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LECTURE 6

11. DECISION THEORY

Recall from Section 8 that for a decision rule § and observation X = x we have
(in Bayesian setting) the posterior risk

"6 | z) = / L0, 5(x))oyx (d0 | ).

where L(0,6(x)) = [, L(0,a)d(da;z) if 6 is a randomized rule. If §y is a decision
rule such that for all x, r(dp | ) < oo and for all  and all decision rules &
r(do | ) <r(d | z), then Jy is called a formal Bayes rule.

There is also a weaker concept than a formal Bayes rule. Denote by ug the
prior distribution of ©. Together with fx|e this specifies the predictive (marginal)
distribution of X, ux. We call the function

r(j1:6) = /X r(8 | 2)pux (dx)

the Bayes risk and each § that minimizes the Bayes risk is called a Bayes rule with
respect to pe, assuming r(n,§) < co. The Bayes risk is the mean of the posterior
risk, before observing X = z.

11.1. Classical decision theory. In classical decision theory we condition on
© = 0 and introduce the risk function

R(6.6) = /X L0, 5())px o (dr | 0)

That is, the conditional mean of the loss, given ©® = 6. Here we would like to find
a rule ¢ that minimizes the risk function simultaneously for all values of 8. As we
saw in the last lecture there may not be a rule that minimizes the risk function
simultaneously for all §. Therefore we introduce the notion of admissible rules.

Definition 15. Let § be a decision rule. If there exists a decision rule §; such
that R(6,61) < R(0,6) for all § with strict inequality for some 6, then we say 4 is
in-admissible and it is dominated by §;. Otherwise, d is admissible.

Of course, one should not use in-admissible decision rules.
As a weaker criterion one can, as in the Bayesian setting, take a prior distribution
e for © and try to minimize

/ R0, 6) 0 (d6).
Q

Note that by Fubini’s theorem we have
| Ro.0metan) = [ [ L6.5@)xiolde | e ()
— [ [ 20 5)merx (@8 | x (d)
X JQ
= [ 161 @) = r(o.0)
X

which is the Bayes risk with respect to pe.
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Minimax rules. For a given problem there might be many admissible decision
rules, but we may not be able to find one which dominates all the others. In that
case we need a criteria to decide which rule to take. We have already seen the
possibility of choosing a Bayes rule with respect a some prior distribution 1. A
different criteria is the following.

Definition 16. A decision rule dg is called minimax if

sup R(0, do) < inf sup R(6,9).
0 5 9eq

That is, a minimax has the smallest upper bound of the risk function. That is,
we prepare for the worst possible § and choose the rule which has the smallest risk
for this worst . One could ask how minimax rules are connected to Bayes rules. If
A is a prior for © we have

r(\,6) = /Q R(0, 5)\(d6).

Hence, if A puts all its mass on those 6 that maximizes R(6,d) we see that

sup (), ) = sup R(6, ).
A 0

This choice of A depends on the decision rule 4.

Definition 17. A prior distribution A\g for © is least favorable if infsr(Xg,d) =
sup, infs (A, 9).

That is, Ag is a prior such that the corresponding Bayes rule has the highest
possible risk.
For any fixed prior Ag and decision rule g we have

i%fr(Ao, 8) < 1Mo, d0) < supr(A,do).
A

Therefore we can introduce the following concept.
Definition 18. Let
V_ =supinfr(A,d) <infsupr(},d) =infsup R(A,6) =V .
PR 5 A 5 9
Then V_ is the mazimin value of the decision problem and V'~ is the minimazx value
of the decision problem.
How can we check that a rule is minimax and a prior least favorable?

Theorem 14. If §y is a Bayes rule with respect to Ao and R(6,0¢) < r(Xo,do) for
all 6, then &g is minimax and g is least favorable.

Proof. Since

V- < sup R(G, 50) < T(Ao, 50) = i%fT(Ao, 5) < V_
0

and V_ <V~ it must be that V_ = V'~ and the claim follows. O

The theorem gives you a condition to check but when can we actually find
minimax rules. We will consider the case where Q is finite, Q = {61,...,0;}. In
that case the risk function R(f,6) for a given decision rule § is just a vector in RF.
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Definition 19. Suppose Q = {61,...,0k}, let
R={z€eR*:z =R(6;0),i=1,...,k, for some decision rule §}.
The set R is called the risk set. For any C' C RF the lower boundary is the set
{z€eC7 ix; < z,i=1...,k and z; < 2; for some 7 implies x ¢ C~ }.

