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Chapters 1 to 4

4.1

Show that if A and B belongs to the o-algebra F then also B\A € F (for
definition of o-algebra, see Definition 1.3). Also show that F is closed under
countable intersections, i.e. if A, € Ffori=1,2,..., then N2, A; € F.

Proof. 1) B\A = BN A° = (B°U A)¢ and since B® € F, B°UA € F so
(BCUA) e F.

2) Take A; € F for ¢ = 1,2,... . Since U2, A° € F it follows that
(U2 A9) =2 A e F O
4.6

Though a fair die once. Assume that we only can observe if the number obtained
is “small”, A = {1,2,3} and if the number is odd, B = {1,3,5}. Describe the
resulting probability space; in particular, describe the o-algebra F generated
by A and B in terms of a suitable partition (for definition of a partition, see
Definition 1.9) of the sample space.

Proof. Looking at the Venn diagram insert diagram, we conclude that there
are at most four partitions of the space, ANB = {1,3}, ANB® = {2}, A°NB =
{5} and (AU B)¢ = {4,6} of which none is an empty sets. These partitions
can be combined in 2* = 16 different ways to generate the o-algebra F defined
below.

F={0,Q,A,B,A°, B°, AU B, AU B, A°U B, A° U B,
ANB,ANB¢, AN B, A°N B, (ANB°)U(A°N B),(ANB) U (A°N B°)}
={0,9,{1,2,3},{1,3,5},{4,5,6},{2,4,6},{1,2,3,5},{1,2,3,4,6},
{1,3,4,5,6},{2,4,5,6},{1,3}, {2}, {5}, {4,6},{2,5},{1,3,4,6}}.

The probability measure on each of the sets in F may be deduced by using
the additivity of the probability measure and the probability measure of each
of the partitions, P(AN B) = 2/6, P(AN B°) = 1/6, P(A°N B) = 1/6 and
P((AuB)°) =2/6. O
4.10

Given a probability space (Q, F,P) and functions X : Q@ - R, Y : Q@ — R.
Define Z = max{X,Y}.

1. Show that Z is F-measurable if both X and Y are F-measurable.

2. Find a special case where Z is F measurable even though neither X nor
Y is.

Proof. 1)
{we: Z(w) <z} ={we Q: max{X(w),Y(w)} <z}
={weQ: X(w)<z}n{weN: X(w) <z} eF,

eF eF




where the last conclusion is based on the result of proposition 3.2.

2) Suppose you threw two coins and our c-algebra F was generated by the
singleset A= {HT,TH},ie. F={0,Q,A, A} ={0,{HH, TT,HT, TH},{HT,TH},{HH,TT}}.
Let

X—{l if we{HT} Y—{l if we{TH}
"l 0 if we{HH,TT,TH} ~ L 0 if we{HHTT HT} "
Then
Z—{ 1 if we{HT,TH}
"l 0 if we{HHTT},
hence X and Y are not F-measurable while Z is. O
4.11

Toss a fair soin n = 4 times. describe the sample space 2. we want to consider
functions X : w — {—1,1}.

1. describe the probability space (€, F1,P;) thar arises if we want each out-
come to be a legitimate event. How many JFj-measurable functions X
with E[X] = 0 are there?

2. Now describe the probability space (€2, F2,P2) that arises if we want that
only combinations of sets of the type

A; ={w € Q: Number of heads =i}, i=1{0,1,2,3,4}

should be events. How many Fz-measurable functions X with E[X] =0
are there?

3. Solve 2) above for some other n.

Proof. 1) Each coin that is tossed has to possible outcomes, and since there
are four coins to be tossed, there are 2* = 16 possible outcomes, or partitions.
So the sample space is Q = {HHHH,HHHT, HHTH, etc.} with 16 members
that describes all the information from that four tosses. Fi is the power set
of Q consisting of all combinations of sets of Q (don’t forget that @ allways is
included in a o-algebra ), hence F; = o(Q2). P is deduced by first observing that
each w € Q has P(w) = 1/16 and then using the additivity och the probability
measure.

For any function X : Q@ — {—1,1} that is measurable with respect to F;
there is a set A € F; such that

1 if w€A
X(‘”)_{ 1 if we A°

Hence E[X] = P1(A) — P;1(A°) so if E[X] = 0 we must have P;(A4) = P;(4°),

and since there are 16 partitions each with probability measure 1/16, there are

16

8 ways of combining the partitions so that there are equally many of them in
16

A and A€, hence there are 8 possible finctions X : Q@ — {—1,1} such that

E[X] = 0.



2) The sets

Ay = {TTTT}

A, = {TTTH,TTHT,THTT, HTTT}

Ay = {TTHH,THHT,HHTT, HTTH,THTH, HTHT)}
Ay ={HHHT, HHTH, HTHH, THHH}

Ay = {HHHH},

defines a partition of ). The o-algebra F» is the o-algebra generated by this
partition. Define P; = P(4;), then Py = 1/16, Py = 4/16, P, = 6/16, P53 = 4/16
and Py = 1/16. For any function X : @ — {—1,1} that is measurable with
respect to Fy there is a a set A € F5 such that

X(w):{ 1 if weAd

-1 if weA°.

Hence E[X] = P2(A) — P3(A°) so if E[X] = 0 we must have P;(A) = P;(A4°).
We may write E[X] = kolPg + k1IP1 + kolPo + ksP3 + kyPy = k‘o/160 + 4k1/16 +
6ka/16 + 4k3/16 + ks /16 which is zero either if k; = (—1)* or if k; = —(—1)".
Hence, there are two possible Fy-measurable functions X : @ — {—1,1} such
that E[X] = 0.

3) Using the same notation as in 2), we conclude that, for any given in-
teger n > 0, Ag, Ay,..., A, is a partition of 0 with o-algebra F,, generated

by this partition, and with P,(4;) = ( i )(1/2)° for i = 0,1,...,n. And
EX] =30 ki i )(1/2) for k; = 41, where it should be noted that > ;" ( i
)(1/2)" = 1. For any function X : Q@ — {—1,1} that is measurable with respect
to F,, there is a a set A € F,, such that

1 if weA
X(‘”)_{ 1 if we A"

Hence E[X] =P, (A4) — P, (A°) so if E[X]| = 0 we must have P,,(A) = P, (A°) =
1/2.
For even n, we have

S (i)/2)i =172

i=odd
2 (Dapyi=1
so E[X] =0if k; = (—1)" or k; = —(—1)%. For odd n, we have
(n-1/2 '

Yo (i)a/i=1/2
i=0

> (D=1

i=(n—1)/2+1

soE[X]=0ifk, ;= —k; fori=0,1,...,(n—1)/2 and there are 2"~1/2 ways
of combining these. Hence, there are 2("~1)/2 possible F,,-measurable functions
X : Q — {-1,1} such that E[X] = 0. O



4.13

Consider the probability space (2, F,P) where = [0,1], F is the Borel o-
algebra on  and P is the uniform probability measure on (2, 7). Show that
the two random variables X(w) = w and Y(w) = 2|w — 1/2| have the same
distribution, but that P(X =Y) = 0.

Proof. (For definition of distribution function see definition 3.4) Since X is
uniform, the distribution function is

P(X <z)=0 for x€ (—0,0]

P(X <z)==z for z€]l0,1]

PX<z)=1 for z€]l,00)
so for Y we get, with = € [0,1],

P(Y <z)=P2|X —1/2| <z) =P(]2X — 1| < ) = {by symmetry}
—P(0<2X —1<2)=2P(1/2< X < (z+1)/2)
=2((z+1)/2-1/2) = =x.

Hence P(X < z) =P(Y < z) =« for z € [0, 1]. But since

P(X =Y) =P(X = 2|X — 1/2|)

—PHweQ: X =2X —1/2}UfweQ: X = —2X +1/2})
=P{we: X=1}U{weN: X=3})=P0) =0,
we conclude that P(X =Y) =0. O
4.14

Show that the smallest o-algebra containing a set A is that intersection of all
o-algebras containing A. Also, show by counter example that the union of two
o-algebras is not necessarily a o-algebra .

