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Lecture 6

11. Decision theory

Recall from Section 8 that for a decision rule δ and observation X = x we have
(in Bayesian setting) the posterior risk

r(δ | x) =
∫

Ω

L(θ, δ(x))µΘ|X(dθ | x),

where L(θ, δ(x)) =
∫

ℵ L(θ, a)δ(da;x) if δ is a randomized rule. If δ0 is a decision
rule such that for all x, r(δ0 | x) < ∞ and for all x and all decision rules δ
r(δ0 | x) ≤ r(δ | x), then δ0 is called a formal Bayes rule.

There is also a weaker concept than a formal Bayes rule. Denote by µΘ the
prior distribution of Θ. Together with fX|Θ this specifies the predictive (marginal)
distribution of X , µX . We call the function

r(µΘ, δ) =

∫

X

r(δ | x)µX(dx)

the Bayes risk and each δ that minimizes the Bayes risk is called a Bayes rule with
respect to µΘ, assuming r(η, δ) < ∞. The Bayes risk is the mean of the posterior
risk, before observing X = x.

11.1. Classical decision theory. In classical decision theory we condition on
Θ = θ and introduce the risk function

R(θ, δ) =

∫

X

L(θ, δ(x))µX|Θ(dx | θ).

That is, the conditional mean of the loss, given Θ = θ. Here we would like to find
a rule δ that minimizes the risk function simultaneously for all values of θ. As we
saw in the last lecture there may not be a rule that minimizes the risk function
simultaneously for all θ. Therefore we introduce the notion of admissible rules.

Definition 15. Let δ be a decision rule. If there exists a decision rule δ1 such
that R(θ, δ1) ≤ R(θ, δ) for all θ with strict inequality for some θ, then we say δ is
in-admissible and it is dominated by δ1. Otherwise, δ is admissible.

Of course, one should not use in-admissible decision rules.
As a weaker criterion one can, as in the Bayesian setting, take a prior distribution

µΘ for Θ and try to minimize
∫

Ω

R(θ, δ)µΘ(dθ).

Note that by Fubini’s theorem we have
∫

Ω

R(θ, δ)µΘ(dθ) =

∫

Ω

∫

X

L(θ, δ(x))µX|Θ(dx | θ)µΘ(dθ)

=

∫

X

∫

Ω

L(θ, δ(x))µΘ|X(dθ | x)µX(dx)

=

∫

X

r(δ | x)µX(dx) = r(η, δ)

which is the Bayes risk with respect to µΘ.
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Minimax rules. For a given problem there might be many admissible decision
rules, but we may not be able to find one which dominates all the others. In that
case we need a criteria to decide which rule to take. We have already seen the
possibility of choosing a Bayes rule with respect a some prior distribution η. A
different criteria is the following.

Definition 16. A decision rule δ0 is called minimax if

sup
θ∈Ω

R(θ, δ0) ≤ inf
δ
sup
θ∈Ω

R(θ, δ).

That is, a minimax has the smallest upper bound of the risk function. That is,
we prepare for the worst possible θ and choose the rule which has the smallest risk
for this worst θ. One could ask how minimax rules are connected to Bayes rules. If
λ is a prior for Θ we have

r(λ, δ) =

∫

Ω

R(θ, δ)λ(dθ).

Hence, if λ puts all its mass on those θ that maximizes R(θ, δ) we see that

sup
λ

r(λ, δ) = sup
θ

R(θ, δ).

This choice of λ depends on the decision rule δ.

Definition 17. A prior distribution λ0 for Θ is least favorable if infδ r(λ0, δ) =
supλ infδ r(λ, δ).

That is, λ0 is a prior such that the corresponding Bayes rule has the highest
possible risk.

For any fixed prior λ0 and decision rule δ0 we have

inf
δ
r(λ0, δ) ≤ r(λ0, δ0) ≤ sup

λ

r(λ, δ0).

Therefore we can introduce the following concept.

Definition 18. Let

V− ≡ sup
λ

inf
δ
r(λ, δ) ≤ inf

δ
sup
λ

r(λ, δ) = inf
δ
sup
θ

R(θ, δ) ≡ V −.

Then V− is the maximin value of the decision problem and V − is the minimax value
of the decision problem.

How can we check that a rule is minimax and a prior least favorable?

Theorem 14. If δ0 is a Bayes rule with respect to λ0 and R(θ, δ0) ≤ r(λ0, δ0) for
all θ, then δ0 is minimax and λ0 is least favorable.

Proof. Since

V − ≤ sup
θ

R(θ, δ0) ≤ r(λ0, δ0) = inf
δ
r(λ0, δ) ≤ V−

and V− ≤ V − it must be that V− = V − and the claim follows. �

The theorem gives you a condition to check but when can we actually find
minimax rules. We will consider the case where Ω is finite, Ω = {θ1, . . . , θk}. In
that case the risk function R(θ, δ) for a given decision rule δ is just a vector in R

k.