The lower boundary of the risk set is denoted L. The risk set is closed from below
if 0L C R.

Lemma 3. The risk set is convex.

Proof. Fori=1,2let z; € R be points that correspond to the decision rules §; and
take A € [0,1]. Then Az; 4 (1 — X)z2 is the risk function of the randomized decision
rule corresponding to taking é; with probability A and do with probability 1 — A.
Hence, it belongs to the risk set R. O

Consider Example 3.72, p. 170 in Schervish “Theory of statistics”.

Theorem 15 (Minimax theorem). Suppose the loss function is bounded from below
and Q is finite. Then sup, infs (X, d) = infs supy R(6, ) and a least favorable prior
Ao exists. If R is closed from below, then there exists a minimaz rule that is a Bayes
rule with respect to \g.

Proof. For any real number s let A, = {z € RF: 2, <s,i=1,...,k}. That is, A,
is an orthant. It is closed and convex for each s. Take so = inf{s : A, N R # 0}.
Then

so = infsup R(0, 9).
)

Indeed, for each z € As N R there is a decision rule ¢ such that sup, R(6,0) =
max; R(6;,5) < s. Taking inf over s corresponds exactly to taking inf over §. Next
note that the interior of A,, is convex and does not intersect R. The separating
hyperplane theorem says that there exists a vector v and a real number ¢ such that
vTz > ¢ for each z € R and vT 2z < ¢ for each z in the interior of Ag,. It is necessary
that each coordinate of v satisfies v; > 0. Otherwise, if v; < 0 we can find a
sequence z,, in the interior of A, with lim, 2,; = —oo and all other x,,; = 59 — ¢
and then lim,, vz, = co > ¢, which is a contradiction. If we put Ag; = v;/ 2521 v
we get a probability measure on 2 which is least favorable. Indeed, since (so, . . ., So)
is in the closure of the interior of A, it follows that ¢ > s Z;C:l v; and we have
c
k

inf r(\g,d) = inf A\l z >
d j=1"Yj

> =i
inf > 80 1%fs1;p R(6,9)

This shows that A is least favorable.
We were not able to cover the proof that there exists a minimax rule. We refer
to the book (Schervish, p.173). O

11.2. On finding a formal Bayes rule. In Bayesian decision theory the following
is a good way to find a deterministic formal Bayes rule.

(1) Take x € X.

(2) Find a € XN that minimizes [, L(6, a)ue|x(df | z).

(3) Put é(x) = a.

(4) Repeat for all .
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However, it is not always that a formal Bayes rule exists, for instance the mini-
mum in step (2) may not exist in N. Here is an example

Example 20. Let X ~ N(6,1) and © ~ N(0, 1) where 2 = R. Then the posterior
is N(x/2,1/2). Let the action space be X = R and the loss function L(f,a) = 0 if
a>0,L(0,a)=1if a < 6. That is, a loss occurs if our guess of 6 is below §. Then
for any x

/QL(Haa)N(—)IX(de | ,T) :MG\X(G >a | .’L‘) =1 —(I)(al—/\x/g2),

This converges to 0 as a — 00, so the risk is minimized at a = oo but this is not in
the action space N. For this example no formal Bayes rule exists.

12. THE NEYMAN-PEARSON FUNDAMENTAL LEMMA

Definition 20. A class C of decision rules is complete if for every § ¢ C there exists
Jp € C that dominates 0, i.e. R(6,d0) < R(0,0) VO with strict inequality for some 6.
A class in minimal complete if no proper subclass is also complete.

To see the relation to admissible decision rules, we have the following:

Lemma 4. A minimal complete class consists exactly of the admissible decision
rules.

Proof. First we show that § admissible implies 0 € C. Indeed, if § ¢ C then there
exists g € C that dominates § which contradicts that ¢ is admissible.

For the other inclusion we need to show that § € C implies ¢ is admissible.
Suppose it is not admissible. Then exists a dominating rule d;. Either §; € C or
91 ¢ C. In the first case put d = §1. In the second, there is d2 € C that dominates
01. Thus, in both cases d2 € C dominates §. If §’ is a rule that is dominated by
d, then it is also dominated by d5. This implies that C \ {0} is complete. This
is a contradiction because we assumed that C is minimal complete. Hence, § is
admissible. ([

There is one, simple case, where a minimal complete class can be found. This is
called the Neyman-Pearson fundamental lemma.

