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LECTURE 10

18.3. Two-sided hypothesis.

Definition 31. If H : © > 03 or © < 61 and A : 0; < O < 65, then the hypothesis
is two-sided. If H : §; < © <6y and A: O > 0 or © < #;, then the alternative is
two-sided.

Let us consider two-sided hypothesis.

Theorem 26 (c.f. Schervish, Thm 4.82, p. 249). In a one-parameter exponential
family with natural parameter O, if Qg = (—o00,01] U [f2,00) and Q4 = (61,02),
with 01 < 02 a test of the form
1, ¢ <x<eco,
po(z) =9 v T=c,
0, c1>zorce<uz,

with ¢1 < cg minimizes By(0) for all 8 < 01 and for all 6 > 0, and it mazimizes
B(0) for all 6 € (01,02) subject to By(6;) = oy for i = 1,2 where a; = By, (0:). If
c1,C2,71, Y2 are chosen so that oy = as = «, then ¢g is UMP level a.

Lemma 5. Let v be a measure and pg,p1, - - -, Pn V-integrable functions. Put

1, po(x) > Z? 1 kipi(),
Po(x) = y(z), pol(w) = Zz 1 kipi(x),
0, pO(I) < Zzzl 1p1( )7

where 0 < y(z) <1 and k; are constants. Then ¢o minimizes [[1—¢(x)]po(z)v(dz)
subject to the constraints

/¢(x)pj (x)v(dx) < /¢0(:E)pj(x)u(dx), for j such that k; > 0,

/¢(x)pj (x)v(dx) > /¢0($)pj (x)v(dz), for j such that k; <0
Similarly
0, po(w) >y kipi(2),
go(x) = (@), polx) =X kipi(x),
1, po(w) < D21y kipi(®),

Then mazimizes [[1 — ¢(x)]po(z)v(dx) subject to the constraints

/¢($)pj v(dzx) /¢o z)p;(z)v(dx), for j such that k; > 0,
/¢(x)pj (x)v(dx) < /¢0(:E)pj(x)u(dx), for j such that k; <0

Proof. Use Lagrange multipliers. See Schervish pp. 246-247. O

Proof of Theorem. A one parameter exponential family has density fxjo(z | 0) =
h(z)c(0)e’ with respect to some measure v. Suppose we include h(x) in v (that is,
we define a new measure v/ with density h(z) with respect to v) so that the density
is c(6)e with respect to /. Then we abuse notation and write v for v/.

Let #; and 65 be as in the statement of the theorem and let 6, be another
parameter value. Define p;(z) = c(6;)e?® i = 0,1, 2.
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Suppose 6y € (01,62). On this region we want to maximize B4(6y) subject to
Bys(0:) = By, (6;). Note that By(0;) = [ ¢(x)pi(x)v(dz) and maximizing S,4(6o) is
equivalent to minimizing [[1 — ¢(z)]po(x)v(dz). It seems we want to apply the
Lemma with k1 > 0 and k2 > 0. Applying the Lemma gives the test maximizing
Bs(0o) as

L pol@) > X, kipile),
d(x) =3 ~(z), polz) =7, kipi(2),
0, po(z) < Yoiy kipi(w),
Note that

2
Z 6(91) _ 0(92) _
ki i 1 k (91 HQ)I k (92 90)1.
pole) = i pile) =M 60) ¢ " 2 e(00)°

Put b; = 6; — 6y and a; = k;c(6;)/c(6p), and we get
1> a1e™® + aqse®.

We want the break points to be ¢; and ¢z so we need to solve two equations
a1eM1 4 age?2et =1,
a1e"1% 4 qpe?e =1,

for a1,as. The solution exists (check yourself) and has a; > 0, az > 0 as required
(recall that we wanted k1,k2 > 0). So putting k; = a;c(0y)/c(0;) gives the right
choice of k; in the minimizing test. Since the minimizing § does not depend on 6y
we get the same test for all 6y € (01, 63).

For 6y < 61 or 6y > 62 we want to minimize 4(6p). This is done in a similar
way using the second part of the Lemma.

