ] = eu
2/2

and use the result that the n'th derivative of ΨX(u) evaluated in u = 0 is the
n'th moment of X. The fourth derivative of ΨX(u) is

Ψ
(n)
X (u) = (3 + 6u2 + u4)ΨX(u)
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and since ΨX(0) = 1 we get Ψ
(4)
X (0) = E[X4] = 3. From this we get

E[B4
t |Fs] = (t− s)2E[X4] + 6B2

s (t− s) +B4
s = 3(t− s)2 + 6B2

s (t− s) +B4
s .

We now may derive the martingale property of B4
t − 6tB2

t + 3t2, using the fact
that B2

t − t in an Ft-martingale,

E[B4
t − 6tB2

t + 3t2|Fs] = 3(t− s)2 + 6B2
s (t− s) +B4

s − 6tE[B2
t |Fs] + 3t2

= 3(t− s)2 + 6B2
s (t− s) +B4

s − 6tE[B2
t − t+ t|Fs] + 3t2

= 3(t− s)2 + 6B2
s (t− s) +B4

s − 6t(B2
s − s+ t) + 3t2

= 3t2 − 6ts+ 3s2 + 6B2
s t− 6sB2

s +B4
s − 6tB2

s + 6ts− 6t2 + 3t2

= B4
s − 6sB2

s + 3s2,

hence B4
t − 6tB2

t + 3t2 is an Ft-martingale

Chapter 13

13.1

Let {ti}∞i=0 be an increasing sequence of scalars and de�ne t∗i such that ti <
t∗i ≤ ti+1. Furthermore, let

S̃n =

n−1∑
i=0

Bt∗i (Bti+1
−Bti),

where Bti is the discrete Brownian motion.

Check that S̃k, 0 ≤ k ≤ n is not a martingale with respect to the �ltration
generated by B.

Proof. We only chek the martingale property of S̃k.

E[S̃k|Fk−1] = E[

k−1∑
i=0

Bt∗i (Bti+1
−Bti)|Fk−1] = {Bt∗i (Bti+1

−Bti)

are Fk−1-measurable for i ≤ k − 2} =

k−2∑
i=0

Bt∗i (Bti+1 −Bti)︸ ︷︷ ︸
=S̃k−1

+ E[Bt∗k−1
(Btk −Btk−1

)|Fk−1] = {E[Btk−1
(Btk −Btk−1

)|Fk−1] = 0}

= S̃k−1 + E[Bt∗k−1
(Btk −Btk−1

)|Fk−1]− E[Btk−1
(Btk −Btk−1

)|Fk−1]

= S̃k−1 + E[(Bt∗k−1
−Btk−1

)(Btk −Btk−1
)|Fk−1] = S̃k−1 + (t∗k−1 − tk−1)

6= S̃k−1

for any tk−1 < t∗k−1 ≤ tk hence S̃k is not a martingale with respect to the
�ltration generated by the Brownian motion B.
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13.2

Let Bt be a Brownian motion and let Xt be the stochastic integral

Xt =

∫ t

0

es−tdBs

1. Determine the expectation E[Xt] and the variance V (Xt) of Xt.

2. Show that the random variable

Wt =
√

2(t+ 1)Xlog(t+1)/2

has distribution Wt ∼ N(0, t).

Proof. 1) By part (vi) of Proposition 13.11, that de�nes properties of then Ito
integral, we have that since the integrand, es−t, of the stochastic integral is
deterministic, the stochastic integral is normally distributed as

Xt ∼ N
(

0,

∫ t

0

(es−t)2ds
)

= N
(

0,

∫ t

0

e2(s−t)ds
)

= N
(

0,
1

2
(1− e−2t)

)
.

Hence Xt has the distribution Xt ∼ N
(

0, 1
2 (1− e−2t)

)
.

2) From the �rst part of the exercise, we know that Xt ∼ N
(

0, 1
2 (1−e−2t)

)
.

For a normally distrbuted random variable Y ∼ N(0, σ) it holds that cY ∼
N(0, c2σ2) hence

Wt ∼ N
(

0,
(√

2(t+ 1)
)2 1

2
(1− e−2 log(t+1)/2)

)
= N

(
0, (t+ 1)(1− e− log(t+1))

)
= N

(
0, (t+ 1)(1− 1

t+ 1
)
)

= N
(

0, (t+ 1)
t

t+ 1

)
= N

(
0, t
)
.