Theorem 16. Let =X = {0,1}, L(0,0) = L(1,1) =0, L(1,0) = k; > 0, and
L(0,1) = kg > 0. Let fi(x) = dP;/dv where v is Py + Py. For §, a decision rule,
let p(x) = §({1};x) be the test function of §. Let C be the class of rules with test
functions of the form below:

For each k € (0,00) and each function v : X — [0,1],

1, f1 (ac) > kfo(x),
Ory(x) =9 (@), fi(z) =Ekfo(z),
0, fi(z) < kfo(z).

For k=0,
_ [ L A@)>0,

For k = oo,
_ 1, f (I):O,
9oo () _{ 0, fg(:z:) > 0.
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Then C is a minimal complete class.

Before we prove the result let us see what the decision rules are. The decision
rules are asssociated with a threshold & € [0, oo].

e To k£ = 0 there corresponds one decision rule which says “choose a =1 if
fi(z) > 0 and a = 0 otherwise”.

e To k = oo there corresponds one decision rule which says “choose a = 1 if
fo(xz) =0 and a = 0 otherwise”.

e To each k € (0,00) there are lots of decision rules. They all say that a = 1
should be chosen if it is sufficiently likely that § = 1. That is: “choose
a=1if fi(x) > kfo(z), choose a = 0 if fi(z) < kfo(z), and in the event
that we cannot decide fi(x) = kfo(x) we choose a = 1 with probability
~(z) where v is some function v : X — [0,1]”.

Example 21. The Neyman-Pearson lemma can be used when deciding between
competing models. Suppose we have two competing models for the distribution
of X given by continuous densities fy and f; w.r.t. Lebesgue measure. Based on
observing X = x we have to decide which is the more appropriate one. Decisions
are a = 1 “f; is correct density” and a = 0 “fy is correct”. The Neyman-Pearson
lemma says that the admissible rules (the minimal complete class) are of the form:
for k € (0,00) choose a = 1 if fi(x) > kfi(z) and a =0 if f1(x) < kfo(z). There is
no need to specify the case f1(z) = kfo(x) since this even has probability zero. Also
the cases £ = 0 or oo corresponds to “always choose a = 1”7 and “always choose
a = 0”. None of these seem very desirable.

Example 22. If we continue the above example when fo(z) = \;'e™*® and
fi(x) = AT e™M? we see that we choose a = 1 if

fi(x) ke a< log A\ — log Ao +10gk'
fo(z) A1 — Ao
You can think of the case kK = 1 as the fair case where we choose the model which

is most likely. k > 1 penalizes choosing a = 1 whereas &k < 1 penalizes choosing
a=0.

Proof of Neyman-Pearson’s fundamental lemma. The proof is outlined as follows.
First we consider a larger class C’ which contains C and show that C’ is complete.
Then we will show that each rule in C’ is dominated by a rule in C and that C is
minimal complete.

The class C’ consists of the class C and in addition the rules with testfunction of
the form

17 fl (LL') > 07
xTr) =
%0(2) { v(@), fi(z)=0.
We will show that C’ is complete. That is, for any rule § ¢ C’ there is a ¢’ € C’ that
dominates §. Let § ¢ C’ be a rule with test function ¢ and put

a = R(0,0) = /X[L(O,O)(l — ¢(x)) + L(0,1)¢(z)] fo(z)v(dx) = /kosb(x)fo(x)V(dx)-

We will now try to find a rule ¢’ € ¢’ with R(0,¢') = o = R(0,6) and R(1,¢") <
R(1,6). We define the function

g(k) = / Ko fola)w(d).
{fi(z)>kfo(x)}



36 HENRIK HULT

Note that if y(z) = 1 for all z and ¢’ has test function ¢y then g(k) = R(0,d).
We claim that he function g has the following properties:

e g(k) = 0 as k — oo.

e g(0)=ko > a.

e g(k) is continuous from the left and has limit from the right.