Some work also remains to show that one can choose ¢y, co, 1, v2 so that the test
has level a. We omitt the details. Full details are in the proof of Theorem 4.82, p.
249 in Schervish “Theory of Statistics”. O

Interval hypothesis. In this section we consider hypothesis of the form H : © €
[61,62] versus A : © ¢ [01,605], 61 < 02. This will be called an interval hypothesis.
Unfortunately there is not always UMP tests for testing H vs A. For an example
in the case of point hypothesis see Example 8.3.19 in Casella & Berger (p. 392). On
the other hand, comparing with the situation when the hypothesis and alternative
are interchanged, one could guess that the test ¢y = 1 — ¢o, with ¢y as in Theorem
26 is a good tests. One can show that this test satisfies a weaker criteria than UMP.

Definition 32. A test ¢ is unbiased level v if if has level a and if 84(6) > « for all
0 € Qa. If ¢ is UMP among all unbiased tests it is called UMPU (uniformly most
powerful unbiased) level a.

If Q C R¥, a test ¢ is called a-similar if B4(6) = o for each § € Qy N Qa.

Proposition 4. The following holds:

(i) If ¢ is unbiased level o and By is continuous, then ¢ is a-similar.
(ii) If ¢ is UMP level «, then ¢ is unbiased level a.
(ili) If By continuous for each ¢ and ¢o is UMP level o and a-similar then ¢
is UMPU.
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Proof. (i) By < a on Qp, By > a on Q4 and B4 continuous implies Sy = « on
QH n ﬁA.

(ii) Let ¢* = a. Since ¢ is UMP Sy > Byo = o on Q4. Hence ¢ is unbiased level
a.

(iii) Since ¢“ is a-similar and ¢ is UMP among a-similar tests we have Sy, >
By = a on 4. Hence ¢¢ is unbiased level . By continuity of 84 any o-similar
level o test ¢ is unbiased level o so B4, > B¢ on 4. Thus ¢g is UMPU. O

Theorem 27. Consider a one parameter exponential family with its natural pa-
rameter and the hypothesis H : © € [01,02] vs A: © & [01,05], 01 < 02. Let ¢ be
any test of H vs A. Then there is a test ¥ of the form

L, x¢(a,c),
1/)(513) = Vi, T = Cq,
0, x€(e1,c2),

such that By(0;) = By(0:), By(0) < By(0) on Qu and By(0) > By(0) on Q4.
Moreover, if By (0;) = «, then ¢ is UMPU level a.

Proof. Put oy = $4(;). One can find a test ¢g of the form in Theorem 3, Lecture 15,
such that B4, (0;) = 1—a; (we have not proved this in class, see Lemma 4.81, p. 248)
and then this ¢y minimizes the power function on (0o, 61) U (62, 00) and maximizes
it on (61, 02) among all tests ¢’ subject to By (6;) =1 — ;. But then, ¢p =1 — ¢
satisfies 5y (6;) = o; and maximizes the power function on (co,6:1) U (#2,00) and
minimizes it on (61, 602) among all test subject to the restrictions. This proves the
first part.

If By(0;) = «, then v is a-similar and hence ¢ is UMP level o among all a-
similar tests. For a one parameter exponential family (4 is continuous for all ¢ so
(iii) in the Proposition shows that ¢ is UMPU level a. O

Point hypothesis. In this section we are concerned with hypothesis of the form
H:0 =106 vs A: O # 0. Again it seems reasonable that tests of the form ¥ in
Theorem 27 are appropriate.

Theorem 28. Consider a one parameter exponential family with natural parameter
and Qg = {00}, Qa = Q\ {00} where Oy is in the interior of Q. Let ¢ be any test
of H vs A. Then there is a test of the form 1 in Theorem 27 such that
By (0o) = By (6o),
99 By (Bo) = 09 By (6) (18.2)

and for 0 # 6y, By(8) is mazimized among all tests satisfying the two equalities.
Moreover, If ¢ has size o and 0By (00) = 0, then it is UMPU level a.

