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LECTURE 11

20. LIKELIHOOD RATIO TESTS

When no UMP or UMPU tests exists one sometimes consider likelihood ratio
tests (LR). You consider the likelihood ratio

SUPgeq, fxjo(X |0)

LR = .
SUPpeq fxjo(X | )

To test a hypothesis you reject H if LR < c¢ for some number c¢. One chooses
¢ so that the test has a certain level a. The difficulty is often that to find the
appropriate ¢ we need to know the distribution of LR. This can be difficult.

21. P-VALUES

In the Bayesian framework pg|x (g | ) gives the posterior probability that the
hypothesis is true given the observed data. This is quite useful information when
one is interested to know more than just if the hypothesis should be rejected or
not. For instance, if the hypothesis is rejected one could ask if the hypothesis was
close to being not rejected and the other way around. In the Bayesian setting we
get quite explicit information of this kind. In the classical framework there is no
such simple way to quantify how well the data supports the hypothesis. However,
in many situations the set of a-values such that the level a test would reject H will
be an interval starting at some lower value p and extending to 1. In that case this
p will be called the P-value.

Definition 34. Let H be a hypothesis. Let I" be a set indexing non-randomized
tests of H. That is, {¢4 : v € '} are non-randomized tests of H. For each 7 let
©(7) be the size of the test ¢,. Then

pu(r) = inf{e(y) : ¢, (z) = 1},
is called the P-value of x for the hypothesis H.
Example 28. Suppose X ~ N(0,1) given © = § and H : © € [-1/2,1/2]. The
UMPU level « test of H is ¢q(x) = 1 if |z| > ¢, for some number c¢,. Suppose we

observe X = x = 2.18. The test ¢, will reject H iff 2.18 > ¢,. Since ¢, increases
as « decreases, the P-value is that a such that ¢, = 2.18. That is,

pi(2.18) = inf{p(7) : 6(2.18) = 1}
=inf{ sup By (0):c, <2.18}

0e[—1/2,1/2]
= sup fy, (0) st c, =218
0e[—1/2,1/2]
= sup 1-—®(218-0)+ ®(—-2.18—10)
0e[—1/2,1/2]

1 — ®(1.68) + ®(—2.68) = 0.0502.

It is tempting to think of P-values as if it were the probability that the hypothesis
is true. This interpretation can sometimes be motivated. One example is the
following.
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Example 29. Suppose X ~ Bin(n,p) given P = p and let H : P < py. The UMP
level « test rejects H when X > ¢, where ¢, increases as a decreases. The P-value
of an observed zx is the value of « such that ¢, = x — 1 unless 2 = 0 in which case
the P-value is equal to 1. In mathematical terms the P-value is

pu(r) = inf{e(y) : ¢,(z) =1}
inf{sup By, (p) : ¢y < x}

P<po
— (n i n—i
= sup » (.)p(l—p)
p<poj_, \!
— (n i n—i
=3 (5)bea -

Note that py(0) = 1. To see how this can correspond to the probability that the
hypothesis is true, consider an improper prior of the form Beta(0,1). Then the
posterior distribution of P would be Beta(z,n +1 — ). If x > 0 the posterior
probability that H is true is P(Y < po) where Y ~ Beta(xz,n + 1 — z). Note that
Y is the distribution of the xth order statistic from n IID uniform (0,1) variables
and hence

P(Y < pg) = P(x out of n IID U(0, 1) variables less than pg)

_ i <7Z> Ph(L— po)™™ = prr(a).

Hence, py () is the posterior probability that the hypothesis is true for this choice
of prior.

The usual interpretation of P-values is that the P-value measures the “degree
of support” for the hypothesis based on the observed data x. However, one should
be aware of that P-values does not always behave in a nice way.

Example 30. Consider Example 1 but with the hypothesis H' : © € [—0.82,0.52].
Note that Qp D Qg. The UMPU level « test is ¢o(z) = 1 if | 4+ 0.15] > dq. If
X =2 = 2.18 then d, = 2.33 and

pr(2.18) = ®(—3) + 1 — ®(1.66) = 0.0498.