Note that fi(z) < oo v-a.e. and the set {f1(z) > kfo(z)} decreases to () with k.
Hence g(k) — 0 as k — oo. For the second claim,

9(0) = / ko fo(z)v(dz) = ko > .
X
Let us show that g is left continuous. We have that
) A{z: file) 2 kfo@)} = {z: filz) = mfo(a)}.
k<m,keQ

The monotone convergence theorem gives
lim g(k) = g(m),
We see that g is continuous from the left. To see is has limits from the right note
U {z:A@) 2 kfo@)} = {z: flz) > mfo(x)} U{z: folx) = 0},
k>m,keQ

and since g is bounded the monotone convergence theorem implies

lim g(k) = ko fo(x)v(dz)

fm /{fl(w)>mfo(w)}
so the limit from the right exists.
Note that if y(z) = 0 for all z and ¢’ is a rule with test function ¢, -, then
R(0,¢") = limgym g(k). Since g is left continuous one of two cases can occur.
(i) either g(k) decreases continuously to the level «, or
(ii) g(k) jumps from a level above « to a level at most .
In the first case there is a smallest k such that g(k) = o and we put k* = inf{k :
g(k) = a}. In the second case, there is a largest k such that g(k) > a and we put
k* = sup{k : g(k) > a}. In the case a = 0 it is possible that k* = co. If @ > 0 we
must have k* < co because g(k) | 0 as k — co. We will now construct a decision
rule 0’ with test function ¢y« . There are three cases to consider:
(1) a =0 and k* < o0,
(2) a =0 and k* = oo,
(3) a@>0 and k* < 0.
We proceed as follows. In each case 1, 2, and 3, we show that we can choose ~ such
that R(0,9’) = R(0,6) = a and then that R(1,d") < R(1,9).
Case 1: Take y(z) = 0 for all z. Then

N 13 _ _
R(0,0") = Illfgl g(k) = a = R(0,0).
Define

Mx) = [Pre 5 (2) = ¢(2)][f1(2) — K" fo(z)].

We know that ¢p- ~(z) =1 > ¢(z) on {z : fi(xz) — k* fo(z) > 0} and ¢p- 4(z) =
0 < ¢(z) on {z: fi(x) — k*fo(x) < 0}. Since ¢ is not of the form ¢ for any k
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and v there must be a set B such that v(B) > 0 and h(z) > 0 on B. Using that
fo(x) + fi(x) =1 (since v = Py + Py) we get

O</Bh(a:)1/(da:) < /h(x)u(da:)
- / (61 (1) — S(@)] o (2)r(dz) — * / [k () — S()] fo ()

~ [lore(2) = 6@ @(d) + (o~ )
— L1ra,5) - RO
k1
Hence R(1,6) < R(1,¢").
Case 2: In this case

R(0,0") = /k0¢oo(x)fo(x)u(dx) =0=a.

Then since 0 = oo = R(0,0), ¢(x) = 0 for all x such that fo(xz) > 0. Then

RO =P >0 ks [ 1o
> klpl(fo(X) > 0) = R(l,y)

Case 3: If g(k*) = o we set y(x) = 1 for all z, because then R(0,¢") = g(k*) = a.
If g(k*) > o put

= 1i < .
v %ir]g g(k) < a

In this case, g is discontinuous at k£* and
kOPO(fl(X) = k*fo(X)) = g(k*) —v>a—v>0.
For x such that fi(xz) = k* fo(z) we define

Then it follows that
R0,8) = [ Fogue - (z) flv(da)
- ot Y d
o /{m:fl(w)_k*fo(m)} Og(k*) - 'UfO(x)y( ™)
—v4 %kopo(fl()() — K fo(X)) = a.

To see that R(1,¢") < R(1,6) we can proceed exactly as in Case 1 because k* is
finite. This finishes the proof that C’ is complete.

To reduce from C’ to C we need to show that if § € ¢’ \ C then there is a rule
0" € C that dominates 6. This will show that C is a complete class.

Take ¢’ € C’\ C. Then the test function is ¢g 4 for some v : X — [0, 1] such that
Py(y(X) > 0) > 0. Let dp be the test function with test function ¢g. Since f1(z) =0
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for all = in the set A = {z : ¢o,(x) # ¢o(x)} it follows that R(1,6) = R(1, o).
However,

R(0,6) = koEo[v(X)1a(X)] + ko Po(f1(X) > 0)
= koEo[y(X)1a(X)] + R(0,00) > R(0,dp).
Hence §p dominates §. It only remains to show that no element in C is dominated

by any other element in C. This shows the minimality of the class. The proof of
this final step is an exercise (Problem 29, p. 212). O



