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Lecture 10

18.3. Two-sided hypothesis.

Definition 31. If H : Θ ≥ θ2 or Θ ≤ θ1 and A : θ1 < Θ < θ2, then the hypothesis
is two-sided. If H : θ1 ≤ Θ ≤ θ2 and A : Θ > θ2 or Θ < θ1, then the alternative is
two-sided.

Let us consider two-sided hypothesis.

Theorem 26 (c.f. Schervish, Thm 4.82, p. 249). In a one-parameter exponential

family with natural parameter Θ, if ΩH = (−∞, θ1] ∪ [θ2,∞) and ΩA = (θ1, θ2),
with θ1 < θ2 a test of the form

φ0(x) =







1, c1 < x < c2,
γi, x = ci,
0, c1 > x or c2 < x,

with c1 ≤ c2 minimizes βφ(θ) for all θ < θ1 and for all θ > θ2, and it maximizes

βφ(θ) for all θ ∈ (θ1, θ2) subject to βφ(θi) = αi for i = 1, 2 where αi = βφ0
(θi). If

c1, c2, γ1, γ2 are chosen so that α1 = α2 = α, then φ0 is UMP level α.

Lemma 5. Let ν be a measure and p0, p1, . . . , pn ν-integrable functions. Put

φ0(x) =







1, p0(x) >
∑n

i=1 kipi(x),
γ(x), p0(x) =

∑n
i=1 kipi(x),

0, p0(x) <
∑n

i=1 kipi(x),

where 0 ≤ γ(x) ≤ 1 and ki are constants. Then φ0 minimizes
∫

[1−φ(x)]p0(x)ν(dx)
subject to the constraints

∫

φ(x)pj(x)ν(dx) ≤

∫

φ0(x)pj(x)ν(dx), for j such that kj > 0,

∫

φ(x)pj(x)ν(dx) ≥

∫

φ0(x)pj(x)ν(dx), for j such that kj < 0

Similarly

φ̃0(x) =







0, p0(x) >
∑n

i=1 kipi(x),
γ(x), p0(x) =

∑n
i=1 kipi(x),

1, p0(x) <
∑n

i=1 kipi(x),

Then maximizes
∫

[1− φ(x)]p0(x)ν(dx) subject to the constraints
∫

φ(x)pj(x)ν(dx) ≥

∫

φ̃0(x)pj(x)ν(dx), for j such that kj > 0,

∫

φ(x)pj(x)ν(dx) ≤

∫

φ̃0(x)pj(x)ν(dx), for j such that kj < 0

Proof. Use Lagrange multipliers. See Schervish pp. 246-247. �

Proof of Theorem. A one parameter exponential family has density fX|Θ(x | θ) =

h(x)c(θ)eθx with respect to some measure ν. Suppose we include h(x) in ν (that is,
we define a new measure ν′ with density h(x) with respect to ν) so that the density
is c(θ)eθx with respect to ν′. Then we abuse notation and write ν for ν′.

Let θ1 and θ2 be as in the statement of the theorem and let θ0 be another
parameter value. Define pi(x) = c(θi)e

θix i = 0, 1, 2.
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Suppose θ0 ∈ (θ1, θ2). On this region we want to maximize βφ(θ0) subject to
βφ(θi) = βφ0

(θi). Note that βφ(θi) =
∫

φ(x)pi(x)ν(dx) and maximizing βφ(θ0) is
equivalent to minimizing

∫

[1 − φ(x)]p0(x)ν(dx). It seems we want to apply the
Lemma with k1 > 0 and k2 > 0. Applying the Lemma gives the test maximizing
βφ(θ0) as

φ(x) =







1, p0(x) >
∑2

i=1 kipi(x),

γ(x), p0(x) =
∑2

i=1 kipi(x),

0, p0(x) <
∑2

i=1 kipi(x),

Note that

p0(x) >

2
∑

i=1

kipi(x) ⇐⇒ 1 > k1
c(θ1)

c(θ0)
e(θ1−θ0)x + k2

c(θ2)

c(θ0)
e(θ2−θ0)x.

Put bi = θi − θ0 and ai = kic(θi)/c(θ0), and we get

1 > a1e
b1x + a2e

b2x.

We want the break points to be c1 and c2 so we need to solve two equations

a1e
b1c1 + a2e

b2c1 = 1,

a1e
b1c2 + a2e

b2c2 = 1,

for a1, a2. The solution exists (check yourself) and has a1 > 0, a2 > 0 as required
(recall that we wanted k1, k2 > 0). So putting ki = aic(θ0)/c(θi) gives the right
choice of ki in the minimizing test. Since the minimizing θ does not depend on θ0
we get the same test for all θ0 ∈ (θ1, θ2).

