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1. MATHEMATICAL INTRODUCTION TO STATISTICS

In this section we have a look at the mathematical foundation of statistics.
Throughout the course we will try to first give an elementary introduction, not
using measure theoretic probability, in order to get a sense of what is going on. In
the elementary approach one can work with discrete or continuous densities. We
will use the notation of continuous densities, but these can just as well be replaced
by discrete ones and integrals replaced by sums.

1.1. Elementary introduction. Usually one starts with a number of observed
data, X = (Xy,...,X,), where X; are random variables with values in R. The
distribution of X is unknown but we assume it has a density that depend on an
unknown parameter. We write © for the unknown parameter and think of it as a
random variable representing the uncertainty of its value and assume that it takes
values in the parameter space 2. When the value of © is § we write Py for the
conditional distribution of X given ©® = 6. One may assume that there is a single
“true value” 0 of the parameter but this value is unknown.

We write fxje(x | #) for the conditional probability density of X given © = 6.
The density fxje(x | 0) is the basis of classical statistics. If one observes X = u,
then the function 6 — fx|e(x | 0) is called the likelihood function and is used for
making inferences.

Example 1 (Independent observations). Suppose we have n observations of inde-
pendent random variables X1, ..., X,, each with density fx,o(z; | #) when © = 6.
In this case X = (X1,...,X,) and px|e(- | 0) is a probability measure on R” with
density

fX\@(IaH) = Hin\@(xi | 6).
=1

After observing (X1,...,X,) = (21,...,2,) the likelihood function L(6) is the
function 6 — [ fx,je(zi | 0).

Example 2 (Independent and identically distributed observations). If we in ad-
dition suppose that the independent random variables are identically distributed,
then fx,jo(xi | 0) = fx,jo(x; | #) and Py is a probability measure on R" with
density

fxje(z,0) = HfX1|®(5Ei | 6).
=1

1.2. General introduction. Let us now take a look at the general setting. We
will use measure theory based probability and essentially repeat the “elementary
introduction”. This will enable a general framework where we can study the ele-
ments of statistics. In this section we will be more rigorous with the mathematical
details.

To start let us take an underlying probability space (S,.A, ). S is the abstract
space of outcomes, A is a o-field, and p a probability measure. We will often use
the notation Pr to denote the underlying probability measure p. Suppose we do
an experiment where the collected data takes values in the sample space X which
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has a o-field B. This space is denoted (X,B). The observed data is denoted by
X, where X : S — X is a random variable (i.e. it is a measurable mapping). We
will use the term random variable in a general sense. That is X’ could be a general
space. Often X will be some familiar space, for instance, X could be a vector of
random variables X = (X1q,...,X,), in which case X = R™, but it may also be
a continuous stochastic process, in which case X is the space C[0, 1] of continuous
functions. The distribution of X (which is a probability measure on B) is unknown
but we assume that it belongs to Py which is a parametric family of probability
measures (probability distributions) on B. The probability measures in the family
Py are indexed by a parameter 6 taking values in the space 2 with o-field 7. It is
assumed that the parametric family Py can be written as Py = {Py : 0 € Q}. We
assume that (i) for each 8 € Q, Py(-) is a probability measure on B and (ii) for each
B € B the function § — Py(B) is a measurable function on €.

Reminder: Let X and © be random variables on a probability space (S, .4, u). Recall
that (a version of) the conditional distribution of X given © is a mapping p1x|e on
B x € such that

(i) for each 6 € Q, px|e(- | ) is a probability measure on 3.
(ii) for each B € B, pix|e(B | -) is a measurable function on .

Note that we have defined Py to be a conditional distribution. An alternative
is to represent the uncertainty of the parameter © as a random variable, i.e. as
a measurable mapping from S to £2. The joint distribution of (X,©) is then a
probability measure on B x 7 given by

ux,0(B)=Pr(s: (X(s),0(s)) € B), BeBxr.

Then one can define the conditional distribution of X given ©® = 6 and write Py
for the conditional distribution of X given © = §. Correspondingly we write Fy for
the expected value under Pp. We will also use the notation pxg(- | #) to denote
the conditional distribution FPy.

