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LECTURE 4

7. SUFFICIENT STATISTICS

Consider the “usual” statistical setup: the data is X and the paramter is ©.

To gain information about the parameter we study various functions of the data
X. For instance, if X = (X1,...,X,,) are IID Ber(d) given © = 6, then we would
use T'(X) =n~1(X;+ -+ X,,) to get information about the parameter. A function
of the data is called a statistic.

Definition 6. Let (7,C) be a measurable space such that the o-field C contains
all singletons. A measurable mapping T : X — T is called a statistic.

As usual we think of a measurable space as a subspace of R? and the o-field as the
corresponding sub-o-field.

Although, formally a statistic is a mapping from the sample space X to some
space T, we can also think of the composition T o X : S — T (recall that S is the
underlying probability space). This is a random variable taking values in 7 and we
often write T for this random quantity.

In the next sections we will look more closely at different classes of statistics.
That is, functions of the data with certain interesting properties. The first such
class is the class of sufficient statistics.

7.1. Sufficient statistics (classical). The idea of sufficiency is to find a function
T of the data X that summarizes the information about the parameter ©. Above
we mentioned the example of IID Ber(f) random variables, X1,..., X,,, where we
know that we only need to know a function of the data, for instance X1 +---+ X,,,
in order to compute an estimate of §. Similarly, we argued for the betting problem
that decisions can be based entirely of knowing X; 4+ --- + X,, and not all the
individual X;’s.

Elementary case: Let us first see what sufficient statistics is when we have
densities. Suppose that the (conditional) distribution of X and T = T'(X) given
O = 0 both have densities w.r.t. a measure v (think Lebesgue measure or counting
measure). Then we say that 7' is a sufficient statistic for © if fx|7.e(z | ¢,0) does
not depend on 6.

Note that, with ¢t = T'(x),

_ fxme(x,t]0)  fxel(z|0)
Ixire(z]t.0) = frie10)  — fre(t|0)’

Hence T is sufficient if this ratio does not depend on 6.
To see how T captures the “information” about © we can write down the likeli-
hood function as

Ixie(@|0) = fxire(z | T(z),0)fre(T(z)|0)

If T is sufficient, then the first factor on the RHS does not depend on 6 and
the likelihood when observing X = z is proportional (as a function of ) to the
likelihood when observing T" = T'(x). That is, information about © comes only
through the function T'. If we, for example, want to maximize the likelihood we
could maximize fre(t | 0) instead of maximizing fxje(x | #). In this sense, there
is no need to know z itself, it is sufficient to know ¢ = T'(z) to do inference.
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General case: Formally, sufficient statistics are introduced as follows. First let
prie(- | 0) be the conditional distribution of 7" given © = 6. It is a probability
measure on C given by ure(C | 0) = pxe(T'C | 0).

Definition 7. Suppose there exist versions of x| (- | 0,t) and a function r :
B x T — [0,1] such that

(i) r(-,t) is a probability on B for each t € T,

(ii) r(B,-) is measurable T for each B € B,

and for each 8 € Q and B € B

pxjer(B|0,t) =r(B,t), for upe(-|0)—ae.t.
Then T is called a sufficient statistic for © (in the classical sense).

Note that the function r satisfies the conditions of a conditional distribution
and does not depend on 6. Hence, T is sufficient if x| 7 (- | 0,t) is a conditional
distribution that does not depend on 6.

The simplest example (but not particularly useful) of a sufficient statistic is the
data itself. That is 7 = & and T'(x) = 2. Of course, ux|e, x(B | 0,7) = Ip(r) does
not depend on 0 so the statistic is sufficient. Using this statistic does not help you
to summarize information about the parameter as it is as complicated as the data
itself. Let’s look at some simple cases where there exist simple sufficient statistics.

Example 10 (c.f. Example 6.2.3 in Casella & Berger). Let {X,} be IID Ber(6)
given © = 0 and X = (X3,...,X,). Put T(z) = 21+ --- + x,. Let us show T
is sufficient. Note that T(X) is Bin(n, §) given © = 0. For each x = (1,...,2p)
x; € {0,1} such that t = T'(z)

_ fX,T|@(I,t) B 9t(1 79)n7t /n 4
fX|@,T($ | H,t) - fT|®(t | 9) - (?)ot(l — Q)nft = (t) .

Since this does not depend on 6, T is a sufficient statistic.

Example 11. Let {X,,} be IID Exp(f) given © = § and X = (Xq,...,X,). Put
T(x) =21+ -+ 2p. Let us show T is sufficient. Note that T'(X) is T'(n, ) given
© = 6. For each z; > 0 we have with ¢t = T'(x)

fxie(@]0) T, 0e % (n—1)

frie(t]0) FG(:L)tnflefet = e

which does not depend on 6.

7.2. Sufficient statistics (Bayesian). In Bayesian statistics there is a slightly
different notion of sufficiency, but it often coincides with the classical notion.

Definition 8. A statistic T is called a sufficient statistic for the parameter ©
(in the Bayesian sense) if, for every prior g, there exist versions of the posterior
distributions peg x and per such that, for every A € 7, ugx (B | =) = pe|r(B |
T(x)), px-a.s., where px is the marginal distribution of X.

Hence, no matter what prior one uses, one only has to consider the sufficient
statistic for making inference, becuase the posterior distribution given T' = T'(x) is
the same as the posterior given the data X = x.



LECTURE NOTES 19

Let’s see how this looks like with densities. If both g x (- | ¥) and per(- | t)
have densities w.r.t. the prior ug then

Hoix(A | ) = /A forx (0 | ) (d0),

por(A | 1) = /A forr(® | o (d6),

holds for any A € 7 and hence T is sufficient if and only if fox (0 | ) = for(f |
T(x)) px-a.s.

One way to check that T is sufficient in the Bayesian sense is to check that
pe|x (A | -) is a function of T'(x). We have the following result.

Lemma 2. Let T be a statistic and By the sub-o-field of B generated by T. T is
sufficient in the Bayesian sense if and only if, for every prior pe, there exists a
version of pe|x such that for each A € 7, pgx (A | -) is measurable By (In other
words, it is a function of T'(x)).

Proof. ’only if’ part: If T sufficient in the Bayesian sense then for every prior and
each A € 7, po|x (A | ©) = pejr(A | T(x)) holds px-a.e. Since per(A | T(-)) is
measurable Br it follows that so is ugx (A | -).

'if” part: Suppose that for every prior and each A € 7, pgx (A | -) is measurable
Br. We want to show T sufficient in Bayesian sense. That is, that pe|x(A | ) =
po (A | T(x)) pux-a.s. We use the fact (e.g. Schervish, Proposition A.49 (4) p. 588)
that for two functions functions f and g that are measurable w.r.t. a o-field F and
a measure fi

/ fdu = / gdp for each B € F implies f(x) = g(z), p — a.e.
B B

Hence, in our case it is sufficient to show that for each B € By

/ oix(A | 2)ux (de) = / oz (A | T())ix (dz).
B B

The LHS is Pr(© € A, X € B). Since B € Br there is a set C' € C such that
B =T~'C. The RHS becomes

/ po|r(A | T(z))px (dr) = {change of variables}
B

= [ werr (A yurtar
=Pr(®@cAT(X)eC)
=Pr(©@ € A X € B).

Hence, we have the desired equality and the proof is complete. (I

Example 12. Let {X,} be conditionally IID Exp(f) given ©® = 6 and X =
(X1,...,Xpn). Pt T(z) =21+ -+ x,. Let us show T is sufficient in the Bayesian
sense. Let peg be the prior (which is arbitrary). Then the posterior distribution
has density (Bayes theorem)

[T, e e 0 Xiza @i

foix(0|z) = TTIL, e Poipo(dy) — [gme ¥ Simi @ g (dip)
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Since T'(X) is I'(n, 6) given © = 0 it follows that

0" in—1_—0t _
mt e Ome ot

J st te Vo (dy) [ UneVne(dd)

Hence fo|x (0 | ©) = fo;r(0 | T'(z)) so T'is sufficient in the Bayesian sense.

foir(0]t) =

It is satisfying to know that in most situations one may encounter the classical
and Bayesian notion of sufficiency are the same.

Theorem 6. Let (7,C) be a measurable space and T a statistic. Suppose there
exists a o-finite measure v such that pxe(- | 0) < v for all 0 € Q. Then T is
sufficient in the classical sense if and only if it is sufficient in the Bayesian sense.

Density proof. Suppose all relevant densities exists.

Let pue be an arbitrary prior. If 7" sufficient in the classical sense, then fx g r( |
0,t) = fxr(x | t). Hence the posterior density is (with ¢t = T'(z))
B Ixie(x|0)

o fxie(@ | 0)pe(df)

B Ixjor(@]0,t)frie(t|0)
o fxier(@ | 0,t) frie(t | 0)pe(dd)
B Ixir(@ | t)fre(t|0)

o fxir@ [t frie(t ] 0)pe(df)

_ frie(t]0)

- Jo frie(t ] 0)ue(do)

dpe|r
= dﬂ—@(@ | £).

dpe|x
dpe

(€| )

dpe|x (9 |

For the converse suppose that T is sufficient in the Bayesian sense so that Te

z) = eIT (9| T(z)). Then, with ¢ = T(z) we have

)= due
fxre(z|t,0)= %
el (9 | ) [;, Ixjo(@ | )ue(dd)
WL (G| 1) [y, Frie(t | O)ne(df)
_ fx(@)
Jr(t)

which does not depend on 6. Hence, T is sufficient in the classical sense. Il

7.3. How to find a sufficient statistic? Suppose someone hands you a para-
metric family Py = {fxjo(- | ),0 € Q} of densities w.r.t. a measure v. How do
you come up with a sufficient statistic 77 Further, if you have come up with a
suggestion of a statistic T', how do you check if it is a sufficient statistic? The next
theorem gives the answer.

Theorem 7 (Factorization Theorem, c.f. Theorem 6.2.6 in Casella & Berger).
Suppose Py = {Py : 0 € Q} is a parametric family and there exists a o-finite v such
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that Py < v for all 6 € Q with dPy/dv(z) = fxje(x | 0). Then T(X) is sufficient
for © (in either sense) if and only if there exist functions h and g such that

fxje = Nhz)g(0,T(x)).
Density proof. Supposing all the relevant densities exist.
It is sufficient to check the equivalence in the Bayesian sense. If fxg(z | 0) =
h(zx)g(6,T(z)), the by Bayes’ theorem
_ Ixje(z]0)
Jo [xie(x | 0)ue(d)
@6, 7))
Jo W(@)g(0, T (x)) e (df)
_ g0.7@)
Jo 9(0.T(2))pe(d)’
which is a function of T'(z). Hence it is sufficient in the Bayesian sense (and also
in the classical sense). Conversely, suppose T'(X) is sufficient in the Bayesian sense
so that fox (0 | ) = feir(0 | T'(x)). Then
Ixje( 1 0) = forx(0 | 2)fx(x) = fx(z) forr (0T (x))
M —

h(=) 9(6,T())

due|x
dpe

GRS

O
Example 13 (Exponential families). If we put T(X) = (¢1(X),...,tx(X)) then
by the factorization theorem it follows that T'(X) is sufficient. Indeed,

k
fxje(x]0) = @0(9) eXP{Z Oiti(x)} .
h(z) s

9(6,T())

Hence, a sufficient statistic always exists. We can compute the density of the
sufficient statistics.

8. A FIRST GLANCE AT DECISION THEORY

Many statistical problems can be phrased in the language of decision theory.
Suppose as usual that we have data X whose distribution depend on a parameter
©. Based on observing X = x we want to take some action. Let X be a set of possi-
ble actions. On X we take a o-field a. The result of our action depend of course on
the chosen action, but also on the parameter ©. We say that every action induces
a loss. A loss function is a function L : Q x X — R. We interpret L(6,a) as the
incurred loss if we took action a and © = 6.

One could let the loss depend on some other unobserved quantity V' but we will not need
this higher generality right now.

Definition 9. A deterministic decision rule is a measurable function § from X to
N. We interpret d(x) as the action to take if we observe X = z.

A randomized decision rule is a mapping from X to a probability measure on
(N, ) such that « — §(A;z) is measurable for each A € a.
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We think of executing a randomized decision rule as follows. Given X = x we
“throw a coin” according to §(-;z). This gives us an action a € Y which is the
decision we take. A deterministic decision rule can be thought of as a special case
of a randomized decision rule where all the probability mass is placed at a single
action. In this case the action §(z) is identified with the probability measure on R
given by §(A;x) = L4(6(x)).

If § is a deterministic rule, then we associate the loss L(6,d(x)). If ¢ is a ran-
domized decision rule we associate the loss L(0,d(;x)) = [ L(0,a)d(da; ). That
is, the average loss when we draw the action from 4(+; x).

In the Bayesian case, one introduces the posterior risk function

"6 | z) = jQ-L(9a5($))Meyx(d9| z)

That is, the average loss for decision rule ¢ given the observation X = x. One
would like to find a decision rule that minimizes the posterior risk simulatenously
for all x € X.