And the proof is done.

Chapter 15

15.3

Let B be a Brownian motion. Find z ∈ R and ϕ(s, ω) ∈ V such that

F (ω) = z +

∫ T

0

ϕ(s, ω)dBs

in the following cases

1. F (ω) = B3
T (ω).

2. F (ω) =
∫ T

0
B3
sds.

3. F (ω) = eT/2 cosh(BT (ω)) = eT/2 1
2 (eBT (ω) + e−BT (ω))
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Proof. 1) We get

d(B3
t ) = 3B2

t dBt +
1

2
6Btdt

and since

d(tBt) = tdBt +Btdt

we have tBt =
∫ t

0
sdBs +

∫ t
0
Bsds which may be rewritten using tBt =

∫ t
0
tdBs

to get
∫ t

0
Bsds =

∫ t
0
(t− s)dBs. We may now write the B3

T as

B3
T = z +

∫ T

0

3(B2
t + (T − t))dBt

where z = E[B3
T ] = 0. Hence ϕ(s, ω) = 3(Bs(ω)2 + (T − s))

2)

d(TB3
T ) = T (3B2

T dBT + 3BT dT ) +B3
T dT

hence

TB3
T = −z +

∫ T

0

s3B2
sdBs +

∫ T

0

3sBsds+

∫ T

0

B3
sds,

for some z ∈ R. Rewriting the expression gives∫ T

0

B3
sds = z + TB3

T −
∫ T

0

s3B2
sdBs −

∫ T

0

3sBsds

which by problem 1) gives∫ T

0

B3
sds = z +

∫ T

0

(
3T (B2

s + (T − s))− s3B2
s

)
dBs −

∫ T

0

3sBsds.

We need to rewrite
∫ T

0
3sBsds on a form that is with respect to dBs instead of

ds. Study

d(T 2BT ) = 2TBT dT + T 2dBT ,

hence T 2BT =
∫ T

0
2sBsds+

∫ T
0
s2dBs and by writing T 2BT =

∫ T
0
T 2dBs we get∫ T

0

sBsds =
1

2

∫ T

0

(T 2 − s2)dBs,

hence∫ T

0

B3
sds = z +

∫ T

0

(
3T (B2

s + (T − s))− s3B2
s

)
dBs −

3

2

∫ T

0

(T 2 − s2)dBs.

We may now write the
∫ T

0
B3
sds as∫ T

0

B3
sds = z +

∫ T

0

(
3T (B2

s + (T − s))− s3B2
s −

3

2
(T 2 − s2)

)
dBs.
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where z = E[
∫ T

0
B3
sds] =

∫ T
0
E[B3

s ]ds = 0. Hence ϕ(s, ω) = 3T (Bs(ω)2 + (T −
s))− s3Bs(ω)2 − 3

2 (T 2 − s2).
3) We notice that since

d(eBt−t/2) = eBt−t/2dBt

d(e−Bt+t/2) = −e−Bt+t/2dBt,

we may write

eT/2
1

2
(eBT (ω) + e−BT (ω)) = eT/2

1

2
(eT/2eBT (ω)−T/2 + e−T/2e−BT (ω)+T/2)

= z + eT/2
1

2
(eT/2

∫ T

0

eBs−s/2dBs − e−T/2
∫ T

0

e−Bs+s/2dBs)

= z +
1

2
(eT

∫ T

0

eBs−s/2dBs −
∫ T

0

e−Bs+s/2dBs)

= z +

∫ T

0

eT eBs−s/2 − e−Bs+s/2

2
dBs

where z is

z = E[F ] = eT/2
1

2
E[eBT ] + E[e−BT ] = eT/2

1

2

(
eT/2 E[eBT−T/2]︸ ︷︷ ︸

=1

+ e−T/2 E[e−BT+T/2]︸ ︷︷ ︸
=1

)
= eT/2

1

2

(
eT/2 + e−T/2

)
=

1

2
(eT + 1).

15.5

Let Xt be a generalized geometric grownian motion given by

dXt = αtXtdt+ βtXtdBt (3)

where αt and βt are bounded deterministic functions and B is a Brownian
motion.