This is smaller than py(2.18)!!! Hence, if we interpret the P-value as the “degree
of support” for the hypothesis then the degree of support for H’ is less than the
degree of support for H. But this is rediculus because Qg D Qpg. This shows that
it is not always easy to interpret P-values.

22. SET ESTIMATION

We start with the classical notion of set estimation. Suppose we are interested in
a function g(©). The idea of set estimation is, given an observation X = z, to find
a set R(z) that contains the true value g(#). Typically, we want the probability
Pr(g(f) € R(X) | © = 6) to be high.

Definition 35. Let g : 2 — G be a function, n the collection of all subsets of G
and R : X — n a function. The function R is a coeffecient v confidence set for g(©)
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if for every 0 € €,
{z: ¢g(#) € R(xz)} is measurable, and Pr(g(f) € R(X)|© =0) > ~.
The confidence set R is exact if Pr(g(f) € R(X) | © =0) = . If infgcq Pr(g(0) €
R(X) | © = 0) > v the confidence set is conservative.
The interpretation of a level v confidence set R is the following.
e For any value of 0, if the experiment of generating X from fxe(- | 0) is re-
peated many times, the confidence set R(X) will contain the true parameter
9(0) a fraction v of the time.
The relation between hypothesis testing and confidence sets is seen from the
following theorem.
Theorem 30 (c.f. Casella & Berger Thm 9.2.2 p. 421). Let g : 2 — G be a
function.

e For each y € G, let ¢, be a level a nonrandomized test of H : g(©) = y.
Let R(x) = {y : ¢,(x) = 0}. Then R is a coefficient 1 — a confidence set
for g(©). The confidence set R is exact if and only if ¢, is a-similar for
all y.

e Let R be a coefficient 1 — v confidence level set for g(©). For each y € G,
let

¢y(r) = H{y ¢ R(x)}.
Then, for each y, ¢y has level a as a test of H : g(©) = y. The test ¢, is
a-similar for all y if and only if R is exact.

Proof. Let ¢, be a nonrandomized level « test. Then ¢, : X — {0, 1} is measurable
for each y, because the corresponding decision rule is measurable. Hence the set

{z:9(0) € R(2)} = {x: ¢g(0)(x) = 0} = 65, ({0})
is measurable. Moreover,
Pr(g(0) € R(X) | © = ) = Pr(6,0)(X) = 0| © = 6)
=1—Pr(¢ge)(X)=1|6=10)
=1 —[3%(9)(9) >1—«
with equality iff B4, , (0) = a. That is, there is equality iff ¢y is a-similar. This

proves the first part.
Let R be a coefficient 1 — a confidence set and ¢, (z) = I{y ¢ R(x)} . Then

¢g_(19)({0}) ={z: ¢g0)(z) =0} = {z: g(0) € R(z)}

which is measurable. Hence ¢ (g) is measurable and then the corresponding decision
rule is measurable. Moreover,

ﬁd’g(e) (9) = Pr((bg(e)(X) =1 | 0= 6‘)
=1- Pr(d)q(g)(X) = 0 | @ = 9)
=1—-Pr(g9(f) e R(X)|©=0) <.

We have equality in the last step iff R is exact, and this is the same as ¢4(9) being
a-similar. 0
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Example 31. Let X7, ..., X, be conditionally IID N(u, 02) given (M, X) = (m, o).
Let X = (X1,...,X,). The UMPU level o test of H : M = y is ¢, = 1 if
V(@ —y)/s > T, (1—a/2) where T,,_; is the cdf of a student-t distribution with
n — 1 degrees of freedom. This translates into the confidence interval [T — T, * (1 —

0/2)s/ VAT + Ty (1 - a/2)s/ .

One can suspect that there is an analog of UMP tests for confidence sets. The
corresponding concept is called UMA (uniformly most accurate) confidence set.