Definition 10. If j is a decision rule such that for all z, r(dp | ) < oo and for all
2 and all decision rules § r(dg | ) < r(d | x), then g is called a formal Bayes rule.

If &g is a decision rule and there exists a subset B C X such that for all x € B,
r(do | £) < oo and for all x € B and all decision rules ¢, r(dy | ) < 7(d | =), then
do is called a partial Bayes rule.

In classical decision theory we condition on © = # and introduce the risk function

R(0.6) = [ L0.5@)xioldr | 0).

That is, the conditional mean of the loss, given © = . Here we would like to find
a rule § that minimizes the risk function simultaneously for all values of 6.

8.1. A coin tossing example. Consider the following situation. You have an
amount of m dollars to bet on the outcome of a Bernoulli random variable X, ;.
You observe X = (X1,...,X,,). Suppose X1,..., X1 are conditionally iid Ber(0)
random variables given © = . Based on the observations in X you have to make a
decision whether to bet on X,,41 = 0 or X,,41 = 1. If you win, you win the amount
m and otherwise you lose m.

Formulate this as a Bayesian decision problem. Write down the sample space
X, the parameter space (), and the action space X. Choose an appropriate prior
distribution and an appropriate loss function of your choice. Then find the best
decision rule, i.e. the decision rule § that minimizes the posterior risk simulatenously
for all x.

8.2. Sufficient statistics in decision theory. If T is a sufficient statistic we
would expect that we can base our decisions on 7" and do not need all the informa-
tion in X since 1" contains all information about the unknown parameter ©. In the
Bayesian setting we have the following theorem that supports this.

Theorem 8. If there is a formal Bayes rule and T is a sufficient statistics (in the
Bayesian sense) then there is a formal Bayes rule which is a function of T.
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Proof. Let § be a formal Bayes rule and take x € X. Since T is sufficient we have
61 0) = [ L.0worx(dd] 2) = [ LO.Oorr(dd] T(z))
Q Q

We claim that for each y such that T'(z) = T'(y) it follows that r(§ | ) = (6 | ).
If not, suppose without loss of generality that (6 | z) < r(d | y) for some y € X
with T'(y) = T'(z). Let ¢’ be a decision rule such that §'(z) = §(x) for all z such
that T'(z) = T(z). Then it follows that

@ | y) = / L(0,8 Yoy x (d6 | y)
- / L0, 8oz (d8 | T())

_ /Q L(9, 8)poyr(df | T(x))
r(0|z) <r@|y),

which contradicts that § is a formal Bayes rule. We conclude that the claim is true.
The decision rule ¢’ just defined is a function of T'(x) and satisfies r(¢§' | T'(z)) =
r(d | ) for each z. Hence, it is a formal Bayes rule that is a function of T O

Note that (in the proof above) the formal Bayes rule § that we started with do
not have to be a function of T'. For instance, it may be the case that T'(z) = T'(y),
d(x) # d(y), and L(0,6(x)) = L(0,6(y)) for each §. Then r(§ | z) = r(§ | y)
although, 0(x) # d(y).

In the classical setting we have the following.

Theorem 9. If §y is a (randomized) decision rule and T is sufficient statistic (in
classical sense), then there exists a decision rule 61 which is a function of T and
R(0,80) = R(0,61) for all 0.

In the theorem, if Jy is deterministic we interpret it as the randomized rule ¢
by §(A4;x) = L4(dp(x)). That is, the probability measure on (X, «) that puts all its
mass on dp(x).

Proof. Let A € a and take
d1(A;x) = Ep[do(A; X) | T =1].

Since T is sufficient the expectation does not depend on 6. We claim that for any
do-integrable function h : X — R

E[/Nh(a)éo(da;X) | T:t} - /Nh(a)él(da;t).
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To see this, start with A as indicator, then simple function, and finally measurable
function. Then we see that

R6.6) = [ [ 16,0500 T@)xe(dr| )
~ [ B[ [ 16,0500 ) | T = T@) | ol 0
— By [E[/NL(H,a)éo(da;X) | T”
= /N L(0, )60 (da: X)|
:/ /L(G,a)éo(da;x)ux‘@(dx|9)
X JR
— R(6,60).

O

One should note that even if §y is a deterministic rule, the resulting rule 61 (A;t) =
Ep[do(A; X) | T = t] may be randomized.



