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LECTURE 2

3. SOME COMMON DISTRIBUTIONS IN CLASSICAL AND BAYESIAN STATISTICS

3.1. Conjugate prior distributions. In the Bayesian setting it is important to
compute posterior distributions. This is not always an easy task. The main diffi-
culty is to compute the normalizing constant in the denominator of Bayes theorem.
However, for certain parametric families Py = {Pp : § € Q} there are convenient
choices of prior distributions. Particularly convenient is when the posterior belongs
to the same family of distributions as the prior. Such families are called conjugate
families.

Definition 1. Let F denote a class of probability densities f(x | §). A class IT of
prior distributions is a conjugate family for F if the posterior distribution is in the
class II for all f € F, all priors in I, and all z € X.

(See Exercise 7.22, 7.23, 7.24 in Casella & Berger)

Example 4 (Casella & Berger, Example 7.2.14). Let Xq,...,X,, be IID Ber(0)

given © =f and put Y = > | X;. Then Y ~ Bin(n,6). Let the prior distribution

be Beta(a, 8). Then the posterior of © given Y =y is Beta(y + a,n —y + 3).
The joint density is

frie,0) = fyie(y | 0)fe(0)
= (Mena - oy OB o
_[(n F(a + 6) a— n—y+p5—
- (3) T a-or
The marginal density of Y is

y) = / Fr.o(y. 0)d6

(s [
() ((a)( Iy +a)l'(n—y+f)

I'(n+a+pB)
(this distribution is known as the Beta-binomial distribution). The posterior is
then computed as

vvvv

_ fre(0) _ L(n+a+F)
Iy (y) Py +a)l'(n—y+B)

This is the density of the Beta(y + a,n — y + () distribution.

f@\Y(a | y 9y+a—1(1 _ G)n_y""ﬂ_l,

4. EXPONENTIAL FAMILIES

Exponential families of distributions are perhaps the most widely used family of
distributions in statistics. It contains most of the common distributions that we
know from undergraduate statistics.
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Definition 2. A parametric family of distributions Py = {Fy : 6 € Q} with
parameter space 2 and conditional density fx g(z | @) with respect to a measure
v is called an exponential family if

k
Ixiex | 0) = cO)h(@)exp { 3 m(O)x) }

for some measurable functions ¢, h, 71, ..., 7, t1,...,t;, and some integer k.

Example 5. If X are conditionally IID Exp(f) given © = 6 then it follows that
fxje(@ | 0) = 67" exp{—0~1>" , 2;} so this is an one-dimensional exponential
family with ¢(8) = 07", h(zx) =1, 7(0) = 1/0, and t(x) = 1 + -+ - + z,.

Example 6. If X are conditionally IID Ber(0), then with m = z1 + -+ + x,,, we
have

fxie(@|0) =0m1 - ™ = (1 9)”(ﬁ)m == f’)”exp{l"g (ﬁ)m}

so this is also a one-dimensional exponential family with ¢(0) = (1 —6)™, h(z) = 1,
m(0) =log(8/(1 —0)), and t(x) =21 + -+ - + Tp.

There are many other examples as the Normal, Poisson, Gamma, Beta distribu-
tions (see Casella & Berger, Exercise 3.28, p. 132).

Note that the function ¢() can be thought of as a normalizing function to make
fx|e a probability density. It is necessary that

k —1
0) = ( /X ha)exp { Y- m(O)6 (o) ()

so the dependence on 6 comes through the vector (m(6),...,7x(0)) only. It is
useful to have a name for this vector; it will be called the natural parameter.

Definition 3. For an exponential family the vector II = (71(0),...,7(©)) is
called the natural parameter and

k
r= {7T €RF: /Xh(:c) exp{thi(x)}y(dm) < oo}

the natural parameter space.

When we deal with an exponential family it is convenient to use the notation © =
(©1,...,0y) for the natural parameter and Q) for the parameter space. Therefore
we will often write

fxioe | 0) = c(@)h(@)exp { Y- buts(x) } (1.1)

and € for the natural parameter space I" and hope that this does not cause confu-
sion.

For an example on how to write the normal distribution as an exponential family
with its natural parametrisation see Examples 3.4.4 and 3.4.6, pp. 112-113 in Casella
& Berger.
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4.1. Conjugate priors for exponential families. Let us take a look at conjugate
priors for exponential families. Suppose that the conditional distribution of X =
(X1,...,Xp) given © = 6 forms a natural exponential family (4.1). We will look
for a “natural” family of priors that serves as conjugate priors. If fo(6) is a prior
(w.r.t. a measure p on ) then the posterior has density

fxje(z | 0)fo(0)

Jo fxie(@ | 0)fo(0)p(do)
()X it @) £ (6)
 Jgel0)eE ) fo (0)p(d6)

Then a natural choice for the conjugate family is densities of the form
c(@)aezfz1 03B
Jo c(0)*eXi= 035 p(df)

where a > 0 and 8 = (81, ..., Bk)-
Indeed, the posterior is then proportional to

“+1exp{29 +Bz}

which is of the same form as the prior (after putting in the right normalizing
constant). Note that the posterior is an exponential family with natural parameter
& =t + [ and representation

foix(0|x) =

fe(0) =

() exp { ijgiez-},

where 1/ () = ¢(0)**! and ¢/(€) is the normalizing constant to make it a probability
density.

Example 7. Take another look at the family of n iid Ber(p) variables (see Example
6. The natural parameter is # = log(p/1 — p) and then c¢(f) = (1—p)™ = (1 +e?)7".
Then the proposed conjugate prior is proportional to

c(0)% e = (1 —p)*"p’ (L —p) 7 =p (1 —p)*?

which is a Beta(8 + 1,an — 8 + 1) distribution (when you put in the normaliza-
tion). So again we see that Beta-distributions are conjugate priors for IID Bernoulli
random variables (here « and /3 are not the same as in Example 4, though).

4.2. Some properties of exponential families. The random vector T(X) =

(t1(X),...,tx(X)) is of great importance for exponential families. We can compute

the distribution and density of T with respect to a measure v/, to be introduced.
Suppose Py < v for all § with density fx|e as above. Let us write

9(6,T(z)) = exp{ZGt }

so fxje(z | 0) = h(x)g(0,T(x)). Write T for the space Where T takes its values
and C for the o-field on 7. Introduce the measure v/(B) = [ h ) for Be B
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and v/.(C) = v/ o T~Y(C) for C € C. Then we see that
prie(C | 0) = puxe(T~1C|6)

:/ fxje(z | O)v(dr)
T-1C
- / 9(6,7(2))/ (dx)
T-1C
— [ at6.0wp(a).
C

Hence, pre(- | 0) has a density g(6,t) with respect to v. This is nothing but
rewriting the density of an exponential family but it truns out to be useful when
studying properties of an exponential family.

In concrete situations one may identify what v/ is. Here is an example.

Example 8. Consider the exponential family of n IID Exp(¢) random variables as
in Example 5. Then ¢(x) = 1 + -+ + @, and T = ¢(X) has I'(n, 0) distribution.
Thus, T has density w.r.t. Lebesgue measure which is

tn—l
—g—n,—t/0
fT|@(t | 9) 0 "e F(n)

In this case we can identify ¢(@) = =" and hence g(,t) = 0~ "e~/? and v/, must
have density ¢"~1/I'(n) w.r.t. Lebesgue measure. This is also possible to verify
another way. Since v/.(B) = v(T~!B) where v is Lebesgue measure we see that

Vip([0,t]) = v{z € [0,00)" : 0 < @y + -+ + x,, < t}

:/ dzy ...dx, =t"/nl.
0<a1 4+, <t

Differentiating this w.r.t. ¢ gives the density ¢"~!/T'(n) with respect to Lebesgue
measure (Recall that T'(n) = (n — 1)!).

Theorem 2. The moment generating function Mr(u) of T for an exponential

family is given by

My (u) = My (ui, . .. u) = %

Proof. Since

0) = [ hwrexp {3 tita) oian))
k - 1
= ([rexp { Zeiti}y}(dt))
it follows that
k : ’“ c(6)
Mr(u) = Ey [exp { Z UszH = /TGXp { Z uﬂfi}C(G) exp { Z Giti}V/T(dt) = m
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Hence, whenever 6 is in the interior of the parameter space all moments of T" are
finite and can be computed. We call the function

k(0) = —logc(8)
the cumulant function. The cumulant function is useful to compute moments of
T(X).

Theorem 3. For an exponential family with cumulant function k we have

82

COVQ(Ti,Tj) = aeaeﬂ(@)
K]

Proof. For the mean we have
0
_ 9 <0
~ Ou; c(u+0)
_ 55,<(0)
c(0)
0
=——1 0).

20, ogc(6)

The proof for the covariance is similar. O

Ey[T}]

MT(U)

u=0

u=0

Theorem 4. The natural parameter space Q@ of an exponential family is convex
and 1/¢(0) is a convex function.

Proof. Let 61 = (011,...,01%) and 03 = (021, ..., 62x) be points in 2 and A € (0, 1).
Then, since the exponential function is convex

— (11 - /X () exp{d "IN + (1 = Noailts(o) ()

< /X M@ exp{3 Ori @)} + (1= X) exp{ 3 ot (0) o (d)

=A

+(1-X

1 1
0(91) 0(92) '
Hence, 1/cis convex. Since 6 € Q2 if 1/¢(0) < oo it follows also that Ay +(1—A)f; €
Q. Thus,  is convex. (I
4.3. Exponential tilting. Let X be a random variable with moment generating
function M (u) = E[e*X] < co. Then the probability distribution given by
E[e*XI{X € B}

M (u) ’

is called an exponentially tilted distribution. If X has a density f w.r.t. a measure
v then P, has density w.r.t. v given by

fu(y) -

Pu(B) =

e" f(y)
M (u)
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Now, if f(y) is the density of a natural exponential family, f(y) = ¢(0)h(y) exp{6y},
then the density of the exponentially tilted distribution is

fuly) = evfly)  c@)h(y)exp{(6 +u)y}

() = (0)/c0 + 0 = c(0 + u)h(y) exp{(0 + u)y}.
Hence, for an exponential family, exponential tilting by u is identical to shifting the
parameter by u.

This also suggests how to construct exponential families; start with a probability
distribution p with density f and consider the family of all exponential tilts. This
forms an exponential family. Indeed, if we tilt f by 6 the resulting density is

fole) = 575 0) expltu).

so putting ¢(0) = 1/M(0) and h(y) = f(y) yields the representation of a natural
exponential family.

4.4. Curved exponential family. Consider for example the family {N(6,6?);0 €
R}. Is this an exponential family? Let us check.
The density is given by

1 1 )
fxje(z[0) = ﬁeXp{ ~ 5 (@—0) }
1 1 2 x
=i aterl -5
This is an exponential family with () = 1/(26%) and 75(#) = 1/6. Hence, the

natural parameter 7 = (71, 72) can only take values on a curve. Such a family will
be called a curved exponential family.

Definition 4. A parametric family of distributions Py = {Fy : 6 € Q} with
parameter space () is called a curved exponential family if it is an exponential
family, i.e.

k
Fxio(x | 0) = c(0)h(x) exp { Z m-(@)ti(:c)},

and the dimension d of the vector # satisfies d < k.
If d = k the family is called a full exponential family.

5. LOCATION-SCALE FAMILIES

In the last section we saw that exponential families are generated by starting
with a particular density and then considering the family of all exponential tilts.
In this section we will see what happens if we instead of exponential tilts simply
shift and scale the random variable, i.e. we do linear transformations.

Exercise: Let X have a probability density f. Consider Y = ¢X + p for some
o >0 and p € R. What is the density of Y7

Theorem 5. Let f be a probability density and p and o > 0 be constants. Then

oo | mo) =~ f(T)da

g (o

is a probability density.
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Proof. Casella and Berger p. 116.. O

Definition 5. Let f be a probability density.
(i) The family of probability densities {f(x — u);u € R} is a location family
with location parameter p.
(ii) The family of probability densities {f(z/o)/o;0 > 0} is a scale family with
scale parameter o.
(iii) The family of probability densities {f((x — p)/0)/o;p € R,o > 0} is a
location-scale family with location parameter u and scale parameter o.

Example 9. The family of normal distributions N (u, o) is a location-scale family.
Indeed, with ¢ being the standard normal density,

= exp{~ (& — w)?/(20%)} = ~pl(x ~ )/))

oV 2
Before getting deeper into the fundamentals of statistics we take a look at some
distributions that appear frequently in statistics. These distributions will provide
us with examples throughout the course.

Pp,o(T) =
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ADDITIONAL MATERIAL THAT YOU PROBABLY KNOW...

5.1. Normal, Chi-squared, ¢, and F. Here we look at some common distribu-
tions and their relationship. From elementary statistics courses it is known that
the sample mean

of IID random variables X1,...,X,, can be used to estimate the expected value
EX; and that the sample variance

52— ! zn:(XifX’)?

n—1~4
1=1

3I>—‘

is used to estimate the variance Var(X;).

The distribution of X,, and S is important in the construction of confidence
intervals and hypothesis tests. The most popular situation is when X3, ..., X, are
IID N(u,0?). The following result may be familiar.

Lemma 1. Let X1,..., X, be IID N(u,0?). Then, X and S* are independent and

X~ N(u, 02/”)) (5.1)
(71;721)5 ~x3(n—1), (5.2)
X7l in—1). (5.3)

5/\/_
Moreover, if X1,..., Xy is IID N(f1,52) and independent of X1, ..., Xn, then

52 52
It is a good exercise to prove the above lemma. If you get stuck, Section 5.3
in Casella & Berger contains the proof.
As a reminder we will show how Lemma 1 is used in undergraduate statistics.

Suppose we have a sample X = (X1,...,X,,) that have IID N(u, 0?) distribution.

5.1.1. Confidence interval for p with o known. If we estimate pu by X,, and o is
known, then we can use (5.1) to derive a (1 — a)-confidence interval for p of the
form X,, + %z,/o, where z, is such that ®(z,) = 1 — a. Indeed,

Vn e/

_ X -
P(Xn <u<X, ):p(f < < ):17 .
Iz \/—Zoz/2 K + \/—Za/Q [z Raj2 = U\/ﬁ = 2a/2 o

5.1.2. Confidence interval for p with o unknown. If we estimate u by X,, and o is
unknown, then we can estimate o by S and use (5.3) to derive a (1 — a)-confidence
interval for y of the form X,, + \/— ta/2, where t is such that t(z,) = 1 — a and
t(x) is the cdf of the t-distribution with n — 1 degrees of freedom. Indeed,

S S
laj2 S p < Xn + _ta/Q) = P;t,o( —ta/2 <

NG

Pu,a<Xn_% S\/_ <ta/2):1—a.