Proof. Let G4 be the set of all g-algebras containing A, we want to show that
Ngeg,G = {w € Q : w € Glorevery G € Ga} = F is a o-algebra ; if it is,
then it is the smallest o-algebra since otherwise, there would be a o-algebra
containing A that was smaller than F , this would be a contradiction since then
this o-algebra would be included in G and therefore F would not be minimal.
To check that F is a o-algebra , we simply use Definition 1.3.

1. 0 € GVG € G4 hence B € F.
2. f we GVYG € G4 then w® € G VG € G4 hence w® € F.
3. Ifwi,wa,... € GVG € G4 then UL w; € G VG € G4 hence wy,wa, ... € F.

so F is a o-algebra .

To show that the union of two o-algebras is not necessarily a o-algebra |
take F; = {0,Q, A, A°} and F> = {0,Q, B, B°} where A C B. Then F, UJF, =
{we:we ForF}={0QA A° B,B} is not a o-algebra since, e.g.
B°UA ¢ F1 U Fo. O]



4.21

given a probability space (€2, 7 P) and a random variable X. Let A be a sub-o-
algebra of F, and consider X = E[X|A].

1. Show that E[(X — X)Y] = 0 if Y is an .A-measurable random variable.

2. Show that the A-measurable random variable Y that minimize E[(X —Y)?]
is Y = E[X|Al.

Proof. 1) Using equality 4 followed by equality 2 in Proposition 4.8 we get
E[(X — X)Y] = E[E[(X — X)Y|A]] = E[E[(X — X)|A]Y]
=E[(X - X)Y] =0.

2) Using equality 3 followed by equality 2 in Proposition 4.8 we get

E[(X —Y)? = E[X?] — 2E[XY] + E[Y?]
= E[X?] - 2E[E[XY|A]] + E[Y?]
= E[X?] - 2E[YE[X|A]] + E[Y?]
= E[X?] - E[E[X|A]?] + E[E[X|A]?] — 2E[YE[X|A]] + E[Y?]
= E[X?] - E[E[X|A’] + E[(Y — E[X|A])?],
>0
hence E[(X — Y)?] is minimized when Y = E[X|A]. O

4.22

Let X and Y be two integrable random variables defined on the same probability
space (€, F,P). Let A be a sub-o-algebra such that X is A-measurable.

1. Show that E[Y|A] = X implies that E[Y]X] = X.

2. Show by counter example that E[Y|X] = X does not necessarily imply
that E[Y]A] = X

Proof. (For definition of conditional expectation see Definition 4.6, for proper-
ties of the conditional expectation, see Proposition 4.8.)

1) Since X is A-measurable, o(X) C A hence, using equality 4 in Proposition
4.8, we get

E[Y|X] 2 E[Y|o(X)] = E[E[Y]4] | X] = E[X|X] = X.
ey %

2) Let X and Z be independent and integrable random variables and assume
that E[Z] =0 and define Y = X + Z. Let A = o(X, Z), then

E[Y|o(X)]=E[X +Zlo(X)|=X+0=X,
while

E[Y|A] = E[X + Z|o(X,Z)] = X + Z # X.



Chapters 5 to 7
7.1

let X; be a sequence of independent random variables with E[X;] = 0 and
V(X;) = E[(X; — E[X;])?] = 02. Show that the sequence

n

i=1
is a martingale with respect to F, the filtration generated by the sequence {X;}.

Proof. (For definition of martingale see Definition 5.2) We first check the inte-
grability os 5,,.

E[]S,[] = ZX2—02| <E[waffofns§"jm|xzw$n
=1 =1
<i:IEX2 +Elo 220 < 00
=1

hence S, is integrable.
To check that S,, is F, -measurable, just observe that since X; for i =
1,2,...,n are F,, measurable, the sum of them is as well.

Y )

What remains to prove is the matringale property.

E[Snt1|Fn] = E[Sn + X211 — 071 | Fal = E[Su|Fu] + E[X2 4 | Fn] — 074y
=S +E[X) ] —on ) =E[Su|Fa + 0l —oniy
=5,.
Hence S, is an F-martingale. O
7.4

Let X; be IID with X; ~ N(0,1) for each ¢ and put Y,, = Z?:l X;. Show that
S, = exp{aY, —na’/2}
is an F,,-martingale for every o € R.

Proof. (For definition of martingale see Definition 5.2) We first check the in-
tegrability os S,. Since S, > 0 and by knowing that E[eX] = /2 for
X ~ N(0,1) (moment generating function), we get

E[|S,|] = E[S,] = E[exp{aZXi —na?/2}] = oo’ /2 HE[eaXi} =1<o0.

=1 i=1

hence 5, is integrable.

To check that S, is F,, -measurable, observe that since X; fori =1,2,...,n
are F,, measurable, and the exponential of the sum is continuous, so S, is
measurable as well.



What remains to prove is the matringale property.

E[S,11|F] = Elexp{a Z X; — na /2| Fn] = E[Spexp{aX, 11 — o?/2}|F,)
=1

= SnE[eXp{OZXn+1 - 042/2}|]:71] = Sn

=1 (as in 7.1)

Hence S, is an F-martingale. O

7.13

Let X; be a sequence of bounded random variables such that

is an F-martingale. Show that Cov(Xj;, X;) =0 for i # j.

Proof. By Proposition 5.4 we get that E[X;] = 0 for ¢ > 1, hence for 1 < n <
n + m we have

COV(Xn, X,H_m) = E[XnXm_m} — E[Xn] E[X,H_m] = E[]E[Xan+m|]:n]]
——
=0
= E[XnE[Xn+m|}—nH = E[XHE[Sn+m - Snerfl‘]:nH =0

where the last equality stems from the fact that S, is an F-martingale. Hence
the sequence X; are mutually uncorrelated. O

Chapter 8

8.1

Let {M,} and {N,} be square integrable F-martingales. Show that
E[Mn—s—an-&-l‘fn] - MnNn = <M7 N>n+1 - <M7 N>7L (1)

Proof. (For definition of square integrability see Definition 8.1, for definition of

quadratic variatio and covariation see page 54) The right hand side of equality

(1) yields

<M’N>n+1 - <M’N>n =

= E[(Miy1 — M;)(Ni1 — Ni)| Fi] — i E[(M;+1 — M;)(Nip1 — N;)|Fi]
=0 i=0

= E[(Mags — M) (N = NI
=E[M,11Nny1 — My 1Ny — My Ny + M Ny | Fr].



Using the martingale property of the two processes {M,} and {N,}, and the
measurability of M,, and N,, with respect to F,,, we get

E[Mp+1Npy1 — Mpi1 Ny, — My Ny + M, N, | F]

= ]E[Mn+1Nn+1|]:n] - E[MnJranu:n] - E[MnNn+1|~Fn] + E[MnNn‘]:n]
= E[M;+1Nni1|Fn] — NoE[My 41| Fn] — MRE[Nyg1 | Fn] + M N,

= E[Myy1Npy1|Fn] — No M,

and the proof is done. O

8.2

Let {M,} and {N,} be square integrable F-martingales.

1. Let o and S be real numbers. verify that, for every integer n > 0,
(@M + BN)y, = a*(M)n +2aB(M,N), + 52(N)n.

2. Derive the Cauchy-Schwarz inequality
(M, N)u| < V(M)u/(N)n, n20.

Proof. (For definition of square integrability see Definition 8.1, for definition of
quadratic variatio and covariation see page 54) 1) By Definition 8.3 we get
n—1
(@M + BN)n = D E[(@Miy1 + BNip1 — aM; — BN;)*|F})
i=0
1

E[((aMiy1 — aM;) + (BNis1 — BN:))?|Fi]

n

-
- O

3

D E[*(Miy1 — Mi)* + 208(Mig1 = Mi)(Niga — Ni) + 2 (Nig1 — Ni)| ]
=0
a®(M) +2aB(M, N)n + (N},

w

which is what we wherev set out to prove.

2) It is easily seen that the quadratic variation is alway positive and by using
this observation, combined with the result from the first part of this exercise,
we get, for any A € R,

0 < (M —AN), = (M), —2X(M, N),, + A\2(N),.
Let A= (M,N),/(N),,
0 < (M), — 2\(M, N),, + \3(N),
= (M) = 2(M,N) /{(N)n + (M, N)3 /{N)n = (M) — (M,N)7/{N)n

n

hence
(M, N)%/(N)p < (M),
<~ (M,N), < {M)u/(N)n
and the proof is done. O



8.3

Let {M,} and {N,} be square integrable F-martingales. Check the following
parallellogram equality,

(M. V) = S 4 N — (31— N),).