Sketch of proof. First one need to show that there are tests of the form ¢ that
satisfies the equialities.
Put o = B4(6o) and v = 0954(0p). Let ¢, be the UMP level u test for testing
H:0>03vs A: 0 < 60y, and for 0 < u < « put
$u(@) = du(@) + 1 = d1-atu().
Note that, for each 0 < u < a,

By, (00) = By, (00) +1 = By oy (bo) =u+1-(1-a+u)=a.
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Then ¢!, has the right form, i.e. as in Theorem 27. The test ¢, = 1 — ¢1_o has
level o and is by construction UMP level « for testing H' : © = 6y vs A’ : © > 6.
Similarly ¢/, = ¢4 is UMP level « for testing H' : © = 6y vs A” : © < 6. We claim
that

(1) OaByr, (00) < < 0pBy; (0o)-
(i) uw > 094, (60) is continuous.

The first is easy to see intuitively in a picture. A complete argument is in Lemma
4.103, p. 257 in Schervish. The second is a bit involved and we omitt it here. See
p. 259 for details. From (i) and (ii) we conclude that there is a test of the form
(i.e. ¢, for some ug) that satisfies (18.2).

It remains to show that this test maximizes the power function among all level
a tests satisfying the restriction on the derivative. For any test n we have

908, (60) = 0 / n(2)e(®)e* v (d) lo=s,

X
= [ ta@)elto)a+ ¢ (00" v(dr)
= Ep, [Xn(X)] = By(60) Eo, [X],
where we used integration by parts in the last step. Hence, 0p5,(6) = 7 iff
Eoo[X1(X)] = v + aFy, [ X].
Note that the RHS does not depend on 5. For any 6; # 6y and put
po(x) = c(6r)e”
p1(z) = ¢(Bp)e?®
pa(z) = zc(fp)e?”.
Then

Eo[Xn(X)] = [ n(e)pa(a)v(da)

We know from last time (or Lemma 4.78, p. 247 using Lagrange multipliers) that
a test of the form

L polz) > 37 kapi(w),
no(z) =49 7(x), po(x)= Z?:l kipi(x),
0,  po(z) <7, kipi(x),

where 0 < y(z) < 1 and k; are constants, maximizes [ 7(z)po(z)v(dz) subject to
the constraints

/n(z)pi(x)u(dx) < /no(x)pi(:zr)y(d:r), for i such that k; > 0,

/n(m)pi(x)u(dx) > /no(x)pi(:v)l/(dac), for ¢ such that k; < 0.
That is, it maximizes 3, (61) subject to

Bn (90) < (Z)Bno (90)
Eg, [n(X)] < (=) Egy[n0(X)],

where the direction of the inequalities depend on k;.
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The test 1o corresponds to rejecting the hypothesis if
6(91_90)1 > ki1 + kox.

By choosing k1 and ko approprietly we can get a test of the form ¢ which is the
same for all 81 # 6.

Finally, we want to show that if the test is level o and 0g54(69) = 0, the the test
is UMPU level a.. For this we only need to show that dyB84(6o) = 0 is necessary for
the test to be unbiased. But this is obvious because, since the power function is
differentiable, if the derivative is either strictly positive or strictly then the power
function is less than « in some left- or right-neighborhood of 6. O

19. NUISANCE PARAMETERS

Suppose the parameter © is multidimensional © = (01,...,0%) and Qg is of
lower dimension than k, say d dimensional d < k, then the remaining parameters
are called nuisance parameters.

Let Py be a parametric family Py = { Py : 6 € Q}. Let G C Q) be a subparameter
space and Qo = {Py : 0 € G} be a subfamily of Py. Let ¥ be the parameter of the
family Qp.

Definition 33. If T is a sufficient statistic for ¥ in the classical sense, then a test
¢ has Neyman structure relative to G and T if Eg[¢(X) | T = t] is constant as a
function of ¢t Py-a.s. for all 8 € G.

