

KTH Teknikvetenskap

Statistical Inference
SPRING 2010

Homework 2

DUE THURSDAY MARCH 10.

PROBLEM 1: Problem 6.12, p. 301 in Casella & Berger.

PROBLEM 2: Problem 6.16, p. 301 in Casella & Berger.

PROBLEM 3: Probelm 6.31, p. 304 in Casella & Berger.

PROBLEM 4: Problem 6.36, p. 305 in Casella & Berger.

PROBLEM 5: Let $\Omega = \{0, 1\}$, $\mathbb{N} = \{1, 2, 3, 4, 5\}$, and the loss function

$$\begin{aligned} L(0, 1) &= 0, & L(0, 2) &= 1, & L(0, 3) &= 0.8, & L(0, 4) &= 0.2, & L(0, 5) &= 1, \\ L(1, 1) &= 1, & L(1, 2) &= 0, & L(1, 3) &= 0.1, & L(1, 4) &= 0.6, & L(1, 5) &= 1. \end{aligned}$$

- (a) Draw the risk set and display all admissible rules.
- (b) Show that there is a minimax rule and find it and illustrate the corresponding risk function in your figure.
- (c) Determine the least favorable prior and illustrate it in your figure.
- (d) Find all Bayes rules with respect to the least favorable prior and illustrate the corresponding risk functions in your figure.

PROBLEM 6: Consider the following situation. You have an amount of m dollars to bet on the outcome of a Bernoulli random variable X_{n+1} . You observe $X = (X_1, \dots, X_n)$. Suppose X_1, \dots, X_{n+1} are conditionally iid $\text{Ber}(\theta)$ random variables given $\Theta = \theta$. Based on the observations in X you have to make a decision whether to bet on $X_{n+1} = 0$ or $X_{n+1} = 1$. If you win, you gain the amount m and otherwise you loose m .

- (a) Formulate this as a Bayesian decision problem. Write down the sample space \mathcal{X} , the parameter space Ω , and the action space \mathbb{N} . Choose an appropriate prior distribution and an appropriate loss function of your choice. Then find the best decision rule, i.e. the decision rule δ that minimizes the posterior risk simultaneously for all x .
- (b) Formulate this as a classical decision problem. Can you characterize the admissible decision rules with the help of Neyman-Pearson?

Henrik Hult; Timo Koski

KTH

Department of Mathemaics

Lindstedtsv 25

Stockholm 100 44

E-mail: hult@kth.se; tjtkoski@kth.se

Website:

Office hours:

Phone: 8-790 6911