1. Find an explicit expression for Xt and compute E[Xt].

2. Find z ∈ R and ϕ(t, ω) ∈ V such that X(T, ω) = z +
∫ t

0
ϕ(s, ω)dBs(ω).

Proof. 1) Let Xt = e
∫ t
0
αsdsYt, the di�erential of Xt is

dXt = αte
∫ t
0
αsdsYtdt+ e

∫ t
0
αsdsdYt = αtXtdt+ e

∫ t
0
αsdsdYt

for this expression to be equal to (3) we must have

e
∫ t
0
αsdsdYt = βt e

∫ t
0
αsdsYt︸ ︷︷ ︸
=Xt

dBt

which holds if dYt = βYtdBt hence Yt is an exponential martingale given by

Yt = y0e
∫ t
0
βtdBt− 1

2

∫ t
0
β2
t dt
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where y0 = 1 since X0 = 1. This gives the following expresiion for Xt

Xt = e
∫ t
0
βtdBt+

∫ t
0

(αt− 1
2βt)

2dt

Using the martiongale property of Yt gives

E[Xt] = E[e
∫ t
0
αsdsYt] = e

∫ t
0
αsds E[Yt]︸ ︷︷ ︸

=Y0

= e
∫ t
0
αsds.

2) In part 1) it was shown that XT = e
∫ T
0
αsdsYT where YT is the exponential

martingale with SDE dYt = βtYtdBt hence XT may be written as

XT = e
∫ T
0
αsdsYT = e

∫ T
0
αsds(1 +

∫ T

0

βsYsdBs) = e
∫ T
0
αsds︸ ︷︷ ︸

=z

+

∫ T

0

e
∫ T
0
αsdsβsYsdBs

and ϕ(s, ω) = e
∫ T
0
αsdsβsYs(ω). We need to show that ϕ(s, ω) ∈ V, the criterias

are given in De�nition 13.1. Part 1 and 2 of De�niton 13.1 is showed by noticing

that ϕs is the product of the processes e
∫ T
0
αuduβs which is deterministic and

therefore universally measurable, and Ys which is the exponential martingale and
therefore full�ll the conditions 1) and 2). The product of these two processes
does also full�ll criterias 1) and 2). Condition 3) of De�nition 13.1 is shown
by using that βt is bounded so that there is a constant 0 < K < ∞ such that
|βt| < K for every t ∈ [0, T ],

E
[ ∫ T

0

(βte
∫ T
0
αsdsYt)

2dt
]

= e
∫ T
0
αsdsE

[ ∫ T

0

β2
t Y

2
t dt
]
≤ {|β| < K} (4)

≤ e
∫ T
0
αsdsK2︸ ︷︷ ︸
∆
=Γ

E
[ ∫ T

0

Y 2
t dt
]

= {Fubini} = Γ

∫ T

0

E
[
Y 2
t

]
dt. (5)

Y 2
t = e

∫ t
0

2βsdBs−
∫ t
0
β2
sds can be written as the product of an exponential martin-

gale and a deterministic function as Y 2
t = e

∫ t
0

2βsdBs− 1
2

∫ t
0

(2β)2
sdse

∫ t
0
β2
sds so that

(4) becomes

E
[ ∫ T

0

(βte
∫ T
0
αsdsYt)

2dt
]
≤ Γ

∫ T

0

E
[
e
∫ t
0

2βsdBs− 1
2

∫ t
0

(2βs)
2dse

∫ t
0
β2
sds
]
dt

= Γ

∫ T

0

e
∫ t
0
β2
sdsE

[
e
∫ t
0

2βsdBs− 1
2

∫ t
0

(2βs)
2ds
]
dt = Γ

∫ T

0

e
∫ t
0
β2
sdsdt

≤ Γ

∫ T

0

e
∫ t
0
K2dsdt ≤ Γ

∫ T

0

eK
2tdt = Γ

∫ T

0

eK
2tdt = Γ

eK
2T − 1

K2
<∞.

Hence ϕs ∈ V.