Why is Neyman structure a good thing? It is because it sometimes enables a
procedure to obtain UMPU tests. Suppose that we can find statistic T such that
the distribution of X conditional on T has one-dimensional parameter. Then we
can try to find the UMPU test among all tests that have level a conditional on T.
Then this test will also be UMPU level o unconditionally.

There is a connection here with a-similar tests.

Lemma 6. If H is a hypothesis and Qo = {Py : 0 € QN Q4} and ¢ has Neyman
structure, then ¢ is a-similar.

Proof. Since
By (0) = Ep|o(X)] = Eg[Eo[o(X) | T1]
and Ey[¢(X) | T] is constant for ¢ € Qp N Q4 we see that B4(6) is constant on
QrNQa. O
There is a converse under some slightly stronger assumptions.

Lemma 7. If T is a boundedly complete sufficient statistic for the subparameter
space G C 2, then every a-similar test on G has Neyman structure relative to G

and T'.

Proof. By a-similarity Eg[E[¢(X) | T] —a] =0 for all § € G. Since T is boundedly
complete we must have E[¢p(X) | T] = a Pp-a.s. for all § € G. O

Now we can use this to find conditions when UMPU tests exists.

Proposition 5. Let G = Qy N Q4. Let I be an index set such that G = UG,
is a partition of G. Suppose there exists a statistic T that is boundedly complete
sufficient statistic for each subparameter space G;. Assume that the power function
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of every test is continuous. If there is a UMPU level a test ¢ among those which
have Neyman structure relative to G; and T for all i € I, then ¢ is UMPU level a.

Proof. From last time (Proposition 4(i)) we know that continuity of the power
function implies that all unbiased level « tests are a-similar. By the previous
lemma every a-similar test has Neyman structure. Since ¢ is UMPU level o among
all such tests it is UMPU level a. O

In the case of exponential families one can prove the following.

Theorem 29. Let X = (X1,..., X)) have a k-parameter exponential family with
0= (01,...,0;) and let U = (Xa,..., Xj).
(i) Suppose that the hypothesis is one-sided or two-sided concerning only ©1.
Then there is a UMP level a test conditional on U, and it is UMPU level
a.
(ii) If the hypothesis concerns only ©1 and the alternative is two-sided, then
there is a UMPU level « test conditional on U, and it is also UMPU level
a.

Proof. Suppose that the density is
k
Ixje(x | 0) = c(0)h(x) exp{z 0;x;}.
i=1

Let G = Qg N Q4. The conditional density of X given U = u = (x1,...,x) is
c(0)h(z)eX iz i h(x)efr

fc(@)h(x)62§:1 iwidy, [ h(x)ehr®1dey

This is a one-parameter exponential family with natural parameter ©;.

For the hypothesis (one- or two-sided) we have that G is either Go = {6 : §; = 69}
some 6 or the union Gy U Gy with Gy = {0 : 6; = 01}, G2 = {0 : 0, = 63}. The
parameter ¥ = (02, ...,0;) has a complete sufficient statistic U = (Xa, ..., Xj).

Let n be an unbiased level « test. Then by Proposition 4(i), n is a-similar on G,
G1, and Gs. By the previous lemma 7 has Neyman structure. Moreover, for every
test 1, 5,(8) = Eg[Eg[n(X) | U]] so a test that maximizes the conditional power
function uniformly for 8 € Q24 subject to contraints also maximizes the marginal
power function subject to the same contstraints.

For part (i) in the conditional problem given U = u there is a level « test
that maximizes the conditional power function uniformly on €4 subject to having
Neyman structure. Since every unbiased level a test has Neyman structure and
the power function is the expectation of the conditional power function ¢ is UMPU
level a.

For part (ii), if Qg = {6 : ¢1 < 01 < o} with ¢; < c¢g, then as above the
conditional UMPU level « test ¢ is also UMPU level a.

For a point hypothesis Qg = {6 : §; = 09} we must take partial derivative of
B,(0) with respect to 6, at every point in G. A little more work... O

le\G,U(Il | 0,u) =