For θ0 < θ1 or θ0 > θ2 we want to minimize βφ(θ0). This is done in a similar
way using the second part of the Lemma.

Some work also remains to show that one can choose c1, c2, γ1, γ2 so that the test
has level α. We omitt the details. Full details are in the proof of Theorem 4.82, p.
249 in Schervish “Theory of Statistics”. �

Interval hypothesis. In this section we consider hypothesis of the form H : Θ ∈
[θ1, θ2] versus A : Θ /∈ [θ1, θ2], θ1 < θ2. This will be called an interval hypothesis.
Unfortunately there is not always UMP tests for testing H vs A. For an example
in the case of point hypothesis see Example 8.3.19 in Casella & Berger (p. 392). On
the other hand, comparing with the situation when the hypothesis and alternative
are interchanged, one could guess that the test ψ = 1− φ0, with φ0 as in Theorem
26 is a good tests. One can show that this test satisfies a weaker criteria than UMP.

Definition 32. A test φ is unbiased level α if if has level α and if βφ(θ) ≥ α for all
θ ∈ ΩA. If φ is UMP among all unbiased tests it is called UMPU (uniformly most
powerful unbiased) level α.

If Ω ⊂ R
k, a test φ is called α-similar if βφ(θ) = α for each θ ∈ ΩH ∩ ΩA.

Proposition 4. The following holds:

(i) If φ is unbiased level α and βφ is continuous, then φ is α-similar.

(ii) If φ is UMP level α, then φ is unbiased level α.
(iii) If βφ continuous for each φ and φ0 is UMP level α and α-similar then φ0

is UMPU.
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Proof. (i) βφ ≤ α on ΩH , βφ ≥ α on ΩA and βφ continuous implies βφ = α on

ΩH ∩ ΩA.
(ii) Let φα ≡ α. Since φ is UMP βφ ≥ βψα = α on ΩA. Hence φ is unbiased level
α.
(iii) Since φα is α-similar and φ0 is UMP among α-similar tests we have βφ0

≥
βψα = α on ΩA. Hence φ0 is unbiased level α. By continuity of βφ any α-similar
level α test φ is unbiased level α so βφ0

≥ βφ on ΩA. Thus φ0 is UMPU. �

Theorem 27. Consider a one parameter exponential family with its natural pa-

rameter and the hypothesis H : Θ ∈ [θ1, θ2] vs A : Θ /∈ [θ1, θ2], θ1 < θ2. Let φ be

any test of H vs A. Then there is a test ψ of the form

ψ(x) =







1, x /∈ (c1, c2),
γi, x = ci,
0, x ∈ (c1, c2),

such that βψ(θi) = βφ(θi), βψ(θ) ≤ βφ(θ) on ΩH and βψ(θ) ≥ βφ(θ) on ΩA.
Moreover, if βψ(θi) = α, then ψ is UMPU level α.

Proof. Put αi = βφ(θi). One can find a test φ0 of the form in Theorem 3, Lecture 15,
such that βφ0

(θi) = 1−αi (we have not proved this in class, see Lemma 4.81, p. 248)
and then this φ0 minimizes the power function on (∞, θ1)∪ (θ2,∞) and maximizes
it on (θ1, θ2) among all tests φ′ subject to βφ′(θi) = 1 − αi. But then, ψ = 1 − φ0
satisfies βψ(θi) = αi and maximizes the power function on (∞, θ1) ∪ (θ2,∞) and
minimizes it on (θ1, θ2) among all test subject to the restrictions. This proves the
first part.

If βψ(θi) = α, then ψ is α-similar and hence ψ is UMP level α among all α-
similar tests. For a one parameter exponential family βφ is continuous for all φ so
(iii) in the Proposition shows that ψ is UMPU level α. �

Point hypothesis. In this section we are concerned with hypothesis of the form
H : Θ = θ0 vs A : Θ 6= θ0. Again it seems reasonable that tests of the form ψ in
Theorem 27 are appropriate.

Theorem 28. Consider a one parameter exponential family with natural parameter

and ΩH = {θ0}, ΩA = Ω \ {θ0} where θ0 is in the interior of Ω. Let φ be any test

of H vs A. Then there is a test of the form ψ in Theorem 27 such that

βψ(θ0) = βφ(θ0),

∂θβψ(θ0) = ∂θβφ(θ0) (18.2)

and for θ 6= θ0, βψ(θ) is maximized among all tests satisfying the two equalities.