15.6

Let f(t) = et
2/2 − 1 and let B be a brownian motion on the probability space

(Ω,F, {Ft, t ≥ t},P). Show that there exists another Brownian motion B̃ such
that

Xt =

∫ f(t)

0

1√
1 + s

dBs =

∫ t

0

√
sdB̃s
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Proof. The quadratic variation of Xt is

〈X〉t =

∫ f(t)

0

( 1√
1 + s

)
ds =

∫ et
2/2−1

0

1

1 + s
ds = log

(
1 + (et

2/2−1)
)

= t2/2 =

∫ t

0

sds.

By Theorem 15.4 there exists an extension (Ω̂, F̂, {F̂t, t ≥ t}, P̂) of (Ω,F, {Ft, t ≥
t},P) on which there is a Brownian motion B̃ such that

Xt =

∫ t

0

sdB̃s

which solves the problem at hand.

Chapter 16

16.1

Let Xt solve the SDE

dXt = (αXt + β)dt+ (σXt + γ)dBtX0 = 0

where α, β, σ and γ are constants and B is a Brownian motion. Furthermore,
let St = e(α−σ2/2)t+σBt .

1. derive the SDE satis�ed by S−1
t .

2. Show that d(XtS
−1
t ) = (β − σγ)S−1

t dt+ γS−1
t dBt.

3. Derive the explicit form of Xt.

Proof. 1) Let f(t, x) = e−(α−σ2/2)t−σx then the SDE of S−1
t is

dS−1
t =

∂

∂t
f(t, Bt)dt+

∂

∂x
f(t, Bt)dBt +

1

2

∂2

∂x2
f(t, Bt)dt

= −(α− σ2/2)e−(α−σ2/2)t−σxdt− σe−(α−σ2/2)t−σxdBt +
1

2
σ2e−(α−σ2/2)t−σxdt

= −(α− σ2)S−1
t dt− σS−1

t dBt.

2)

d(XtS
−1
t ) = XtdS

−1
t + s−1

t dXt + 〈X,S−1〉 = Xt(−(α− σ2)S−1
t dt− σS−1

t dBt)

+ S−1
t ((αXt + β)dt+ (σXt + γ)dBt) + (−σS−1

t )(σXt + γ)dt

= −(α− σ2)XtS
−1
t dt− σXtS

−1
t dBt + αXtS

−1
t dt

+ βS−1
t dt+ σXtS

−1
t dBt + γS−1

t dBt − σ2XtS
−1
t dt− σγS−1

t dt

=
(
− (α− σ2) + α− σ2

)
XtS

−1
t dt+

(
− σ + σ

)
XtS

−1
t dBt +

(
β − γσ

)
S−1
t dt

+ γS−1
t dBt =

(
− (α− σ2) + α− σ2

)
XtS

−1
t dt+

(
− σ + σ

)
XtS

−1
t dBt

+
(
β − γσ

)
S−1
t dt+ γS−1

t dBt =
(
β − γσ

)
S−1
t dt+ γS−1

t dBt.
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3) From 2) we get that

XtS
−1
t =

(
β − γσ

) ∫ t

0

S−1
s ds+ γ

∫ t

0

S−1
s dBs

multiplying both sides by St and express St on its explicit form gives

Xt = e(α−σ2/2)t+σBt
(

(β − γσ)

∫ t

0

e−(α−σ2/2)s−σBsds

+ γ

∫ t

0

e−(α−σ2/2)s−σBsdBs

)
.

Additional Exercises

The Additional Exercises problem formulations may be found on the course
webpage.

A1

Compute the stochastic di�erential dz when

1. Zt = eαt, α ∈ R, t ∈ [0,∞).

2. Zt =
∫ t

0
g(s)dBs where g(s) is an adapted stochastic process.

3. Zt = eαBt .

4. Zt = eαXt where dXt = µdt+ σdBt.

5. Zt = X2
t where dXt = µXtdt+ σXtdBt.

Proof. 1) Since αt is of �rst variation, dZt = αeαtdt = αZtdt.
2) dZt = g(t)dBt since it is the di�erential of an integral.
3) Let f(x) = eαx then, using the Ito formula, since αBt has quadratic

variation, we get

dZt = f ′(Bt)dBt +
1

2
f ′′(Bt)d〈B〉t = αeαBtdBt +

α2

2
eαBtdt

= αZtdBt +
α2

2
Ztdt.

4) Using the same notation as in 3) we get

dZt = f ′(αXt)dXt +
1

2
f ′′(αXt)d〈X〉t = αeαXt(µdt+ σdBt) +

α2

2
eαXtσ2dt

= ασZtdBt + (αµ+
(ασ)2

2
)Ztdt.