Proof. Using the result from part 1) of problem 8.2 we get

(M + N),, — (M — N),
= <M>n+2<M7N>n+<N>n_<M>n+2<M7N>n_ <N>n :4<M7N>na

hence (M, N), = 2((M + N),, — (M — N),,). O

Chapter 9

9.2

Let {M,} and {N,} be two square integrable F-martingales and let ¢ and
be bounded F-adapted processes. Derive the Cauchy-Schwarz inequality

(I (2), In ()l < v/ (Tar (9))n v/ (In(®))ny 12 0.

Proof. By Proposition 9.3 we have that both Iy (¢) and Iy (1)) are square in-
tegrable F-martingales, so the proof is identical to the one given in part 2) of
problem 8.2. O

9.3

In this problem we look at a simple market with only two assets; a bond and a
stock. The bond price is modelled according to

{Bn = (1+7r)Bp-1 forn=1,2,...,N
By =1

where r > —1 is the constant rate of return for the bond. The stock price is
asumed to be stochastic, with dynamics

{Sn = (1+R,)Sp—1 forn=1,2,...,N
SO =S

where s > 0 and {R,,} is a sequence of IID random variables on (2, F P). Fur-
thermore, let {F,} be the filtration given by 7, = o(Ry,...,Ry) n=1,...,N

a) When is S, /B,, a martingale with respect to the filtration {F,}?
We now look at portfolios consisting of the bond and the stock. For every

n=0,1,2,...,N let x,, and y,, be the number of stocks and bonds respectively
bought at time n and held over the period [n,n 4 1). furthermore, let

10



by the value of the portfolio over [n,n + 1), and let V5 be our initial wealth.
The rebalancing of the portfolio is done in the following way.

At every time n we observe the value of our old portfolio, composed at time
n — 1, which at time n is z,-15, + yn—1B,r. We are allowed to only use this
amount to to rebalance the portfolio at time n, i.e. we are not allowed to
withdraw or add any money to the portfolio. A portfolio with this restriction is
called a sel f — financingport folio. Formally we define a self-financing portfolio
as a pair {x,, y,} of {F,}-adapted processes such that

Tp—1Sn + yn—an = 2,5, + yan7 n= 17 s 7N'

b) Show that if S,,/B,, is a martingale with respect to the filtration {F,,}, then
so is V,,/ By, where V,, is the portfolio value of any self-financing portfolio.

Finally we look at a type of self-financing portfolios called arbitrage strategies.
A portfolio {x,,y,} is called an arbitrage if we have

Vo=0
P(Vy >0)=1
P(Vx >0)>0

for the value process of the portfolio. The idea formalized in an arbitrage port-
folio is that with an initial wealth of 0 we get a non-negative portfolio value
at time N with probability one, i.e. your are certain to make money on your
strategy. We say that a model is arbitrage free if the model permits arbitrage
portfolios.

c¢) Show that if S, /B, is a martingale then every self-financing portfolio is
arbitrage free.

Let Q. be a square integrable martingale with respect to the filtration {F,}
such that Q,, > 0 a.s. and Qg =1 a.s..

d) Show that even if S, /B, is not a martingale with respect to the filtration
{F.}, finding a process Q,, as defined above such that S,,Q,,/B,, will give that
VnQr /B, is a martingale with respect to the filtration {F,}, and furthermore,
that V,, is arbitrage free.

Even though the multiplication of the positive martingale @,, might seem unim-
portant, we will later in the course see that this is in fact a very special action
which gives us the ability to change measure. In financial applications, this
is important since the portfolio pricing theory say that a portfolio should be
priced under a risk neutral measure, a measure where all portfolios, divided by
the bank process B, should be a martingale. The reason for this is that the
theory is based on a no-arbitrage assumption, which hold if S,,/B,, or S,,Q,/B,
is a martingale as proven in this exercise. So the existence of @),, guarantees
that V,, is arbitrage free, and using a change of measure closely related to @,
we may price any portfolio V,, consisting of S,, and B,, in a consistent way.

Proof. a) Use Definition 5.2 to conclude that S, /B, is an {F,}-martingale if
the process is integrable, measurable and have the martingale property, i.e. that

11



E[Sn+1/Bn+1|Fn] = Sn/Bn. Since S, /By, > 0 for every n, B, is deterministic
and the R,,’s are IID we get

[T ElL+ R _ ﬁ E[1 + R,]

EHSn/Bn” = E[Sn/Bn] = Hv_z (1 +T) 1+r
i=1 i=1

hence S,,/B,, is integrable if R,, is. Since F, = o(Ri,...,Ry), and the the
produkt is a continuous mapping, S, /B, is F,-measurable. To check the mar-
tingale property, just add a conditioning to (2),

SLE[1 + Ry 11| F, Sn E[1 + R, |F., S, 1+ E[R,|F,
E[Sn+1/Bnt1|Fn] = — [B(l—:—; "]:Bfn [ 1+7L“| L]:Binw'

To get the martingale property E[S,,1/Bnt1|Fn] = Sn/B, we must have

1+ E[Rn| ]

:]_7
1+7r

or equivalently that E[R,1|F,] = r. Hence S, /B, is an {F,}-martingale if
E[R,41]|Fn] =

b) Since the definition of a self-financing portfolio is that
Tn_ 150 + Yn_1Bn = 0SSy + YnBn, n=1,..., N.
we get, by the definition of V,,,

K[ Vo1 F] = E[xn+1$'n+1 + Ynt1Bny1 ] = ]E[annH + YnBnt1 o]

Bn+1 BTHrl BnJFl
Sn+1 Bn+1
=z,E Ful + yn
[ Bn+1| J+y Bor

since {z,,y,} are F,-measurable. Under the assuption that S, /B, is an F,-
martingale we get

Vn+1
BnJrl

S =TTE T TB

ann—&-l + yan+1
Bn+1

so V,,/B,, is an F,-martingale if S,,/B,, is.

¢) From b) we have that any self-financing portfolio V,, = z,S, + y,Bn is
such that V,,/B,, is a martingale if S,,/B,, is. To check that any self-financing
portfolio V,, is arbitrage free, we must have Vj = x¢Sp + yoBo = 0. Let S,,/B,
be a martingale, then by Proposition 5.4 a) we have

E[Vn—i-l/Bn—i-l] = ‘/O/BO =Vo=0.

Assume that P(V,, > 0) = 1 and P(V,, > 0) > 0. Since E[V,,/B,] = 0 and
B,, < oo for any n we get

Va Va Va
E[—-] = E[an{vnzo}] +E[E[{Vn>0}] > 0,

=0 >0

12



where Iy, is the indicator function. This is a contradiction to E[V,,/B,] = 0,
hence there are no arbitrage strategies V,.

d) Following the same lines as in b) we get that if S,Q, /B, is a martingale
with respect to the filtration {F,,} and V;, is self financing,

E[Vn+1Qn+l Pl = E[%SnﬂQnH + YnBnt1@nt1 TnSnQn + YnBn@n

_ VnQn

‘fn}:

Bn+1 Bn+1 Bn

s0 V,Qn/By, is an F,-martingale if S,,Q,, /B, is. And following the same lines
as the proof of c),

Vn+1Qn+1] _ VoQo
B By
Assume that P(V,, > 0) = 1 and P(V,, > 0) > 0. Since E[V,,Q,,/B,] = 0 and

Qn >0, B, < oo for any n we get

B, B,

E[ =V, = 0.

VnQn
Iv,=oy| + E[=5=Lv,>03] > 0,

=0 >0

E[ | = E|

where Iy is the indicator function. This is a contradiction to E[V,,Q,/B,] = 0,
hence there are no arbitrage strategies V,,. O

9.4

A coin is tossed N times, where the number N is known in advance. 1 unit
invested in a coin toss gives the net profitof 1 unit with probability p € (1/2,1]
and the net profit of —1 with probability 1 —p. If we let X, n =1,2,..., N be
the net profit per unit invested in the nt" coin toss, then,

and the X,,’s are independent of each other. Let F,, = o(Xy,...,X,)and let
Sny n=1,2,..., N ne the wealth of the investor at time n. Assume further
that the initial wealth Sy is a given constant. Any non-nergative amount C,, can
be invested in coin toss n+ 1, n=1,...,n — 1, but we assume that borrowing
money is not allowed so C), € [0, S,,]. Thus we have

Sp+1 =8 +CpnXpi1, n=1,...,N —1and C, € [0,5,].

Finally assume that the objective of the investor is to maximize the expected
rate of return E[(1/N)log(Sn/So)]-

a) Show that S, is a submartingale with respect to the filtration {F}.

b) Show that whatever strategy C,, the investor use in the investment game,
L,, = log(Sy) — na where o = plog(p) + (1 — p) log(1 — p) + log(2) is a super-
martingale with respect to the filtration {7, }.

Hint: At some point you need to study the function

g(x) =plog(1+z)+ (1 —p)log(l — ) for x € [0,1] and p € (1/2,1).
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c) Show that the fact that log(S,) — na is a supermartingale implies that
E[[]log(Sn/So0)] < Na.

d) Show that if C,, = S, (2p — 1), L, is an {F}-martingale.

Proof. (For definition of submartingale and supermartingale see the text follow-
ing Definition 5.2) a) To show that S, is a submartingale w.r.t. {F} we want
to show that E[S,41|Fn] > Sh,
E[Sn+1|Fn] = E[S, + Cn Xp11|Fn] = {Cr, and S,, are F,,-measurable}
= Sp + CLE[X 41| Fn] = {Xn+1 independent of F;,}
=8, +CrE[X,1] =S+ C, (1-p—1-(1—p)) >S5,
[Xnt1] (I-p—1-(1-p))

20 >0

hence S, is a submartingale w.r.t. {F,}.

b) We now want to show that E[L,1|F,] < Ly,
—(n+1)a=Ellog(S,(1+ CpnXnt1/Su))|Fn] — (n+ D
= E“Og(sn) + 10g(1 + Can+1/Sn))‘fn] - (TL + 1)05
= log(Sy) — na+E[log(1 + Cr, Xp+1/50))|Fn] — @
—_————
=L,
=L, +plog(l+C,/S,)+ (1 —p)log(l —C,/S,) —a=L,+g(Cp/Sp) — a.

=9(Cn/Sn)

Since ¢"(x) = —p/(1+22)—(1—p)/(1—22) < 0 for z € [0, 1), g is concave in that
region, and the maximum is & = 2p—1 since ¢'(£) = p/(1+2)—(1—p)/(1—%) =0
so g(z) < g(&) for all z € [0, 1]. Since C,, /S, € [0,1],

9(Cn/Sn) < g(&) = g(2p — 1) = plog(p) + (1 — p)log(l — p) +1og2 = a,
hence
E[Ly+1|Fn] = Ln +9(Cp/Sp) —a < L, +a—a = Ly,

so L,, is a supermartingale w.r.t. {F,}.

¢) We have just shown that L, = log(S,) — na is a supermartingale w.r.t.
{Fn}. Because of this we also have that E[L,] < Lg so

Eflog(Sn) — Na] <log(Sp) — 0 o <= E[log(Sn/S0)] < Na.

d) For C,, = Sy(2p — 1) we get
E[Ln+1|]:n] =L, +Q(Cn/sn) —a=1L, +g(2p - 1) —a =Ly,
hence L, is a {F,}-martingale using the strategy C,, = S,,(2p — 1). O
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9.5

Assume that X, n =0,1,2,...is that price of a stock at time n and assume that
X, is a supermartingale with respect to the filtration {F,,}. This means that if
we buy one unit of stock at time n, paying X,,, the expected price of the stock
tomorrow (represented by the time n + 1) given the information F,, is lower
than today’s price. in other words, we expect the price to go down. Investing in
the stock does not seem to be a good idea, but is it possible to find a strategy
that performs better? The answer is no, and the objective of this exercise is to
show that. Let C,, be a process adapted to {F,} with 0 < C,, n =0,1,2,...,
representing our investment strategy. We know that the gain of our trading
after n days is given by Ix(C),, the sochastic integral of C' with respect to
X. Now, show that for any supermartingale X,, and any positive, adapted and
bounded process C,,

E[IX(C)n+1|»Fn] < IX(C)a

i.e. that Ix(C), is also a supermartingale.

Proof. (For definition of the stochastic integral Ix(C) see Definition 9.1) We
may write the stochastic integral as Ix(C), = .7y C;(Xit1 — X;) so taking
the conditional expectation of the stochastic integral we get

n

Ellx (€)1 Fal = E[Y. Ci(Xip1 — Xi)|F]

=0

n—1

E[ Ci(XH-l - Xz) + Cn(X7L+1 - Xn)|‘/—'vn}

i=0
=E[Ix(C)p + Crn(Xpy1 — Xp)|Fn] = {Ix(C), is F,, -measurable}
=Ix(C)p + E[Ch(Xnt1 — Xn)|Fn] = {Cy and X, are {F,, }-adapted}
=Ix(C)p + Co(E[Xpp1|Fn] — Xin) < {X, is supermartingale and C,, > 0}
< Ix(C)n + Cn(Xpn — Xn) = Ix (O
Hence Ix(C), is a supermartingale with respect to {F,} if X, is. O
Chapter 10
10.1
Let B,, n=20,1,2,... be a discrete Brownian motion. Show that
B 0asn—
n — 0o,
(B)n

that is for every € > 0

>e>—>0asn—>oo.
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Proof. Recall that for a square integrable random variable X the Chebyshev’s
inequality is

E[X?]

P(X|> ) < =5

Since (B),, = n, wich is given in the text at page 64 if needed, we get

Pl|—=— =P(|— =P(|B, < ol —
(B> ) =2 (] > ) =2 mat =m0 < T35 =
11
:—27—>Oasn—>oo.
en
Hence
Bn Lioasn—
n — 0o.
(B)n
O
10.2

(Continuation of Exercise 9.3) Assume the value of the bond’s rate of return
is 7 = 29" — 1 for some constant o. What should be the distribution of the
random variable (14R,,) in order to model S, 25, /By, as a geometric Brownian
motion i.e.

1
— 2 o~
Sn — SeaWn 2no , SO =s,

where W, is a discrete Brownian motion.
Proof. from the definition of S,, we get
S Sh (1 —+ Rn)Snfl (1 + Rn)Snfl

" Bn N (1 +T)Bn71 N 6%623»”_1

We get

Sn+1 _ (1 + Rn+1) (1 + Rn+1)

152 - 1 2 )
Sn ez e29

so letting S,, be a geometric Brownian motion, we must have

1
Sn+1 seo'Wn+172(’ﬂ+1)U'2
= = = Sse

L
o(Why1—Wy)—20
n .
Sn SeoWn—QnoZ

Combining the two results we get

W7L+1—Wn)_é(72 _ (1 + Rn+1)
=5
e2?

1
Zntl — gel

0)031

)
n

which holds if

1+ RnJrl = SGU(W”JrliW”).
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Chapter 11

11.1
Let {M,} and {N,} be square integrable F;-martingales.

1. Let o and $ be real numbers. verify that, for every ¢ > 0,

(M + BN), = > (M); + 2aB(M, N), + B*(N),.

2. Derive the Cauchy-Schwarz inequality
(M, N)i| < V/(M)i/{N)e, t = 0.

Proof. (For definition of square integrability see Definition 11.3, for definition
of quadratic variation and covariation see pages 74-75) 1) We use the definition
of the covariation process to get

n—1
(aM + BN); = \|1¥|\H—1>0 (@M1 + BNip1 — aM; — BN;)?
i=0
n—1
= hm ((OZMH_l — OéMl) =+ (5]\77;4_1 — ﬂNz))z
=0 &=
n—1
= ||111i\|m0 o (Miy1 — M;)? + 20B(Miq — M;)(Nigr — N;) + B2 (Nig1 — N;)?
—
i=0
n—1 n—1
= lim o?(Miyq — M;)> +2 lim aB(Mir1 — M;)(Niy1 — N;
0 2 (Mita ) HHIHO; B(Miy )(Nig1 — Ni)

n—1
+ |\1'11i||H—1>0 ; B?(Nit1 — N;)?
(M) + 2aB(M,N), + B2(N),,

which is what we wherev set out to prove.
2) Recall the Cauchy-Schwarz inequality for n-dimensional euclidean space

n
Z ab; <
i—1

We have
n—1
(M,N); = Hfllillrgoiz:;(MiH — M;)(Nigy1 — Ny)
n—1 n—1
< o S0t 20 S 00

17



and since 4/ is continuous the limit may be passed inside the root sign

n—1 n—1
(M,N), < | lm » (M1 —M;)? ) (Nipr — Ny)?
I} —0 =5 =
= V(M)(N)
and the proof is done. O

11.2

Let {M;} and {N.} be square integrable F;-martingales. Check the following
parallellogram equality,

(M,N); = i(<M+N>t — (M — N);), t >0.

Proof. Using the result from part 1) of problem 11.1 we get

(M + N)y — (M — N);
= (M) +2(M,N)¢ + (N)y — (M) +2(M,N); — (N); = 4(M, N)y,

hence (M,N); = 1((M 4+ N); — (M — N),). O

Chapter 12

12.1

(The value of a European Call Option). In the Black.Scholes model, the price
S; of a risky asset (i.e. an asset that has no deterministic payoff)at time ¢ is
given by the formula

St — Se(r—%UQ)t+a'Bt

where B; is a Brownian motion and s is a positive constant representing the
initial value of the asset. The value of a European Call option, with maturity
time T and strike price K is (St — K)* at time T. If T > ¢, compute explicitly

E[(St — K)T|F.
Proof. Because of the Markov property of the Brownian motion, any expectation
of a function h of the Brownian motion evaluated at time T, h(Br), conditioned

on a time ¢ < T is only dependent on the value B; and the time to maturity
T —t. By Proposition 12.4 we get

02
E[(Sr — K)"|F,] = E[(S,e"= ) T=0ta(Br=Be) _ )+ 7]
= {Proposition 12.4} = EBt[(Ste(r_é)(T_t)J"U(BT—Bt) ~ K]

18



and by the time homogeneity we may write By — B, = 1 —tX where X ~
N(0,1), so

BI(Sy — K)*|F) = B2 [(S,e0T-04 (5050 _ oy
— EB[(Selr r— ) (T—t) 4oV T—EX ~K)*]

= —— [ (ST T=OrovT—tz _ )+ o=% y,
V2T /R

Since (-)* is non-zero only when Sper= ) T=0+ovT=tr > [ which may be
rewritten to get x separated as
s () -0 -5 -0
T :
o oVl —1t

Call the right hand side of the inequality d;, the integral may be written as

1 oo 2 22
E[(Sr — K)*1F) = 7= / (Syetr =TI T=0+oVT=Tr _ )= gy
1

1 o 2 22 oo 22
= G er= )T =) +oVT—te .~ % 1. _ [ % dr
Var Ja, V2r Ja,
X>d1)
1 ©
=—___g9 er(Tft)/ 677(T t)+ovT— tw77d1' - K /
V2 t dy Vo Ja,
P(X>d1)
1 < 2
— Ster(Tft) e*g(mfcn/Tft) dr — KP(X > dl)
\/% dq -
={y=2—0oVT — 1, dy = dz}
= §,en(T—1) 7/ *Tdy ~KP(X >d;)
' \/ﬂ d1—0' T—

=P(X<d;—ovT—t)
= 8,e"TIP(X > dy —oVT —t) — KP(X > dy).

This is the explicit form of the Call Option price. O

12.2

Let B; be a one dimensional Brownian motion and let F; be the filtration
generated by B;. Show that

E[B}|F.] = B2 + 3(t — 5)B,.

Proof. We start by separating the process into a part that is measurable with
respect to F, and one that is independent of F;, namely

E[B2|F,] = E[(B; — Bs + B,)3|F,] = E[(B; — Bs)® + 3(B, — B,)*Bs
+3(B; — B,)B? + B3| F;)] = E[(B; — B,)?| + 3B,E[(B; — B,)?
+ 3B%E[B, — B,] + B2.
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B, — Bs ~ N(0,+/t — s) and since the normal distribution is symmetric all odd
moments is zero, so

E[B}|Fi] = 0+ 3By(t — 5)° + 0+ B = BS + 3(t — 5) Bs.

12.3

Show that the following processes are martingales with respect to F;,the filtra-
tion generated by theone dimensional Brownian motion B,

1. B} —3tB;
2. B} — 6tB2 + 3t2.
Proof. 1) From Exercise 12.2 we have that
E[B}|Fi] = B} +3(t — s)Bs.
Using this together with the fact that B; is an F;-martingale we get
E[B} — 3tBy|F;] = B2 +3(t — s)Bs — 3tB, = B? — 3sB,

which proves the martingale property of Bf — 3tB; with respect to F;.

2) We start by computing E[B}|F,], and as in Exercise 12.2 we do this by
separating B; in a part that is measurable with respect to Fs and part that is
independent of F

E[B}|F,] = E[(B, — By + B,)*|Fs] = E[(B, — B,)* + 4(B; — B,)*B,
+6(B; — By)*B2 + 4(B, — B,)B? + B!|F,] = E[(B; — B,)"]
+ 4B,E[(B; — B,)®] + 6 B?E[(B; — B,)?] + 4B>E|[B; — B,] + B*.

Recall that B, — By ~ N(0,v/t — s) so we may write By — Bs = /T — sX where
X ~ N(0,1) so we may rewrite our expression as

E[B2|F,] = (t — $)2E[X*] + 4B,V — s E[X?] + 6B(t — s)E[X?]
+4B3\/t — sE[X] + B?

and since all odd moments of the standard normal distribution is zero and the
second moment is one we have

E[B}|Fs] = (t — s)*E[X*] + 6B2(t — s) + BL.

To evaluate E[X*] we use the moment generating function of the standard nor-
mal distribution

Uy (u) = E[e"¥] = e’/

and use the result that the n’th derivative of ¥x (u) evaluated in v = 0 is the
n’th moment of X. The fourth derivative of ¥x (u) is

U0 (u) = (3 4 6u® + uh)Wx (u)
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and since Ux(0) =1 we get \Ilg?) (0) = E[X*] = 3. From this we get
E[B{|F,] = (t — s)’E[X"] + 6BZ(t — 5) + Bf = 3(t — s)* + 6B2(t — s) + Bx.

We now may derive the martingale property of B} — 6tB? + 3t2, using the fact
that Bf — ¢ in an F;-martingale,

E[B} — 6tB} + 3t*|F] = 3(t — s)> + 6B2(t — s) + B — 6tE[B}|F,] + 3t
=3(t — 5)> + 6B2(t — 5) + B! — 6tE[B? — t + t|F,] + 3t

=3(t — 5)> + 6B2(t — 5) + B — 6t(B% — 5 +t) + 3t*

= 3t? — 6ts + 35 + 6B%t — 6sB2 + B} — 6tB2 + 6ts — 61 + 312

= B} — 6sB2 + 35,

hence B} — 6tB? + 3t? is an F;-martingale O
Chapter 13
13.1

Let {t;}52, be an increasing sequence of scalars and define ¢} such that ¢; <
t7 <tiy1. Furthermore, let

n—1
Sn - ZBt:(Bti+1 - Bti)7
=0

where By, is the discrete Brownian motion.
Check that S, 0 < k < n is not a martingale with respect to the filtration
generated by B.

Proof. We only chek the martingale property of Sj.

‘7:1@*1] = {Btf (Bti+1 - Bt')

i

k—1
E[SH}—’C*A = E[Z Btf (Bti+1 - Bti)
=0

k—2
are JFj_j-measurable for i <k — 2} = Z By« (By,,, — Bt,)
=0
=551

+E[Bsx (Bt — Buy_ )| Fr-1] = {E[By,_, (B, — Bt,,_,)|Fx—1] = 0}

= Sk-1+E[Bi; (B, — By, )|Fk-1] — E[By,_, (B, — By,_,)|F-1]

= Sk—1 +E[(Bi:_, — By, )(By, — Be, )| Feo1] = Skt + (ti_y — tr—1)
# Skt

for any ¢,—1 < tj_; < i hence S'k is not a martingale with respect to the
filtration generated by the Brownian motion B. O
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13.2

Let B; be a Brownian motion and let X; be the stochastic integral

t
Xt:/ 687tdBS
0

1. Determine the expectation E[X;] and the variance V(X;) of X;.
2. Show that the random variable
Wi = /2(t + 1) Xiog(41) 2
has distribution W; ~ N (0, t).
Proof. 1) By part (vi) of Proposition 13.11, that defines properties of then Ito

integral, we have that since the integrand, e*~*, of the stochastic integral is
deterministic, the stochastic integral is normally distributed as

X~ N (0, /Ot(e“)zds) =~(o, /Ot =045 ) = N (o, %(1 — 7).

Hence X; has the distribution X; ~ N(O, 11— e_Qt)).

2) From the first part of the exercise, we know that X; ~ N(O, %(1 - 6_2’5)).

For a normally distrbuted random variable ¥ ~ N(0,0) it holds that ¢Y ~
N(0,c?0?) hence

W, ~ N(O, (\/W)Q%(l _ e—210g(t+1)/2)) _ N(O, (t+1)(1 - e—log(t+1)))
- N(o, (t+1)(1 - L)) - N(o, (t+ 1)L) - N(O,t).

t+1 t+1
And the proof is done. O
Chapter 15
15.3

Let B be a Brownian motion. Find z € R and ¢(s,w) € V such that

T
Flw)==z2 +/ (s, w)dBs
0
in the following cases
1. F(w) = B3 (w).
T p3
2. F(w) = [, Bids.

3. F(w) = e"/? cosh(Br(w)) = eT/Q%(eBT(‘*’) + e~ Brw)
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Proof. 1) We get
3 2 1
d(B}) = 3B}dB, + S6Bydt
and since
d(tB,) = tdB, + B,dt
we have tB, = fg sdBg + fg B,ds which may be rewritten using tB; = fot tdB,
to get [, Byds = [, (t — s)dB,. We may now write the B3 as

T
B3 ==z +/ 3(B} + (T —t))dB,
0

where z = E[B3] = 0. Hence ¢(s,w) = 3(Bs(w)? + (T — s))
2)

d(TB3}) = T(3B%dBr + 3BrdT) + BidT
hence

T T T
TB3 = —z + / s3B%dB, + / 3sB,ds + / Bids,
0 0 0

for some z € R. Rewriting the expression gives
T T T
/ B3ds = 2+ TB3 — / s3B%dB, — / 3sB,ds
0 0 0

which by problem 1) gives
T T T
/ B3ds =z +/ (ST(Bf, + (T —s)) — 3335)st — / 3sBds.
0 0 0

We need to rewrite fOT 3sBgds on a form that is with respect to dB; instead of
ds. Study

d(T?Br) = 2T BpdT + T%dBr,

hence T2By = fOT 2sB.ds+ fOT s2dB, and by writing T? By = fOT T?dB, we get

T 1 T
/ sByds = 7/ (T? — s*)dB;,
0 2 0

T T 3 T
/ Bids =z +/ (3T(B§ +(T —5)) — sng)st - 7/ (T? — s?)dB,.
0 0 2 0

hence

We may now write the fOT Bids as

T T 3
/ Bids =z +/ (3T(B§ + (T —s)) — s3B% — 5(T2 - 32))st.
0 0
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where z = E[fOT B3ds] = fOTIE[BS]ds = 0. Hence ¢(s,w) = 3T(Bs(w)* + (T —
s)) — $3By(w)? — 3(T? — 5%).
3) We notice that since
d(eBtft/Q) _ €Bt7t/2dBt
d(e—Bt+t/2) — —C_Bt+t/2dBt,

we may write

eT/Z%(eBT(w) +eBr@) = eT/z}(eT/zeBT(w)—T/z + e T/2g=Br()+T/2)

T T
=z+ eT/Q%(eT/Q/ ePe=3/2qB, — e_T/Q/ e_BSJrs/QdBS)
0 0

1 T T
=z+ f(eT/ eP=/24pB, 7/ e~ Bats/2qpy)
2 0 0
/T eTeBs—s/Q _ e—BS+s/2
=Z +
0

dBg
2

where z is

! 1
2 = E[F] = T/2ZE[eB7] 4+ Ele~Br] = ¢T/2- (eT/2 E[eBr=T/2]
2 2 —

=1

+ e_T/QE[e_BTJrT/Q] ) = eT/Q% (eT/2 + e_T/Q) = %(eT +1).

—_———
=1
O
15.5
Let X; be a generalized geometric grownian motion given by
dXt = Otitdt + ,BtXtdBt (3)

where «; and (; are bounded deterministic functions and B is a Brownian
motion.

1. Find an explicit expression for X; and compute E[X,].
2. Find z € R and ¢(t,w) € V such that X(T\,w) = z+ fot (s, w)dBs(w).
Proof. 1) Let X; = elo @sdsy, the differential of X, is
dX; = apelo BV, dt + elo ¥ qY; = o, Xydt + elo @54y,
for this expression to be equal to (3) we must have

efot ozsdsdy;t =B, @jot ast)/t dB;
——
=X
which holds if dY; = 8Y;dB; hence Y; is an exponential martingale given by

Y;g _ yo@fot BtdBt_% fot ﬂ?dt
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where yo = 1 since Xy = 1. This gives the following expresiion for X,

X, = efot BedBi+ [ (o — 3 Be)?dt
Using the martiongale property of Y; gives

E[Xt] = E[efot ozsdsyz] = efg asds E[}/t] — efot asds

=Y,

2) In part 1) it was shown that Xp = elo @sdsy, where Yy is the exponential
martingale with SDE dY; = £,Y;dB; hence X1 may be written as

T T
X — efoTansY :efoTast 1+/ Y.dB,) = efOTans+/ efoTocsds . Y.d B,
T T ( | B ) | B

and p(s,w) = elo @sds 3 Y, (w). We need to show that ¢(s,w) € V, the criterias
are given in Definition 13.1. Part 1 and 2 of Definiton 13.1 is showed by noticing
that ¢, is the product of the processes elo awdug which is deterministic and
therefore universally measurable, and Y which is the exponential martingale and
therefore fullfill the conditions 1) and 2). The product of these two processes
does also fullfill criterias 1) and 2). Condition 3) of Definition 13.1 is shown
by using that §; is bounded so that there is a constant 0 < K < oo such that
|8:] < K for every ¢ € [0,T],

T T - T
E[ / (Bielo @:85Y,)2dt] = elo @ BE] / BEYRdt] <{|B| <K}  (4)
0 0

T T
<elo wBR2E / Y2dt] = {Fubini :F/ E[Y?]dt. 5
\1,_/ [ 0 t ] { } o [ t] ( )
=I

Y2 = elo 2P+dBs=[§ B2ds cap be written as the product of an exponential martin-
gale and a deterministic function as Y;? = elo 28:4Ba—5 [5(28)2ds o [ B2ds g that
(4) becomes

T T
E[/ (5tefoTastm)2dt} gp/ E[eﬁ?Bb»st—%IJ(2ﬂ5)2dsefJﬂ§dS}dt
0 0

T T
= F/ ef(lt desE[efot 255(1BS—% f(f(QBS)zdS:I dt = F/ efot 5§d5dt
0 0
T T T K2T
t -1
< P/ elo K2ds gy < I‘/ Kot — I‘/ Kot = I‘ei < 00.
0 0 0 K2

Hence @5 € V. O

15.6

Let f(t) = ¢t’/2 — 1 and let B be a brownian motion on the probability space
(Q, F,{F,t > t},P). Show that there exists another Brownian motion B such
that

f(t) 1 t\[ -
X; = ——dB, = sdB,
' /0 vits /0
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Proof. The quadratic variation of X; is

2
et” /21

1) 1 1 2
X)) = —)ds = ds =1 1 t4/2—1)
= [ (eme= [ e = oa (1)
t
=t2/2:/sds.
0

By Theorem 15.4 there exists an extension (QL]A-", {ﬁt,t >t} I@)) of (Q, F,{F:,t >
t},P) on which there is a Brownian motion B such that

t
Xt:/ Sst
0

which solves the problem at hand. O

Chapter 16

16.1
Let X; solve the SDE

dX, = (aX, + B)dt + (0 X, + 7)dB: X = 0

where a, 3, o and « are constants and B is a Brownian motion. Furthermore,
let S; = el@—0/2)t+o B

1. derive the SDE satisfied by S; .
2. Show that d(X,S; ') = (8 — 07)S; *dt + S; 'dB,.
3. Derive the explicit form of X;.

Proof. 1) Let f(t,z) = e~(a=0”/2)t=02 then the SDE of S s

2

9 ) 19
ds;t = af(t,}.f;t)dt + %f(t,Bt)dBt + 5522

— _(a _ 0_2/2)6—(a—o2/2)t—r7mdt _ Oe—(a—02/2)t—rr.rdBt + %UQe—(a—nz/Q)t—ozdt

f(t, By)dt

= —(a—0?)S; dt — oS, dB;.
2)

(X871 = XdS;t + 57 dX, 4 (X, 87 = Xy (—(a — 0%)S; Yt — 0S;7 dBy)
+ S (aXy + B)dt + (0 X¢ +7)dBy) + (—aS; ) (o Xy + 7)dt

= —(a—0?)X,S; 'dt — 0 X,S; dB; + aX,S;  dt

+ BS;tdt + 0 X S; By + Sy dBy — 0* X S, dt — oy S, dt
=(—(a—0)+a—-0°)X,S;'dt+ (— o+ 0) XS, 'dBy + (B — vo) Sy \dt
+78;'dB; = (— (@ — 0?) + a — 0?) X, S; 't + (— 0 + 0) X, S; 'dB,

+ (B —~0)S; 'dt +S; 'dB, = (B — yo)S; dt +~S; ' dB;.
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3) From 2) we get that

¢ ¢
X7 = (8- 70)/ S tds +7/ S;tdB;
0 0
multiplying both sides by S; and express S; on its explicit form gives

t
X, = 6(a702/2)t+aBt ((B _ ,Yo.)/ ef(ozf(f{"/Q)sfaBsd'S
0

t
+,y/ e—(a—az/Z)s—oBsst>.
0

Additional Exercises

The Additional Exercises problem formulations may be found on the course
webpage.

Al

Compute the stochastic differential dz when
1. Zy=e¢*, a €R, t €[0,00).
2. Zy = fgg(s)st where ¢(s) is an adapted stochastic process.
3. Z, = B,
4. Z; = e*Xt where dX; = pdt + cdB;.
5. Z; = X? where dX; = pXdt + 0 X;dBs.

Proof. 1) Since at is of first variation, dZ; = ae®'dt = aZ,dt.
2) dZy = g(t)dB since it is the differential of an integral.
3) Let f(x) = e** then, using the Ito formula, since aB; has quadratic
variation, we get
1 2
dZ; = J'(B)dB: + 5 " (B)d(B), = ae™PdB; + %eaB‘dt

042
= CYthBt + 7tht

4) Using the same notation as in 3) we get

1 2
dZ, = f'(aX,)dX, + 3 f"(aX)d(X); = ae®Xt (udt + odBy) + %eaxt02dt

2
= acZdBy + (ap + (a;’) )Zydt.
5) Let f(z) = 22, we get
1 1
dZy = f'(X)dXe + 5 f1(X)d(X)e = 2X0d X + 52d(X),

=2X,(uXdt + 0 XdBy) + o? X7Zdt = 2uX}Pdt +20X7dBy + o> X2dt
= (2u+ 0?) Zsdt + 20 Z,dB;.
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A2

Compute te stochastic differential for Z when Z; = 1/X; where X; has the
differential

dXt = aXtdt + O'XtdBt.

Proof. Let f(x) = 1/x and hence f'(z) = —1/2? and f(x) = 2/2. By the Ito
formula we get

1 1 12
dZ; = f(Xy)dX; + §f”(Xt)d<X>t = 77X1€2 dX; + iin d{X)y
aXdt + o X;dB; 1 5.9 adt +odB; o2
= — —o’ Xidt = ——— + —dt
X? T X, 'x

= (~a+ 0 Zidt — 0 Z;dBy.

A5

Let B be a Brownian motion and {F;} be the filtration generated by B. Show
by using stochastic calculus that the following processes are martingales.
1. B} —t.
A2t
2.

2. erBi—

Proof. If the Ito differential only has an dB;-part, i.e. that differential looks on
the form 0dt + (...)dB;, and the integrand is a member of the class V defined
in Definition 13.1, then we may be certain that the process is a martingale by
Proposition 13.11. 1)

1
d(Bf ~ 1) = 2B,dB; + 5 2dt — dt = 2B,dB;

and since

¢ ¢ t 2
]E[/ B2ds] = {Fubini} = / E[B%ds = / sds = 3 < 00,
0 0 0

2B, € V, and hence B? — t is a martingale.

2)
2
(B3t = —%e’\Bt_%dt +ANB B, 4 %vewt—%ztdt
24
= \B 4B,
And since

t t
)2ds] = IE[/ 62)‘BS_)‘2SdS] = {Fubini} = / E[e”‘BS_’\%]ds
0 0

¢ B A2s
B[ (%
0

t t
= / E[e**B:]e™* *ds = {B, ~ N(0,5)} = / e e ds < 00, 0 <t < o0
0 0

AB,— A2t

t . .
hence e z is a matingale. O
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A6

Check whether the following processes are martingales with respect to the fil-
tration generated by B.

1. X, = B, + 4t
2. X; = B?

3. X, =t*B, — 2 [, rB,dr

4. X; = Bt(l)B,@ where (Bgl), Bt@)) is a two dimensional Brownian motion.

Proof. The proofs may (at least) be done in two ways, one by checking the
martingale property of the process using a time s < ¢, and the other is to do the
stochastic differential of the process and the use the Martingale Representation
Theorem (Theorem 15.3) to conclude whether the process is a martingale or
not. We will do both. When using the Martingale Representation Theorem we
should also prove that the integrand is a member of the class V, which we omit
in the solutions.

1) E[X¢|Fs] = E[B; + 4t|Fs] = Bs + 4t # B, + 4s hence B; + 4t is not an
Fi-martingale.

dX; = dB; + 4dt # g(s,w)dBy; hence B, + 4t is not an F;-martingale.

2) E[X|Fy] = E[B}|F] = E[(B, — Bs + Bs)*|Fs] = E[(B: — B,)?|F] +
E[B2|Fs] =t — s+ B2 # B? hence B? is not an F;-martingale.

dX; = 2B;dB; + dt # g(s,w)dB; hence B? is not an F;-martingale.

3)

t t
E[X¢|F,] = E[t*B; - 2/ rBdr|Fs] = t*B, — 21E[/ rB,dr|Fy]
0 0

S

t
rE[B,|F,) dr — 2/ rE[B,|F,) dr
—— s S

—B, —B,

t
=1’B, — 2/ rE[B,|Fldr = t*B, — 2/
0 0

s t s
=t°B, — 2/ rBdr — 2BS/ rdr = s°B, — 2/ rBdr = X,
0 s 0

hence t2B; — 2 fot rB,.dr is an F;-martingale.

dX, = 2tB,dt + t2dB, — 2tB,dt = t*dB, hence t2B; — 2 [} rB,dr is an F;-
martingale.

1) E[X,|F.] = E[B{"B{*|F,] = {independent} = E[B{"|F,E[B{”|F,] =
B§”B§2) hence Bgl)Bt(Q) is an Fy-martingale.

dX, = BYaB® + BPdB" +a(BW, By = BYaB® + B®dB{") hence
B,gl)Bt(Q) is an Fy-martingale. 0

AT
Let X be the solution to the SDE
dX; = aXdt + 0dBy, Xo = g

where a, o, x¢ are constants and B is a brownian motion.
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1. determine E[X].
2. Determine V(Xy).
3. Determine the solutionto trhe SDE.

Proof. 1)

¢ ¢ ¢ ¢
E[X:] = E[zo + a/ Xsds + 0/ dBs] = o + aE[/ Xsds] + O’E[/ dBy]
0 0 0 0
=0

¢
=z + aE[/ Xds|
0

which leads to the ordinary differential equation

d
GEIX!] = oE[X|]
E[X()] = X0

which has the solution E[X;] = x¢e®!
2) V(Xy) = E[X?] — (E[X}])? = E[X?] — 2pe* so we need to find an explicit
expression for E[X7?]. Looking at the stochastic differential of X? we get

dX}? =2XdX; 4+ d(X); = 2X(aXdt + 0dBy) + o?dt
= (2aX? 4 0?)dt + 20 X,dB,

from which we have

Xf:a;3+/
0

t

¢

(20X + o%)dt + 20/ X,dB;.
0

E[X?] becomes

t t t
E[X?] = B[22 + /0 (2aX? + o?)dt + 20/0 X dBy) = 22 + ]E[/O 20 X2dt] + ot

(6)
¢ ¢
+ 20 K[ / X;dB;] = {Fubini} = 23 + / 20E[XF]dt + ot
0 0
=0 (Mg)
Let g(t) = E[X?], the problem (6) leads to the ordinary differential equation

d .\ _ 2
ag(t) = 2ag(t) + o*.

Consider the function e=2%%g(¢). Differentiating e=2%!g(t) we get

d

d
a(672oztg(t)) — _QO(g(t)efZat 4 672°‘t—g(t) — 67204150,2.

dt
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Integrating both sides and multiplying both sides by e2®! we get

t
g(t) = g2t (c + 02/ 6720‘5ds).
0

c is determined by the initial condition g(0) = 23 as ¢ = 2. And the formula
for E[X] is

t 62at —1
E[X,] = ** (zg + 02 / eiQO‘Sds) =g o
0 2c
so the variance is V(X;) = E[X?] — (E[X{])? = o? 62;;’1
3) Taking the differential of e~ ** X, yields
d(e_o‘tXt> = —ae X, dt + e 4 X, = e~ odB;. (7)

Integrating both sides of (7) and multiplying both sides with e®* gives

t
X, = e (c +/ e*“tUdBt)
0

where ¢ is determined by the initial condition Xy = zg to be ¢ = zyg. The
solution of the SDE is therefore given by

t
Xt = eo‘t (.1‘0 +/ e_o‘tadBt>
0

X, is the so called Ornstein Uhlenbeck process. O

A9

Let h(t) be a deterministic function and define the process X; as
t
0
Show that X, ~ N(0, [y h*(s)ds) by showing that
E[eiuXt] _ 67% IS h2(s)ds' (8)

Proof. Recall that (8) is the characteristic function of N(O,fg h?(s)ds) which
is a unique transformation, therefore proving (8) is equal to proving that X; ~
N(0, f; h2(s)ds).

Let Y; = e'X¢. Since dX; = h(t)dB; we get

2 2
dY; = inY,dX, — %Kd(){)t — iuYh(t)dB, — %YthQ(t)dt.

s0Y; =14iu fot Y;h(s)dBs — "72 fot Y,h?%(s)ds since Yy = 1. The expected value
of Yy is

E[Y;] = E[1 + iu /Othh(s)st - f/otYShQ(s)ds] =1+ iuIE[/Othh(s)st]

u?

t ’LL2 t
- ?IE[/O Y,h?(s)ds] = {Fubini} = 1 — ?/0 E[Y:]h?(s)ds. (10)
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Let g(t) = E[Y;] and (9) may be written as the ordinary differential equation

2

—g(t) = ~h¥(s)g(s)
9(0) =1

which has the solution g(t) = e~ J3 W (5)ds hence

E[eiuX,,} — €_§ fot h%(s)ds
from which we conclude that X; ~ N(0, fg h2(s)ds). O

A10
Let X, Y satisfy the following system of SDE’s

dX; = aXidt +YidB:, Xo=1x0
dY; = aYydt — XydBy, Yo =yo

1. Show that R, = X? + Y;? is deterministic.
2. Compute E[X;], E[Y;] and Cov(X;,Y:).
Proof. We first calculate the stochastic differentials of X? and Y2

dX}? = 2X¢dX; + d(X); = 2aX7dt + 2X,Y;dB; + Y2dt
dY? = 2aY2dt — 2Y, X, dB; + X2dt

so we may write R; as
t t t
Ri=X2+Y2=uz0+ 2a/ XZ2ds + 2/ X,Y,dB, +/ Y2ds
0 0 0
¢ ¢ ¢
+yo + 2a/ Y2ds — 2/ Y, XdBs + / X2ds = x0 + yo (11)
0 0 0
t t t
+(1+ 2a)/ X2ds + (1 + 2&)/ Y2ds = (1+ 2a) / Rgds.
0 0 0
Let g(t) = Ry, then (11) can be written as the ordinary differential equation

Zg(t) = (1+2a)g(s)
9(0) = o + 9o

with the solution g(t) = (2 + yo)e 2%, Tt has been shown that R; = (zo +
y[))e(l+2a)t_

2) rewriting X; and Y; on integral form we get
t t
X :x0+a/ Xsds—i—/ Y.dB;
0 0

t t
Y: zyo—i—a/ sts—/ X.dBs.
0 0
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we get

t t t t
E[Xt]:IE[zOJra/ Xsds+/ Y;dBS}:a:o+aE[/ Xsds]+IEl[/ Y,dBy]
0 0 0 0
=0

t
=x9 + a/ E[X,]ds
0

E[Y;] = E[ 0+a/ Yds—/XdB]—yo+aE/Yds /XdB

t
= yo + a/ E[Y,]ds.
0

This gives two ordinary dfferential equations solved in the same manner as in
part 1) and gives the solutions

E[X;] = zoe™*
E[Y;] = yoe".

Since the covariance is Cov (X%, Y:) = E[X,Y;] —E[X;]E[Y;] we need to cvalculate
E[X.Y:]. For this purpose, consider the stochastic differential of X,Y,

dX:Y; = X;dY; + YidX, + d(X,Y); = Yi(aX.dt + YidB;) + X (aYidt — X dB;)
— XiYidt = (20 — 1) X, Yidt + Y,2dBy — X?dB;.

Hence X;Y; = zoyo + (2a — 1) fOXYd5+fO( — X2)dB; O
and we get
t t
E[X,Y:] = E[zoyo + (2o — 1)/ X,Y.ds +/ (Y2 — X2)dB,] (12)
0 0

= 2oy0 + (2a — 1)1E[/Ot X Yds| + E[/Ot (Y? — X2)dB,] = {Fubini}  (13)

=0

= zoYo + (2a — 1)/0 E[X,Y;]ds. (14)

Let g(t) = E[X,Y}], then solving (12) amounts to solving the ordinary differential
equation

d
—g(t) = (2a — 1)g(t
2 ot) = (20~ 1t
9(0) = zoyo
which has the solution g(t) = zoyoe*~* hence E[X,Y;] = zoyoe*~ ! and

we get

Cov(Xy,Yy) = E[XVy] — E[X,E[Y] = 2oyoe®* V" — 2oyoe®*" = moyoe® (7" —
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Al1l
Let X and Y be processes given by the SDE’s

dX; = aX,dB" + 8X,dB?, Xy ==
dY, = yY;dt + oY, dBY, Yy =1y,

where o, f3, v, o are constants and B(Y), B®) are independent Brownian mo-
tions. Compute E[X,Y}].

Proof. Start by differentiating X;Y; to get

A(X,Y,) = XydY; + YidX, + (X, V), = X, (vYadt + oY,dB)
+Y,(aXdB" + BXdBP) + ao X,Y,dt = (v + ao) X, Yidt + (0 + @) X, Y;dB"
+ BX,Y;dB®.

Using the initial condition XoYy = zgyg we have
t s t

XoY, = zoyo + (v + ao)/ X, Yds + (0 + a)/ X,Y,dBY + 5/ X.Y,dB?

0 0 0
so E[X;Y;] becomes

t s
BIX,Yi) = Blaogn + (1 + a0) [ X.Yids+ (0 +a) [ X.YdB® (15)
0 0

t t S
+8 / X,Y,dB] = 2090 + (v + a0)E] / X,Y,ds] + (o + @) E| / X,Y,dBY)]
0 0 0

=0
(16)

t t
+ ma[/ X,Y.dB®] = {Fubini} = zoyo + (y + aa)/ E[X,Y]ds. (17)
0 0
=0
Let g(t) = E[XY}], then (15) gives the following ordinary differential equation
L) = (0 + ao)g(t)
dtg =\ g
9(0) = zoyo

which has the solution g(t) = zoyoe’T*?)* hence E[X,Y;] = zoyoe¥ Tt [
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