LECTURE NOTES 33

Definition 19. Suppose Ω = {θ1, . . . , θk}, let
R = {z ∈ R

k : zi = R(θi, δ), i = 1, . . . , k, for some decision rule δ}.
The set R is called the risk set. For any C ⊂ R

k the lower boundary is the set

{z ∈ C− : xi ≤ zi, i = 1 . . . , k and xi < zi for some i implies x /∈ C−}.
The lower boundary of the risk set is denoted ∂L. The risk set is closed from below
if ∂L ⊂ R.

Lemma 3. The risk set is convex.

Proof. For i = 1, 2 let zi ∈ R be points that correspond to the decision rules δi and
take λ ∈ [0, 1]. Then λz1+(1−λ)z2 is the risk function of the randomized decision
rule corresponding to taking δ1 with probability λ and δ2 with probability 1 − λ.
Hence, it belongs to the risk set R. �

Consider Example 3.72, p. 170 in Schervish “Theory of statistics”.

Theorem 15 (Minimax theorem). Suppose the loss function is bounded from below

and Ω is finite. Then supλ infδ r(λ, δ) = infδ supθ R(θ, δ) and a least favorable prior

λ0 exists. If R is closed from below, then there exists a minimax rule that is a Bayes

rule with respect to λ0.

Proof. For any real number s let As = {z ∈ R
k : zi ≤ s, i = 1, . . . , k}. That is, As

is an orthant. It is closed and convex for each s. Take s0 = inf{s : As ∩ R 6= ∅}.
Then

s0 = inf
δ
sup
θ

R(θ, δ).

Indeed, for each z ∈ As ∩ R there is a decision rule δ such that supθ R(θ, δ) =
maxi R(θi, δ) ≤ s. Taking inf over s corresponds exactly to taking inf over δ. Next
note that the interior of As0 is convex and does not intersect R. The separating
hyperplane theorem says that there exists a vector v and a real number c such that
vT z ≥ c for each z ∈ R and vT z ≤ c for each x in the interior of As0 . It is necessary
that each coordinate of v satisfies vj ≥ 0. Otherwise, if vj < 0 we can find a
sequence xn in the interior of As0 with limn xni = −∞ and all other xnj = s0 − ε

and then limn v
Txn = ∞ > c, which is a contradiction. If we put λ0j = vj/

∑k
j=1 vj

we get a probability measure on Ω which is least favorable. Indeed, since (s0, . . . , s0)

is in the closure of the interior of As0 it follows that c ≥ s0
∑k

j=1 vj and we have

inf
δ
r(λ0, δ) = inf

z∈R
λT
0 z ≥ c

∑k
j=1 vj

≥ s0 = inf
δ
sup
θ

R(θ, δ)

This shows that λ0 is least favorable.
We were not able to cover the proof that there exists a minimax rule. We refer

to the book (Schervish, p.173). �

11.2. On finding a formal Bayes rule. In Bayesian decision theory the following
is a good way to find a deterministic formal Bayes rule.

(1) Take x ∈ X .
(2) Find a ∈ ℵ that minimizes

∫

Ω L(θ, a)µΘ|X(dθ | x).
(3) Put δ(x) = a.
(4) Repeat for all x.
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However, it is not always that a formal Bayes rule exists, for instance the mini-
mum in step (2) may not exist in ℵ. Here is an example

Example 20. Let X ∼ N(θ, 1) and Θ ∼ N(0, 1) where Ω = R. Then the posterior
is N(x/2, 1/2). Let the action space be ℵ = R and the loss function L(θ, a) = 0 if
a ≥ θ, L(θ, a) = 1 if a < θ. That is, a loss occurs if our guess of θ is below θ. Then
for any x

∫

Ω

L(θ, a)µΘ|X(dθ | x) = µΘ|X(Θ > a | x) = 1− Φ
(a− x/2

1/
√
2

)

.

This converges to 0 as a → ∞, so the risk is minimized at a = ∞ but this is not in
the action space ℵ. For this example no formal Bayes rule exists.

12. The Neyman-Pearson fundamental lemma

Definition 20. A class C of decision rules is complete if for every δ /∈ C there exists
δ0 ∈ C that dominates δ, i.e. R(θ, δ0) ≤ R(θ, δ) ∀θ with strict inequality for some θ.

A class in minimal complete if no proper subclass is also complete.

To see the relation to admissible decision rules, we have the following:

Lemma 4. A minimal complete class consists exactly of the admissible decision

rules.

Proof. First we show that δ admissible implies δ ∈ C. Indeed, if δ /∈ C then there
exists δ0 ∈ C that dominates δ which contradicts that δ is admissible.