5) Let f(x) = x2, we get

dZt = f ′(Xt)dXt +
1

2
f ′′(Xt)d〈X〉t = 2XtdXt +

1

2
2d〈X〉t

= 2Xt(µXtdt+ σXtdBt) + σ2X2
t dt = 2µX2

t dt+ 2σX2
t dBt + σ2X2

t dt

= (2µ+ σ2)Ztdt+ 2σZtdBt.
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A2

Compute te stochastic di�erential for Z when Zt = 1/Xt where Xt has the
di�erential

dXt = αXtdt+ σXtdBt.

Proof. Let f(x) = 1/x and hence f ′(x) = −1/x2 and f ′′(x) = 2/x3. By the Ito
formula we get

dZt = f ′(Xt)dXt +
1

2
f ′′(Xt)d〈X〉t = − 1

X2
t

dXt +
1

2

2

X2
t

d〈X〉t

= −αXtdt+ σXtdBt
X2
t

+
1

X3
t

σ2X2
t dt = −αdt+ σdBt

Xt
+
σ2

Xt
dt

= (−α+ σ2)Ztdt− σZtdBt.

A5

Let B be a Brownian motion and {Ft} be the �ltration generated by B. Show
by using stochastic calculus that the following processes are martingales.

1. B2
t − t.

2. eλBt−
λ2t
2 .

Proof. If the Ito di�erential only has an dBt-part, i.e. that di�erential looks on
the form 0dt + (. . .)dBt, and the integrand is a member of the class V de�ned
in De�nition 13.1, then we may be certain that the process is a martingale by
Proposition 13.11. 1)

d(B2
t − t) = 2BtdBt +

1

2
2dt− dt = 2BtdBt

and since

E[

∫ t

0

B2
sds] = {Fubini} =

∫ t

0

E[B2
s ]ds =

∫ t

0

sds =
t2

2
<∞,

2Bt ∈ V, and hence B2
t − t is a martingale.

2)

d(eλBt−
λ2t
2 ) = −λ

2

2
eλBt−

λ2t
2 dt+ λeλBt−

λ2t
2 dBt +

1

2
λ2eλBt−

λ2t
2 dt

= λeλBt−
λ2t
2 dBt.

And since

E[

∫ t

0

(
eλBs−

λ2s
2

)2
ds] = E[

∫ t

0

e2λBs−λ2sds] = {Fubini} =

∫ t

0

E[e2λBs−λ2s]ds

=

∫ t

0

E[e2λBs ]e−λ
2sds = {Bs ∼ N(0, s)} =

∫ t

0

e4λ2se−λ
2sds <∞, 0 ≤ t <∞

hence eλBt−
λ2t
2 is a matingale.
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A6

Check whether the following processes are martingales with respect to the �l-
tration generated by Bt.

1. Xt = Bt + 4t

2. Xt = B2
t

3. Xt = t2Bt − 2
∫ t

0
rBrdr

4. Xt = B
(1)
t B

(2)
t where (B

(1)
t , B

(2)
t ) is a two dimensional Brownian motion.

Proof. The proofs may (at least) be done in two ways, one by checking the
martingale property of the process using a time s < t, and the other is to do the
stochastic di�erential of the process and the use the Martingale Representation
Theorem (Theorem 15.3) to conclude whether the process is a martingale or
not. We will do both. When using the Martingale Representation Theorem we
should also prove that the integrand is a member of the class V, which we omit
in the solutions.

1) E[Xt|Fs] = E[Bt + 4t|Fs] = Bs + 4t 6= Bs + 4s hence Bt + 4t is not an
Ft-martingale.

dXt = dBt + 4dt 6= g(s, ω)dBt hence Bt + 4t is not an Ft-martingale.
2) E[Xt|Fs] = E[B2

t |Fs] = E[(Bt − Bs + Bs)
2|Fs] = E[(Bt − Bs)

2|Fs] +
E[B2

s |Fs] = t− s+B2
s 6= B2

s hence B2
t is not an Ft-martingale.

dXt = 2BtdBt + dt 6= g(s, ω)dBt hence B
2
t is not an Ft-martingale.