It should be noted that in the classical setup it is sufficient start directly with the
family Py without first defining © as a random variable. For instance, the classical
paradigm never use the joint distribution of (X, ©) or the marginal distribution of
X or ©. However, to fit the classical and the Bayesian into the same framework we
will think about © as a random variable and Py as the conditional distribution of
X given © = 6.

If, for each 6 € Q, Py has a density fx|o(z | #) (measureable B x 7) with respect
to a measure v, that is Py < v and

apy

Ifxje(z]0) = a0

(), for each 0 € Q,

then for fixed x, 6 — fx|o(x | 0) is called the likelihood function and is denoted
L(0). Usually the reference measure v will be Lebesgue measure or counting mea-
sure but it can be more general.
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Reminder: Recall that a measure p is absolutely continuous with respect to a measure
v, written p < v, if v(B) = 0 implies u(B) = 0 and in that case the Radon-Nikodym

Theorem guarantees the existence of a density f(x) = %(x) such that

[ H@wtdz) = [ s

for each integrable function h.

2. BAYESIAN STATISTICS

2.1. Elementary Bayesian statistics. In the Bayesian paradigm it is assumed
that © is a random variable and some prior knowledge of the parameter © is avail-
able. The information about © is put into the model by specifying the prior dis-
tribution with density fe(#). The densities fx|o(x | 6) and fo(f) can be combined
to obtain the joint density of (X, ©) given by

fxe(x,0) = fxje(r | 0)fo(0).

Once the joint density is specified we can also derive the marginal density of X

fx(z) = /Qf)qe(x | 0)fo(6)do.

An important ingredient in the Bayesian paradigm is the posterior distribution
given the observation X = x. Its density is given by Bayes’ theorem as
forx (0| 2) = fxe(.0)  fxe(@|0)fe(d) .
| fx@) Jo Ixje(e | 0)fe(0)dd
The posterior distribution of © given X = x can be thought of as the updated
beliefs about © after taking into accound the observation X = x.

In Bayesian statistics all inference in based on the posterior distribution. Note
that the difference from classical statistics is that the posterior density is just the
likelihood function multiplied by the prior density and then normalized to become
a probability distribution.

2.2. General framework. The general Bayesian setup is similar to the classical
case. We consider the data X and the parameter © as random variables. The
joint distribution of (X, ©) is denoted by px,e. It is specified by choosing the
marginal distribution pg of ©, called the prior distribution and the conditional
distribution pxje(- | #), which we also denote by Pp, from a parametric family
Po = {Py : 0 € Q}. Once the prior distribution and the conditional distribution are
specified the joint distribution is given by

px,e(Bx A) = /AHX|@(B | 0)pe(do).

The it is easy to derive the marginal distributions of X and © as

px(B) = [ Is@)ux.elde.do),

pe(A) :/x QIA(H)MX,e(d%dH)-
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If, for each 0, Py (or which is the same px|o(- | )) has a density fxje(z | 0)
w.r.t. a measure v, then we can write

Po(B) = pxje(B|0) = /B fxje(x | 0)v(dz).

Using Fubini’s theorem the marginal distribution of X can be written as

ix(B)= [ [ rxiola | Ovtaonod) = [ [ [ friate] 6)ue(an)]oas)

and we see that the density of ux w.r.t. v is
@) = [ xiale | Do db).

If, in addition, pe has a density fo w.r.t. a measure p on 7 (recall that 7 is the
o-field on the parameter space 2) then the marginal density of X w.r.t. v becomes

fx(x) = / Fxjo(a | 6)fo(6)p(d6).

2.3. Posterior distribution. Once we have observed the data X = z, we can
use Bayes’ theorem to write down the conditional distribution of © given X = =.
This distribution is called the posterior distribution and is of central importance in
Bayesian statistics. Here is a general version of Bayes’ theorem.

Theorem 1 (Bayes’ theorem). Suppose there is a measure v on B such that Py < v
for each 0 € Q and let fx|o(x | 0) be the density. Let pe|x (- | x) be the conditional
distribution of © given X =x. Then pex(- | z) < pe px-a.s. and

_ fxje(z|0)
Jo fxje(z | 9)pe (d9)
for those x such that the denominator is neither 0 nor co. Moreover, ux{z :

Jo Ixje(@ | 9pe(dd) = 0 or oo} = 0 and pe x can be artbitrarily defined on this
set.

dpe|x
dpe

(€| )

Remark 1. If the prior distribution pg has density fo wrt a measure p on 7 and
Py has density fx|e(- | #) wrt v on B, then the posterior distribution of © given
X = z has a density (wrt p) given by

__ Ixe@0) _ fxelz]0)feld)
fg Ix,0(z,0)p(df) fg fX\@(x | 9)f@(9)l’(d9).

Density proof. Suppose that all relevant densities exists and that densities are w.r.t.
Lebesgue measure. Then Bayes’ theorem simply says that
fxie(@ | 6)fo(0)
Joix(6] @) = . (21)
Jo fxie(@ | 0)fe(0)do
This is just a consequence of the “elementary” definition of conditional density as
Ixje(z | 0) = fxo(x,0)/fo(f). We need to watch out that we do not plug in
values of z where fx(z) = 0 or oo in (2.1), but that should not be big a concern
since if C' is the set of those values, then we must have Pr(X € C) = 0. O

foix (0| x)

For the sake of completeness, here is a formal proof in the general case.
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Proof. Let us start with the second claim. Write
Co={a: [ fxiale | Duo(ds) =0}
Coo = {a: | fxiole | Do(d) = oo}
and note that
jx(Co) = / | 1xiolar | Do tai(a) ~o.

For C', we have

0> ux(Co) = [ [ friola | no(an)vidn)

Hence, we must have v(Cs) = 0 and then it follows that px(Cs) = 0.
To prove the claim for the Radon-Nikodym density observe that for B € B and
A € 7 we have on one hand

PI‘(X € B,0 ¢ A) = ,LLX7@(B X A)

- /B Hoyx (A | 2)ux (dx)
— [ [pexta12) [ fxiole | duotan)]vida).

On the other hand we have by Fubini’s theorem
Pr(X e B,©€A) = / pxie(B | 9)pe(di) = / / Ixje(z | 9)v(dr) }He(dﬁ‘)

= [ [ txiole | Dpo(an)]vido).
BtJA
Combining these two we see that v-a.e. (and hence px-a.s.)

~ Jafxje(@ | 9)pe(d9) / fxje(z|0)
 Jo fxie(x | 9)pe(dd) Jo fxje(x 19) Yo (d0)"

In particular pgx(- | ) < pe px-a.s. and the Radon-Nikodym density is the
desired one. O

pelx (A | x) e (do).

Remark 2. Generalized prior distributions.

2.4. Posterior predictive distribution of future values. Suppose that X =
(X1,...,X,) and we have observed X =z = (x1,...,2,). To compute the proba-
bility of future events, the Bayesian methodology proposes to use

PI‘(Xn_H S Al;---7Xn+k € Ay | X ZI)

= / Pr(Xnt1 € A1y, Xk € A | © =0, X = 2)pex(df | z).
0

This distribution is called the posterior predictive distribution of future values.
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Example 3. If the X;’s are assumed conditionally IID given © = 6 then the
posterior predictive distribution of future values is given by

k
PI‘(Xn+1 € Aq,... ;Xn-i-k € Ay | X = x) :/ HﬂXi|@(Ai | 9),&@|X(d9 | $)
Q=1

If px,jo(- | 0) has a density fx,jo(z | #) wrt a measure v then the posterior
predictive distribution has density
fX-,L+1,...,Xn+k‘Xl,“‘,Xn (ITL-‘rl) R )ITL-‘rk‘ | x17 e 7x71)

k
:/QHfXﬂ@(In+i | 9)#@‘){(6[9 | $1,...,xn).

i=1