Moreover, If ψ has size α and ∂βψ(θ0) = 0, then it is UMPU level α.

Sketch of proof. First one need to show that there are tests of the form ψ that
satisfies the equialities.

Put α = βφ(θ0) and γ = ∂θβφ(θ0). Let φu be the UMP level u test for testing
H : Θ ≥ θ0 vs A : Θ < θ0, and for 0 ≤ u ≤ α put

φ′u(x) = φu(x) + 1− φ1−α+u(x).

Note that, for each 0 ≤ u ≤ α,

βφ′

u
(θ0) = βφu

(θ0) + 1− βφ1−α+u
(θ0) = u+ 1− (1− α+ u) = α.
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Then φ′u has the right form, i.e. as in Theorem 27. The test φ′0 = 1 − φ1−α has
level α and is by construction UMP level α for testing H ′ : Θ = θ0 vs A′ : Θ > θ0.
Similarly φ′α = φα is UMP level α for testing H ′ : Θ = θ0 vs A′′ : Θ < θ0. We claim
that

(i) ∂θβφ′

α
(θ0) ≤ γ ≤ ∂θβφ′

0
(θ0).

(ii) u 7→ ∂θβφu
(θ0) is continuous.

The first is easy to see intuitively in a picture. A complete argument is in Lemma
4.103, p. 257 in Schervish. The second is a bit involved and we omitt it here. See
p. 259 for details. From (i) and (ii) we conclude that there is a test of the form ψ
(i.e. φ′u0

for some u0) that satisfies (18.2).
It remains to show that this test maximizes the power function among all level

α tests satisfying the restriction on the derivative. For any test η we have

∂θβη(θ0) = ∂θ

∫

X

η(x)c(θ)eθxν(dx)|θ=θ0

=

∫

X

η(x)(c(θ0)x+ c′(θ0))e
θ0xν(dx)

= Eθ0 [Xη(X)]− βη(θ0)Eθ0 [X ],

where we used integration by parts in the last step. Hence, ∂θβη(θ0) = γ iff

Eθ0 [Xη(X)] = γ + αEθ0 [X ].

Note that the RHS does not depend on η. For any θ1 6= θ0 and put

p0(x) = c(θ1)e
θ1x

p1(x) = c(θ0)e
θ0x

p2(x) = xc(θ0)e
θ0x.

Then

Eθ0 [Xη(X)] =

∫

η(x)p2(x)ν(dx)

We know from last time (or Lemma 4.78, p. 247 using Lagrange multipliers) that
a test of the form

η0(x) =







1, p0(x) >
∑2

i=1 kipi(x),

γ(x), p0(x) =
∑2

i=1 kipi(x),

0, p0(x) <
∑2

i=1 kipi(x),

where 0 ≤ γ(x) ≤ 1 and ki are constants, maximizes
∫

η(x)p0(x)ν(dx) subject to
the constraints

∫

η(x)pi(x)ν(dx) ≤

∫

η0(x)pi(x)ν(dx), for i such that ki > 0,

∫

η(x)pi(x)ν(dx) ≥

∫

η0(x)pi(x)ν(dx), for i such that ki < 0.

That is, it maximizes βη(θ1) subject to

βη(θ0) ≤ (≥)βη0(θ0)

Eθ0 [η(X)] ≤ (≥) Eθ0 [η0(X)],

where the direction of the inequalities depend on ki.
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The test η0 corresponds to rejecting the hypothesis if

e(θ1−θ0)x > k1 + k2x.

By choosing k1 and k2 approprietly we can get a test of the form ψ which is the
same for all θ1 6= θ0.

Finally, we want to show that if the test is level α and ∂θβφ(θ0) = 0, the the test
is UMPU level α. For this we only need to show that ∂θβφ(θ0) = 0 is necessary for
the test to be unbiased. But this is obvious because, since the power function is
differentiable, if the derivative is either strictly positive or strictly then the power
function is less than α in some left- or right-neighborhood of θ0. �

19. Nuisance parameters

Suppose the parameter Θ is multidimensional Θ = (Θ1, . . . ,Θk) and ΩH is of
lower dimension than k, say d dimensional d < k, then the remaining parameters
are called nuisance parameters.

Let P0 be a parametric family P0 = {Pθ : θ ∈ Ω}. Let G ⊂ Ω be a subparameter
space and Q0 = {Pθ : θ ∈ G} be a subfamily of P0. Let Ψ be the parameter of the
family Q0.