Definition 36. Let g : 2 — G be a function and R a coefficient vy confidence set for
9(©). Let B : G — n be a function such that y ¢ B(y). Then R is uniformly most
accurate (UMA) coefficient v against B if for each § € © and each y € B(g(f)) and
each coefficient v confidence set T for g(©)

Prlye R(X)|©=0)<Pr(yeT(X)| O =0).

For y € G, the set B(y) can be thought of a set of points that you don’t want to
include in the confidence set. The condition above says that for y € B(g(6)) (we
don’t want y in the confidence set) the probability that the confidence set contains
y is smaller if we use R than with any other level o confidence set T'.

Note also that the condition y ¢ B(y) implies that g(f) ¢ B(g(6)). We would
like the true value g(#) to be in the confidence set so it should not be in B(g(#)).

Now we can see how UMP tests are related to UMA confidence sets.

Theorem 31. Let g(6) = 0 for all 6 and let B : Q — n be as in Definition 36. Put
B7Y0) ={y: 0 € B(y)}.

Suppose B=1(0) is nonempty for each 0. For each 0, let ¢y be a test and R(z) =
{y: ¢y(x) = 0}. Then ¢g is UMP level o for testing H:© =6 vs A: © € B~1(0)
for all 6 if and only if R is UMA coefficient 1 — a randomized against B.

Proof. Suppose first that for each 8, ¢g is UMP level « for testing H vs A. Let T
be another coeflicient 1 — o randomized confidence set. Let 6 € Q and y € B(9).
We need to show that

Py(y € R(X)) < Py(y € T(X)).

First we can observe that § € B~!(y). Define ¢(z) = I(y ¢ T(x)). This test has
level « for testing H' : © =y vs A’ : © € B~1(y). Since ¢, is UMP for H' vs A’ it
follows that B, (6) < B4, (0). That is,

Py(y € R(X)) =1—P(y ¢ R(X)) =1— Ep(X) =1—Bs,(0)
S1-=By(0) =1-Epp(X) =1-Py(y ¢ T(X)) = Po(y € T(X)).
This shows the desired inequality.

For the other direction suppose R is UMA coefficient 1—«a randomized confidence
set against B. For § € Q let 19 be a level « test of H and put T'(z) = {y : ¢¥y(x) =
0}. Then T is a coefficient 1 — « confidence set. Put

O ={(y.0):ycQ0€By)}={y0):0cyeB (O}

For each (0,y) € ' we know Py(f € R(X)) < Py(# € T(X)). By the calculation
above this is equivalent to By, (y) > By, (y) for all § € Q and all y € B~1(). That
is, ¢g is UMP level o for H vs A. O
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The theorem shows how to get a UMA confidence set from a UMP test. Nev-
ertheless, one has to be careful when constructing confidence sets. See Example
5.57, p. 319 in Schervish. This example shows that in some situations a naive
computation of the UMP level « test and the corresponding UMA confidence set
can sometimes be inadequate.

22.1. Prediction sets. One attempt to do predictive inference in the classical
setting is the following.

Definition 37. Let V : S — V) be a random quantity. Let n be all subsets of Vg
and R : X — n a function. If

{(z,v) : v € R(z)} is measurable, and Pr(V € R(X)|© =60) > ~, for each § € Q,
then R is called a coefficient ~ prediction set for V.

22.2. Bayesian set estimation. In the Bayesian setting we can, given a set
R(x) C G compute the posterior probability Pr(g(©) € R(z) | X = x). However,
to construct confidence sets we should go the other way and specify a coefficient ~y
and then construct R to have this probability. There can be many such sets. To
choose between them one usually argues according to one of the following:
e Determine a number ¢ such that T'= {6 : fox(0 | ) > t} satisfies Pr(© €
T | X =) =+. This is called the highest posterior density region (HDP).
e If O C R and a bounded interval is desired, choose the endpoints to be the
(1 —~v)/2 and (1 + v)/2 quantiles of the posterior distribution of ©.

Sometimes (for instance in Casella & Berger) such sets are called credibility sets.