3)

E[Xt|Fs] = E[t2Bt − 2

∫ t

0

rBrdr|Fs] = t2Bs − 2E[

∫ t

0

rBrdr|Fs]

= t2Bs − 2

∫ t

0

rE[Br|Fs]dr = t2Bs − 2

∫ s

0

rE[Br|Fs]︸ ︷︷ ︸
=Br

dr − 2

∫ t

s

rE[Br|Fs]︸ ︷︷ ︸
=Bs

dr

= t2Bs − 2

∫ s

0

rBrdr − 2Bs

∫ t

s

rdr = s2Bs − 2

∫ s

0

rBrdr = Xs

hence t2Bt − 2
∫ t

0
rBrdr is an Ft-martingale.

dXt = 2tBtdt + t2dBt − 2tBtdt = t2dBt hence t
2Bt − 2

∫ t
0
rBrdr is an Ft-

martingale.

4) E[Xt|Fs] = E[B
(1)
t B

(2)
t |Fs] = {independent} = E[B

(1)
t |Fs]E[B

(2)
t |Fs] =

B
(1)
s B

(2)
s hence B

(1)
t B

(2)
t is an Ft-martingale.

dXt = B
(1)
t dB

(2)
t +B

(2)
t dB

(1)
t +d〈B(1), B

(2)
t 〉 = B

(1)
t dB

(2)
t +B

(2)
t dB

(1)
t hence

B
(1)
t B

(2)
t is an Ft-martingale.

A7

Let X be the solution to the SDE

dXt = αXtdt+ σdBt, X0 = x0

where α, σ, x0 are constants and B is a brownian motion.
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1. determine E[Xt].

2. Determine V (Xt).

3. Determine the solutionto trhe SDE.

Proof. 1)

E[Xt] = E[x0 + α

∫ t

0

Xsds+ σ

∫ t

0

dBs] = x0 + αE[

∫ t

0

Xsds] + σ E[

∫ t

0

dBs]︸ ︷︷ ︸
=0

= x0 + αE[

∫ t

0

Xsds]

which leads to the ordinary di�erential equation

d

dt
E[Xt] = αE[Xt]

E[X0] = x0

which has the solution E[Xt] = x0e
αt

2) V (Xt) = E[X2
t ]− (E[Xt])

2 = E[X2
t ]−x0e

αt so we need to �nd an explicit
expression for E[X2

t ]. Looking at the stochastic di�erential of X2
t we get

dX2
t = 2XtdXt + d〈X〉t = 2Xt(αXtdt+ σdBt) + σ2dt

= (2αX2
t + σ2)dt+ 2σXtdBt

from which we have

X2
t = x2

0 +

∫ t

0

(2αX2
t + σ2)dt+ 2σ

∫ t

0

XtdBt.

E[X2
t ] becomes

E[X2
t ] = E[x2

0 +

∫ t

0

(2αX2
t + σ2)dt+ 2σ

∫ t

0

XtdBt] = x2
0 + E[

∫ t

0

2αX2
t dt] + σ2t

(6)

+ 2σ E[

∫ t

0

XtdBt]︸ ︷︷ ︸
=0 (Mg)

= {Fubini} = x2
0 +

∫ t

0

2αE[X2
t ]dt+ σ2t.

Let g(t) = E[X2
t ], the problem (6) leads to the ordinary di�erential equation

d

dt
g(t) = 2αg(t) + σ2.

Consider the function e−2αtg(t). Di�erentiating e−2αtg(t) we get

d

dt

(
e−2αtg(t)

)
= −2αg(t)e−2αt + e−2αt d

dt
g(t) = e−2αtσ2.
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Integrating both sides and multiplying both sides by e2αt we get

g(t) = e2αt
(
c+ σ2

∫ t

0

e−2αsds
)
.

c is determined by the initial condition g(0) = x2
0 as c = x2

0. And the formula
for E[Xt] is

E[Xt] = e2αt
(
x2

0 + σ2

∫ t

0

e−2αsds
)

= x2
0e

2αt + σ2 e
2αt − 1

2α

so the variance is V (Xt) = E[X2
t ]− (E[Xt])

2 = σ2 e2αt−1
2α .

3) Taking the di�erential of e−αtXt yields

d
(
e−αtXt

)
= −αe−αtXtdt+ e−αtdXt = e−αtσdBt. (7)

Integrating both sides of (7) and multiplying both sides with eαt gives

Xt = eαt
(
c+

∫ t

0

e−αtσdBt

)
where c is determined by the initial condition X0 = x0 to be c = x0. The
solution of the SDE is therefore given by

Xt = eαt
(
x0 +

∫ t

0

e−αtσdBt

)
Xt is the so called Ornstein Uhlenbeck process.

A9

Let h(t) be a deterministic function and de�ne the process Xt as

Xt =

∫ t

0

h(s)dBs.

Show that Xt ∼ N(0,
∫ t

0
h2(s)ds) by showing that

E[eiuXt ] = e−
u2

2

∫ t
0
h2(s)ds. (8)

Proof. Recall that (8) is the characteristic function of N(0,
∫ t

0
h2(s)ds) which

is a unique transformation, therefore proving (8) is equal to proving that Xt ∼
N(0,

∫ t
0
h2(s)ds).

Let Yt = eiuXt . Since dXt = h(t)dBt we get

dYt = iuYtdXt −
u2

2
Ytd〈X〉t = iuYth(t)dBt −

u2

2
Yth

2(t)dt.

so Yt = 1 + iu
∫ t

0
Yth(s)dBs − u2

2

∫ t
0
Ysh

2(s)ds since Y0 = 1. The expected value
of Yt is

E[Yt] = E[1 + iu

∫ t

0

Yth(s)dBs −
u2

2

∫ t

0

Ysh
2(s)ds] = 1 + iuE[

∫ t

0

Yth(s)dBs]︸ ︷︷ ︸
=0

(9)

− u2

2
E[

∫ t

0

Ysh
2(s)ds] = {Fubini} = 1− u2

2

∫ t

0

E[Ys]h
2(s)ds. (10)
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Let g(t) = E[Yt] and (9) may be written as the ordinary di�erential equation

t

dt
g(t) = −u

2

2
h2(s)g(s)

g(0) = 1

which has the solution g(t) = e−
u2

2

∫ t
0
h2(s)ds hence

E[eiuXt ] = e−
u2

2

∫ t
0
h2(s)ds

from which we conclude that Xt ∼ N(0,
∫ t

0
h2(s)ds).

A10

Let X,Y satisfy the following system of SDE's

dXt = αXtdt+ YtdBt, X0 = x0

dYt = αYtdt−XtdBt, Y0 = y0

1. Show that Rt = X2
t + Y 2

t is deterministic.

2. Compute E[Xt], E[Yt] and Cov(Xt, Yt).

Proof. We �rst calculate the stochastic di�erentials of X2
t and Y 2

t .

dX2
t = 2XtdXt + d〈X〉t = 2αX2

t dt+ 2XtYtdBt + Y 2
t dt

dY 2
t = 2αY 2

t dt− 2YtXtdBt +X2
t dt

so we may write Rt as

Rt = X2
t + Y 2

t = x0 + 2α

∫ t

0

X2
t ds+ 2

∫ t

0

XsYsdBs +

∫ t

0

Y 2
s ds

+ y0 + 2α

∫ t

0

Y 2
s ds− 2

∫ t

0

YsXsdBs +

∫ t

0

X2
sds = x0 + y0 (11)

+ (1 + 2α)

∫ t

0

X2
t ds+ (1 + 2α)

∫ t

0

Y 2
s ds = (1 + 2α)

∫ t

0

Rsds.

Let g(t) = Rt, then (11) can be written as the ordinary di�erential equation

d

dt
g(t) = (1 + 2α)g(s)

g(0) = x0 + y0

with the solution g(t) = (x0 + y0)e(1+2α)t. It has been shown that Rt = (x0 +
y0)e(1+2α)t.

2) rewriting Xt and Yt on integral form we get

Xt = x0 + α

∫ t

0

Xsds+

∫ t

0

YsdBs

Yt = y0 + α

∫ t

0

Ysds−
∫ t

0

XsdBs.
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we get

E[Xt] = E[x0 + α

∫ t

0

Xsds+

∫ t

0

YsdBs] = x0 + αE[

∫ t

0

Xsds] + E[

∫ t

0

YsdBs]︸ ︷︷ ︸
=0

= x0 + α

∫ t

0

E[Xs]ds

E[Yt] = E[y0 + α

∫ t

0

Ysds−
∫ t

0

XsdBs] = y0 + αE[

∫ t

0

Ysds]− E[

∫ t

0

XsdBs]︸ ︷︷ ︸
=0

= y0 + α

∫ t

0

E[Ys]ds.

This gives two ordinary d�erential equations solved in the same manner as in
part 1) and gives the solutions

E[Xt] = x0e
αt

E[Yt] = y0e
αt.

Since the covariance is Cov(Xt, Yt) = E[XtYt]−E[Xt]E[Yt] we need to cvalculate
E[XtYt]. For this purpose, consider the stochastic di�erential of XtYt,

dXtYt = XtdYt + YtdXt + d〈X,Y 〉t = Yt(αXtdt+ YtdBt) +Xt(αYtdt−XtdBt)

−XtYtdt = (2α− 1)XtYtdt+ Y 2
t dBt −X2

t dBt.

Hence XtYt = x0y0 + (2α− 1)
∫ t

0
XsYsds+

∫ t
0

(
Y 2
s −X2

s

)
dBs

and we get

E[XtYt] = E[x0y0 + (2α− 1)

∫ t

0

XsYsds+

∫ t

0

(
Y 2
s −X2

s

)
dBs] (12)

= x0y0 + (2α− 1)E[

∫ t

0

XsYsds] + E[

∫ t

0

(
Y 2
s −X2

s

)
dBs]︸ ︷︷ ︸

=0

= {Fubini} (13)

= x0y0 + (2α− 1)

∫ t

0

E[XsYs]ds. (14)

Let g(t) = E[XtYt], then solving (12) amounts to solving the ordinary di�erential
equation

d

dt
g(t) = (2α− 1)g(t)

g(0) = x0y0

which has the solution g(t) = x0y0e
(2α−1)t hence E[XtYt] = x0y0e

(2α−1)t and
we get

Cov(Xt, Yt) = E[XtYt]− E[Xt]E[Yt] = x0y0e
(2α−1)t − x0y0e

2αt = x0y0e
2αt
(
e−t − 1

)
.
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A11

Let X and Y be processes given by the SDE's

dXt = αXtdB
(1)
t + βXtdB

(2)
t , X0 = x0

dYt = γYtdt+ σYtdB
(1)
t , Y0 = y0

where α, β, γ, σ are constants and B(1), B(2) are independent Brownian mo-
tions. Compute E[XtYt].

Proof. Start by di�erentiating XtYt to get

d(XtYt) = XtdYt + YtdXt + 〈X,Y 〉t = Xt(γYtdt+ σYtdB
(1)
t )

+ Yt(αXtdB
(1)
t + βXtdB

(2)
t ) + ασXtYtdt = (γ + ασ)XtYtdt+ (σ + α)XtYtdB

(1)
t

+ βXtYtdB
(2)
t .

Using the initial condition X0Y0 = x0y0 we have

XtYt = x0y0 + (γ + ασ)

∫ t

0

XsYsds+ (σ + α)

∫ s

0

XsYsdB
(1)
s + β

∫ t

0

XsYsdB
(2)
s

so E[XtYt] becomes

E[XtYt] = E[x0y0 + (γ + ασ)

∫ t

0

XsYsds+ (σ + α)

∫ s

0

XsYsdB
(1)
s (15)

+ β

∫ t

0

XsYsdB
(2)
s ] = x0y0 + (γ + ασ)E[

∫ t

0

XsYsds] + (σ + α)E[

∫ s

0

XsYsdB
(1)
s ]︸ ︷︷ ︸

=0

(16)

+ β E[

∫ t

0

XsYsdB
(2)
s ]︸ ︷︷ ︸

=0

= {Fubini} = x0y0 + (γ + ασ)

∫ t

0

E[XsYs]ds. (17)

Let g(t) = E[XtYt], then (15) gives the following ordinary di�erential equation

d

dt
g(t) = (γ + ασ)g(t)

g(0) = x0y0

which has the solution g(t) = x0y0e
(γ+ασ)t hence E[XtYt] = x0y0e

(γ+ασ)t.
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