Definition 33. If T is a sufficient statistic for Ψ in the classical sense, then a test
φ has Neyman structure relative to G and T if Eθ[φ(X) | T = t] is constant as a
function of t Pθ-a.s. for all θ ∈ G.

Why is Neyman structure a good thing? It is because it sometimes enables a
procedure to obtain UMPU tests. Suppose that we can find statistic T such that
the distribution of X conditional on T has one-dimensional parameter. Then we
can try to find the UMPU test among all tests that have level α conditional on T .
Then this test will also be UMPU level α unconditionally.

There is a connection here with α-similar tests.

Lemma 6. If H is a hypothesis and Q0 = {Pθ : θ ∈ ΩH ∩ΩA} and φ has Neyman

structure, then φ is α-similar.

Proof. Since

βφ(θ) = Eθ[φ(X)] = Eθ[Eθ[φ(X) | T ]]

and Eθ[φ(X) | T ] is constant for θ ∈ ΩH ∩ ΩA we see that βφ(θ) is constant on

ΩH ∩ ΩA. �

There is a converse under some slightly stronger assumptions.

Lemma 7. If T is a boundedly complete sufficient statistic for the subparameter

space G ⊂ Ω, then every α-similar test on G has Neyman structure relative to G
and T .

Proof. By α-similarity Eθ[E[φ(X) | T ]−α] = 0 for all θ ∈ G. Since T is boundedly
complete we must have E[φ(X) | T ] = α Pθ-a.s. for all θ ∈ G. �

Now we can use this to find conditions when UMPU tests exists.

Proposition 5. Let G = ΩH ∩ ΩA. Let I be an index set such that G = ∪i∈IGi
is a partition of G. Suppose there exists a statistic T that is boundedly complete

sufficient statistic for each subparameter space Gi. Assume that the power function
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of every test is continuous. If there is a UMPU level α test φ among those which

have Neyman structure relative to Gi and T for all i ∈ I, then φ is UMPU level α.

Proof. From last time (Proposition 4(i)) we know that continuity of the power
function implies that all unbiased level α tests are α-similar. By the previous
lemma every α-similar test has Neyman structure. Since φ is UMPU level α among
all such tests it is UMPU level α. �

In the case of exponential families one can prove the following.

Theorem 29. Let X = (X1, . . . , Xk) have a k-parameter exponential family with

Θ = (Θ1, . . . ,Θk) and let U = (X2, . . . , Xk).

(i) Suppose that the hypothesis is one-sided or two-sided concerning only Θ1.

Then there is a UMP level α test conditional on U , and it is UMPU level

α.
(ii) If the hypothesis concerns only Θ1 and the alternative is two-sided, then

there is a UMPU level α test conditional on U , and it is also UMPU level

α.

Proof. Suppose that the density is

fX|Θ(x | θ) = c(θ)h(x) exp{

k
∑

i=1

θixi}.

Let G = ΩH ∩ΩA. The conditional density of X1 given U = u = (x1, . . . , xk) is

fX1|Θ,U (x1 | θ, u) =
c(θ)h(x)e

∑
k

i=1
θixi

∫

c(θ)h(x)e
∑

k

i=1
θixidx1

=
h(x)eθ1x1

∫

h(x)eθ1x1dx1
.

This is a one-parameter exponential family with natural parameter Θ1.
For the hypothesis (one- or two-sided) we have thatG is eitherG0 = {θ : θ1 = θ01}

some θ01 or the union G1 ∪ G1 with G1 = {θ : θ1 = θ11}, G2 = {θ : θ1 = θ21}. The
parameter Ψ = (Θ2, . . . ,Θk) has a complete sufficient statistic U = (X2, . . . , Xk).

Let η be an unbiased level α test. Then by Proposition 4(i), η is α-similar on G0,
G1, and G2. By the previous lemma η has Neyman structure. Moreover, for every
test η, βη(θ) = Eθ[Eθ[η(X) | U ]] so a test that maximizes the conditional power
function uniformly for θ ∈ ΩA subject to contraints also maximizes the marginal
power function subject to the same contstraints.

For part (i) in the conditional problem given U = u there is a level α test
that maximizes the conditional power function uniformly on ΩA subject to having
Neyman structure. Since every unbiased level α test has Neyman structure and
the power function is the expectation of the conditional power function φ is UMPU
level α.

For part (ii), if ΩH = {θ : c1 ≤ θ1 ≤ c2} with c1 < c2, then as above the
conditional UMPU level α test φ is also UMPU level α.

For a point hypothesis ΩH = {θ : θ1 = θ01} we must take partial derivative of
βη(θ) with respect to θ1 at every point in G. A little more work... �


