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Lecture 2

3. Some common distributions in classical and Bayesian statistics

3.1. Conjugate prior distributions. In the Bayesian setting it is important to
compute posterior distributions. This is not always an easy task. The main diffi-
culty is to compute the normalizing constant in the denominator of Bayes theorem.
However, for certain parametric families P0 = {Pθ : θ ∈ Ω} there are convenient
choices of prior distributions. Particularly convenient is when the posterior belongs
to the same family of distributions as the prior. Such families are called conjugate
families.

Definition 1. Let F denote a class of probability densities f(x | θ). A class Π of
prior distributions is a conjugate family for F if the posterior distribution is in the
class Π for all f ∈ F , all priors in Π, and all x ∈ X .

(See Exercise 7.22, 7.23, 7.24 in Casella & Berger)

Example 4 (Casella & Berger, Example 7.2.14). Let X1, . . . , Xn be IID Ber(θ)
given Θ = θ and put Y =

∑n
i=1 Xi. Then Y ∼ Bin(n, θ). Let the prior distribution

be Beta(α, β). Then the posterior of Θ given Y = y is Beta(y + α, n− y + β).
The joint density is

fY,Θ(y, θ) = fY |Θ(y | θ)fΘ(θ)

=

(

n

y

)

θy(1− θ)n−y Γ(α+ β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1

=

(

n

y

)

Γ(α+ β)

Γ(α)Γ(β)
θy+α−1(1− θ)n−y+β−1.

The marginal density of Y is

fY (y) =

∫ 1

0

fY,Θ(y, θ)dθ

=

(

n

y

)

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

θy+α−1(1− θ)n−y+β−1dθ

=

(

n

y

)

Γ(α+ β)

Γ(α)Γ(β)

Γ(y + α)Γ(n− y + β)

Γ(n+ α+ β)

(this distribution is known as the Beta-binomial distribution). The posterior is
then computed as

fΘ|Y (θ | y) = fY,Θ(y, θ)

fY (y)
=

Γ(n+ α+ β)

Γ(y + α)Γ(n− y + β)
θy+α−1(1− θ)n−y+β−1.

This is the density of the Beta(y + α, n− y + β) distribution.

4. Exponential families

Exponential families of distributions are perhaps the most widely used family of
distributions in statistics. It contains most of the common distributions that we
know from undergraduate statistics.
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Definition 2. A parametric family of distributions P0 = {Pθ : θ ∈ Ω} with
parameter space Ω and conditional density fX|Θ(x | θ) with respect to a measure
ν is called an exponential family if

fX|Θ(x | θ) = c(θ)h(x) exp
{

k
∑

i=1

πi(θ)ti(x)
}

for some measurable functions c, h, π1, . . . , πk, t1, . . . , tk, and some integer k.

Example 5. If X are conditionally IID Exp(θ) given Θ = θ then it follows that
fX|Θ(x | θ) = θ−n exp{−θ−1

∑n
i=1 xi} so this is an one-dimensional exponential

family with c(θ) = θ−n, h(x) = 1, π(θ) = 1/θ, and t(x) = x1 + · · ·+ xn.

Example 6. If X are conditionally IID Ber(θ), then with m = x1 + · · ·+ xn, we
have

fX|Θ(x | θ) = θm(1− θ)n−m = (1− θ)n
( θ

1− θ

)m

= (1− θ)n exp
{

log
( θ

1− θ

)

m
}

.

so this is also a one-dimensional exponential family with c(θ) = (1− θ)n, h(x) = 1,
π(θ) = log(θ/(1− θ)), and t(x) = x1 + · · ·+ xn.

There are many other examples as the Normal, Poisson, Gamma, Beta distribu-
tions (see Casella & Berger, Exercise 3.28, p. 132).

Note that the function c(θ) can be thought of as a normalizing function to make
fX|Θ a probability density. It is necessary that

c(θ) =
(

∫

X
h(x) exp

{

k
∑

i=1

πi(θ)ti(x)
}

ν(dx)
)−1

so the dependence on θ comes through the vector (π1(θ), . . . , πk(θ)) only. It is
useful to have a name for this vector; it will be called the natural parameter.

Definition 3. For an exponential family the vector Π = (π1(Θ), . . . , πk(Θ)) is
called the natural parameter and

Γ =
{

π ∈ R
k :

∫

X
h(x) exp

{

k
∑

i=1

πiti(x)
}

ν(dx) < ∞
}

the natural parameter space.

When we deal with an exponential family it is convenient to use the notation Θ =
(Θ1, . . . ,Θk) for the natural parameter and Ω for the parameter space. Therefore
we will often write

fX|Θ(x | θ) = c(θ)h(x) exp
{

n
∑

i=1

θiti(x)
}

(4.1)

and Ω for the natural parameter space Γ and hope that this does not cause confu-
sion.

For an example on how to write the normal distribution as an exponential family
with its natural parametrisation see Examples 3.4.4 and 3.4.6, pp. 112-113 in Casella
& Berger.
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4.1. Conjugate priors for exponential families. Let us take a look at conjugate
priors for exponential families. Suppose that the conditional distribution of X =
(X1, . . . , Xn) given Θ = θ forms a natural exponential family (4.1). We will look
for a “natural” family of priors that serves as conjugate priors. If fΘ(θ) is a prior
(w.r.t. a measure ρ on Ω) then the posterior has density

fΘ|X(θ | x) = fX|Θ(x | θ)fΘ(θ)
∫

Ω
fX|Θ(x | θ)fΘ(θ)ρ(dθ)

=
c(θ)e

∑
k

i=1
θiti(x)fΘ(θ)

∫

Ω c(θ)e
∑

k

i=1
θiti(x)fΘ(θ)ρ(dθ)

.

Then a natural choice for the conjugate family is densities of the form

fΘ(θ) =
c(θ)αe

∑
k

i=1
θiβi

∫

Ω
c(θ)αe

∑
k

i=1
θiβiρ(dθ)

,

where α > 0 and β = (β1, . . . , βk).
Indeed, the posterior is then proportional to

c(θ)α+1 exp
{

k
∑

i=1

θi(ti(x) + βi)
}

which is of the same form as the prior (after putting in the right normalizing
constant). Note that the posterior is an exponential family with natural parameter
ξ = t+ β and representation

c′(ξ)h′(θ) exp
{

k
∑

i=1

ξiθi

}

,

where h′(θ) = c(θ)α+1 and c′(ξ) is the normalizing constant to make it a probability
density.

Example 7. Take another look at the family of n iid Ber(p) variables (see Example
6. The natural parameter is θ = log(p/1−p) and then c(θ) = (1−p)n = (1+eθ)−n.
Then the proposed conjugate prior is proportional to

c(θ)αeθβ = (1 − p)αnpβ(1− p)−β = pβ(1− p)αn−β

which is a Beta(β + 1, αn − β + 1) distribution (when you put in the normaliza-
tion). So again we see that Beta-distributions are conjugate priors for IID Bernoulli
random variables (here α and β are not the same as in Example 4, though).

4.2. Some properties of exponential families. The random vector T (X) =
(t1(X), . . . , tk(X)) is of great importance for exponential families. We can compute
the distribution and density of T with respect to a measure ν′T to be introduced.

Suppose Pθ ≪ ν for all θ with density fX|Θ as above. Let us write

g(θ, T (x)) = c(θ) exp
{

k
∑

i=1

θiti(x)
}

,

so fX|Θ(x | θ) = h(x)g(θ, T (x)). Write T for the space where T takes its values

and C for the σ-field on T . Introduce the measure ν′(B) =
∫

B h(x)ν(dx) for B ∈ B
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and ν′T (C) = ν′ ◦ T−1(C) for C ∈ C. Then we see that

µT |Θ(C | θ) = µX|Θ(T
−1C | θ)

=

∫

T−1C

fX|Θ(x | θ)ν(dx)

=

∫

T−1C

g(θ, T (x))ν′(dx)

=

∫

C

g(θ, t)ν′T (dt).

Hence, µT |Θ(· | θ) has a density g(θ, t) with respect to ν′T . This is nothing but
rewriting the density of an exponential family but it truns out to be useful when
studying properties of an exponential family.

In concrete situations one may identify what ν′T is. Here is an example.

Example 8. Consider the exponential family of n IID Exp(θ) random variables as
in Example 5. Then t(x) = x1 + · · · + xn and T = t(X) has Γ(n, θ) distribution.
Thus, T has density w.r.t. Lebesgue measure which is

fT |Θ(t | θ) = θ−ne−t/θ t
n−1

Γ(n)
.

In this case we can identify c(θ) = θ−n and hence g(θ, t) = θ−ne−t/θ and ν′T must
have density tn−1/Γ(n) w.r.t. Lebesgue measure. This is also possible to verify
another way. Since ν′T (B) = ν(T−1B) where ν is Lebesgue measure we see that

ν′T ([0, t]) = ν{x ∈ [0,∞)n : 0 ≤ x1 + · · ·+ xn ≤ t}

=

∫

0≤x1+···+xn≤t

dx1 . . . dxn = tn/n!.

Differentiating this w.r.t. t gives the density tn−1/Γ(n) with respect to Lebesgue
measure (Recall that Γ(n) = (n− 1)!).

Theorem 2. The moment generating function MT (u) of T for an exponential

family is given by

MT (u) = MT (u1, . . . , uk) =
c(θ)

c(u+ θ)
.

Proof. Since

c(θ) =
(

∫

X
h(x) exp

{

k
∑

i=1

θiti(x)
}

ν(dx)
)−1

=
(

∫

T
exp

{

k
∑

i=1

θiti

}

ν′T (dt)
)−1

it follows that

MT (u) = Eθ

[

exp
{

k
∑

i=1

uiTi

}]

=

∫

T
exp

{

k
∑

i=1

uiti

}

c(θ) exp
{

k
∑

i=1

θiti

}

ν′T (dt) =
c(θ)

c(u+ θ)
.

�
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Hence, whenever θ is in the interior of the parameter space all moments of T are
finite and can be computed. We call the function

κ(θ) = − log c(θ)

the cumulant function. The cumulant function is useful to compute moments of
T (X).

Theorem 3. For an exponential family with cumulant function κ we have

Eθ[Ti] =
∂

∂θi
κ(θ),

covθ(Ti, Tj) =
∂2

∂θi∂θj
κ(θ).

Proof. For the mean we have

Eθ[Ti] =
∂

∂ui
MT (u)

∣

∣

∣

u=0

=
∂

∂ui

c(θ)

c(u+ θ)

∣

∣

∣

u=0

= −
∂
∂θi

c(θ)

c(θ)

= − ∂

∂θi
log c(θ).

The proof for the covariance is similar. �

Theorem 4. The natural parameter space Ω of an exponential family is convex

and 1/c(θ) is a convex function.

Proof. Let θ1 = (θ11, . . . , θ1k) and θ2 = (θ21, . . . , θ2k) be points in Ω and λ ∈ (0, 1).
Then, since the exponential function is convex

1

c(λθ1 + (1 − λ)θ2)
=

∫

X
h(x) exp{

n
∑

i=1

[λθ1i + (1 − λ)θ2i]ti(x)}ν(dx)

≤
∫

X
h(x)[λ exp{

n
∑

i=1

θ1iti(x)} + (1 − λ) exp{
n
∑

i=1

θ2iti(x)}ν(dx)

= λ
1

c(θ1)
+ (1− λ)

1

c(θ2)
.

Hence, 1/c is convex. Since θ ∈ Ω if 1/c(θ) < ∞ it follows also that λθ1+(1−λ)θ2 ∈
Ω. Thus, Ω is convex. �

4.3. Exponential tilting. Let X be a random variable with moment generating
function M(u) = E[euX ] < ∞. Then the probability distribution given by

Pu(B) =
E[euXI{X ∈ B}]

M(u)
,

is called an exponentially tilted distribution. If X has a density f w.r.t. a measure
ν then Pu has density w.r.t. ν given by

fu(y) =
euyf(y)

M(u)
.
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Now, if f(y) is the density of a natural exponential family, f(y) = c(θ)h(y) exp{θy},
then the density of the exponentially tilted distribution is

fu(y) =
euyf(y)

M(u)
=

c(θ)h(y) exp{(θ + u)y}
c(θ)/c(θ + u)

= c(θ + u)h(y) exp{(θ + u)y}.

Hence, for an exponential family, exponential tilting by u is identical to shifting the
parameter by u.

This also suggests how to construct exponential families; start with a probability
distribution µ with density f and consider the family of all exponential tilts. This
forms an exponential family. Indeed, if we tilt f by θ the resulting density is

fθ(x) =
1

M(θ)
f(y) exp{θy},

so putting c(θ) = 1/M(θ) and h(y) = f(y) yields the representation of a natural
exponential family.

4.4. Curved exponential family. Consider for example the family {N(θ, θ2); θ ∈
R}. Is this an exponential family? Let us check.

The density is given by

fX|Θ(x | θ) = 1√
2πθ

exp
{

− 1

2θ2
(x− θ)2

}

=
1√
2πθ

exp
{

− 1

2

}

exp
{

− x2

2θ2
+

x

θ

}

.

This is an exponential family with π1(θ) = 1/(2θ2) and π2(θ) = 1/θ. Hence, the
natural parameter π = (π1, π2) can only take values on a curve. Such a family will
be called a curved exponential family.

Definition 4. A parametric family of distributions P0 = {Pθ : θ ∈ Ω} with
parameter space Ω is called a curved exponential family if it is an exponential
family, i.e.

fX|Θ(x | θ) = c(θ)h(x) exp
{

k
∑

i=1

πi(θ)ti(x)
}

,

and the dimension d of the vector θ satisfies d < k.
If d = k the family is called a full exponential family.

5. Location-scale families

In the last section we saw that exponential families are generated by starting
with a particular density and then considering the family of all exponential tilts.
In this section we will see what happens if we instead of exponential tilts simply
shift and scale the random variable, i.e. we do linear transformations.

Exercise: Let X have a probability density f . Consider Y = σX + µ for some
σ > 0 and µ ∈ R. What is the density of Y ?

Theorem 5. Let f be a probability density and µ and σ > 0 be constants. Then

g(x | µ, σ) = 1

σ
f
(x− µ

σ

)

dx

is a probability density.
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Proof. Casella and Berger p. 116.. �

Definition 5. Let f be a probability density.

(i) The family of probability densities {f(x − µ);µ ∈ R} is a location family

with location parameter µ.
(ii) The family of probability densities {f(x/σ)/σ;σ > 0} is a scale family with

scale parameter σ.
(iii) The family of probability densities {f((x − µ)/σ)/σ;µ ∈ R, σ > 0} is a

location-scale family with location parameter µ and scale parameter σ.

Example 9. The family of normal distributions N(µ, σ) is a location-scale family.
Indeed, with ϕ being the standard normal density,

ϕµ,σ(x) =
1

σ
√
2π

exp{−(x− µ)2/(2σ2)} =
1

σ
ϕ((x − µ)/σ))

Before getting deeper into the fundamentals of statistics we take a look at some
distributions that appear frequently in statistics. These distributions will provide
us with examples throughout the course.
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Additional material that you probably know...

5.1. Normal, Chi-squared, t, and F . Here we look at some common distribu-
tions and their relationship. From elementary statistics courses it is known that
the sample mean

X̄n =
1

n

n
∑

i=1

Xi

of IID random variables X1, . . . , Xn can be used to estimate the expected value
EXi and that the sample variance

S2 =
1

n− 1

n
∑

i=1

(Xi − X̄)2

is used to estimate the variance Var(Xi).
The distribution of X̄n and S is important in the construction of confidence

intervals and hypothesis tests. The most popular situation is when X1, . . . , Xn are
IID N(µ, σ2). The following result may be familiar.

Lemma 1. Let X1, . . . , Xn be IID N(µ, σ2). Then, X̄ and S2 are independent and

X̄ ∼ N(µ, σ2/n), (5.1)

(n− 1)S2

σ2
∼ χ2(n− 1), (5.2)

X̄ − µ

S/
√
n

∼ t(n− 1). (5.3)

Moreover, if X̃1, . . . , X̃m is IID N(µ̃, σ̃2) and independent of X1, . . . , Xn, then

S2

σ2
· σ̃

2

S̃2
∼ F (n− 1,m− 1). (5.4)

It is a good exercise to prove the above lemma. If you get stuck, Section 5.3
in Casella & Berger contains the proof.

As a reminder we will show how Lemma 1 is used in undergraduate statistics.
Suppose we have a sample X = (X1, . . . , Xn) that have IID N(µ, σ2) distribution.

5.1.1. Confidence interval for µ with σ known. If we estimate µ by X̄n and σ is
known, then we can use (5.1) to derive a (1 − α)-confidence interval for µ of the
form X̄n ± σ√

n
zα/2, where zα is such that Φ(zα) = 1− α. Indeed,

Pµ

(

X̄n − σ√
n
zα/2 ≤ µ ≤ X̄n +

σ√
n
zα/2

)

= Pµ

(

− zα/2 ≤ X̄n − µ

σ
√
n

≤ zα/2

)

= 1− α.

5.1.2. Confidence interval for µ with σ unknown. If we estimate µ by X̄n and σ is
unknown, then we can estimate σ by S and use (5.3) to derive a (1−α)-confidence
interval for µ of the form X̄n ± S√

n
tα/2, where tα is such that t(zα) = 1 − α and

t(x) is the cdf of the t-distribution with n− 1 degrees of freedom. Indeed,

Pµ,σ

(

X̄n − S√
n
tα/2 ≤ µ ≤ X̄n +

S√
n
tα/2

)

= Pµ,σ

(

− tα/2 ≤ X̄n − µ

S
√
n

≤ tα/2

)

= 1− α.