For the other inclusion we need to show that δ ∈ C implies δ is admissible.
Suppose it is not admissible. Then exists a dominating rule δ1. Either δ1 ∈ C or
δ1 /∈ C. In the first case put δ2 = δ1. In the second, there is δ2 ∈ C that dominates
δ1. Thus, in both cases δ2 ∈ C dominates δ. If δ′ is a rule that is dominated by
δ, then it is also dominated by δ2. This implies that C \ {δ} is complete. This
is a contradiction because we assumed that C is minimal complete. Hence, δ is
admissible. �

There is one, simple case, where a minimal complete class can be found. This is
called the Neyman-Pearson fundamental lemma.

Theorem 16. Let Ω = ℵ = {0, 1}, L(0, 0) = L(1, 1) = 0, L(1, 0) = k1 > 0, and
L(0, 1) = k0 > 0. Let fi(x) = dPi/dν where ν is P0 + P1. For δ, a decision rule,

let φ(x) = δ({1};x) be the test function of δ. Let C be the class of rules with test

functions of the form below:

For each k ∈ (0,∞) and each function γ : X → [0, 1],

φk,γ(x) =







1, f1(x) > kf0(x),
γ(x), f1(x) = kf0(x),
0, f1(x) < kf0(x).

For k = 0,

φ0(x) =

{

1, f1(x) > 0,
0, f1(x) = 0.

For k = ∞,

φ∞(x) =

{

1, f0(x) = 0,
0, f0(x) > 0.
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Then C is a minimal complete class.

Before we prove the result let us see what the decision rules are. The decision
rules are asssociated with a threshold k ∈ [0,∞].

• To k = 0 there corresponds one decision rule which says “choose a = 1 if
f1(x) > 0 and a = 0 otherwise”.

• To k = ∞ there corresponds one decision rule which says “choose a = 1 if
f0(x) = 0 and a = 0 otherwise”.

• To each k ∈ (0,∞) there are lots of decision rules. They all say that a = 1
should be chosen if it is sufficiently likely that θ = 1. That is: “choose
a = 1 if f1(x) > kf0(x), choose a = 0 if f1(x) < kf0(x), and in the event
that we cannot decide f1(x) = kf0(x) we choose a = 1 with probability
γ(x) where γ is some function γ : X → [0, 1]”.

Example 21. The Neyman-Pearson lemma can be used when deciding between
competing models. Suppose we have two competing models for the distribution
of X given by continuous densities f0 and f1 w.r.t. Lebesgue measure. Based on
observing X = x we have to decide which is the more appropriate one. Decisions
are a = 1 “f1 is correct density” and a = 0 “f0 is correct”. The Neyman-Pearson
lemma says that the admissible rules (the minimal complete class) are of the form:
for k ∈ (0,∞) choose a = 1 if f1(x) > kf1(x) and a = 0 if f1(x) < kf0(x). There is
no need to specify the case f1(x) = kf0(x) since this even has probability zero. Also
the cases k = 0 or ∞ corresponds to “always choose a = 1” and “always choose
a = 0”. None of these seem very desirable.

Example 22. If we continue the above example when f0(x) = λ−1
0 e−λ0x and

f1(x) = λ−1
1 e−λ1x we see that we choose a = 1 if

f1(x)

f0(x)
> k ⇐⇒ x ≤ logλ1 − log λ0 + log k

λ1 − λ0
.

You can think of the case k = 1 as the fair case where we choose the model which
is most likely. k > 1 penalizes choosing a = 1 whereas k < 1 penalizes choosing
a = 0.

Proof of Neyman-Pearson’s fundamental lemma. The proof is outlined as follows.
First we consider a larger class C′ which contains C and show that C′ is complete.
Then we will show that each rule in C′ is dominated by a rule in C and that C is
minimal complete.

The class C′ consists of the class C and in addition the rules with testfunction of
the form

φ0,γ(x) =

{

1, f1(x) > 0,
γ(x), f1(x) = 0.

We will show that C′ is complete. That is, for any rule δ /∈ C′ there is a δ′ ∈ C′ that
dominates δ. Let δ /∈ C′ be a rule with test function φ and put

α = R(0, δ) =

∫

X

[L(0, 0)(1− φ(x)) + L(0, 1)φ(x)]f0(x)ν(dx) =

∫

k0φ(x)f0(x)ν(dx).

We will now try to find a rule δ′ ∈ C′ with R(0, δ′) = α = R(0, δ) and R(1, δ′) <
R(1, δ). We define the function

g(k) =

∫

{f1(x)≥kf0(x)}

k0f0(x)ν(dx).
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Note that if γ(x) = 1 for all x and δ′ has test function φk,γ then g(k) = R(0, δ′).
We claim that he function g has the following properties:

• g(k) → 0 as k → ∞.
• g(0) = k0 ≥ α.
• g(k) is continuous from the left and has limit from the right.

Note that f1(x) < ∞ ν-a.e. and the set {f1(x) ≥ kf0(x)} decreases to ∅ with k.
Hence g(k) → 0 as k → ∞. For the second claim,

g(0) =

∫

X

k0f0(x)ν(dx) = k0 ≥ α.

Let us show that g is left continuous. We have that
⋂

k<m,k∈Q

{x : f1(x) ≥ kf0(x)} = {x : f1(x) ≥ mf0(x)}.

The monotone convergence theorem gives

lim
k↑m

g(k) = g(m),

We see that g is continuous from the left. To see is has limits from the right note
⋃

k>m,k∈Q

{x : f1(x) ≥ kf0(x)} = {x : f1(x) > mf0(x)} ∪ {x : f0(x) = 0},

and since g is bounded the monotone convergence theorem implies

lim
k↓m

g(k) =

∫

{f1(x)>mf0(x)}

k0f0(x)ν(dx)

so the limit from the right exists.
Note that if γ(x) = 0 for all x and δ′ is a rule with test function φm,γ , then

R(0, δ′) = limk↓m g(k). Since g is left continuous one of two cases can occur.

(i) either g(k) decreases continuously to the level α, or
(ii) g(k) jumps from a level above α to a level at most α.

In the first case there is a smallest k such that g(k) = α and we put k∗ = inf{k :
g(k) = α}. In the second case, there is a largest k such that g(k) > α and we put
k∗ = sup{k : g(k) > α}. In the case α = 0 it is possible that k∗ = ∞. If α > 0 we
must have k∗ < ∞ because g(k) ↓ 0 as k → ∞. We will now construct a decision
rule δ′ with test function φk∗,γ . There are three cases to consider:

(1) α = 0 and k∗ < ∞,
(2) α = 0 and k∗ = ∞,
(3) α > 0 and k∗ < ∞.

We proceed as follows. In each case 1, 2, and 3, we show that we can choose γ such
that R(0, δ′) = R(0, δ) = α and then that R(1, δ′) < R(1, δ).

Case 1: Take γ(x) = 0 for all x. Then

R(0, δ′) = lim
k↓k∗

g(k) = α = R(0, δ).

Define

h(x) = [φk∗,γ(x) − φ(x)][f1(x) − k∗f0(x)].

We know that φk∗,γ(x) = 1 ≥ φ(x) on {x : f1(x) − k∗f0(x) > 0} and φk∗,γ(x) =
0 ≤ φ(x) on {x : f1(x) − k∗f0(x) < 0}. Since φ is not of the form φk,γ for any k
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and γ there must be a set B such that ν(B) > 0 and h(x) > 0 on B. Using that
f0(x) + f1(x) = 1 (since ν = P0 + P1) we get

0 <

∫

B

h(x)ν(dx) ≤
∫

h(x)ν(dx)

=

∫

[φk∗,γ(x)− φ(x)]f1(x)ν(dx) − k∗
∫

[φk∗,γ(x) − φ(x)]f0(x)ν(dx)

=

∫

[φk∗,γ(x)− φ(x)]f1(x)ν(dx) +
k∗

k0
(α− α)

=
1

k1
[R(1, δ)−R(1, δ′)].

Hence R(1, δ) < R(1, δ′).
Case 2: In this case

R(0, δ′) =

∫

k0φ∞(x)f0(x)ν(dx) = 0 = α.

Then since 0 = α = R(0, δ), φ(x) = 0 for all x such that f0(x) > 0. Then

R(1, δ) = k1P1(f0(X) > 0) + k1

∫

{x:f0(x)=0}

[1− φ(x)]f1(x)ν)dx)

> k1P1(f0(X) > 0) = R(1, δ′).

Case 3: If g(k∗) = α we set γ(x) = 1 for all x, because then R(0, δ′) = g(k∗) = α.
If g(k∗) > α put

v = lim
k↓k∗

g(k) ≤ α.

In this case, g is discontinuous at k∗ and

k0P0(f1(X) = k∗f0(X)) = g(k∗)− v > α− v ≥ 0.

For x such that f1(x) = k∗f0(x) we define

0 ≤ γ(x) =
α− v

g(k∗)− v
< 1.

Then it follows that

R(0, δ′) =

∫

k0φk∗,γ(x)f0(x)ν(dx)

= v +

∫

{x:f1(x)=k∗f0(x)}

k0
α− v

g(k∗)− v
f0(x)ν(dx)

= v +
α− v

g(k∗)− v
k0P0(f1(X) = k∗f0(X)) = α.

To see that R(1, δ′) < R(1, δ) we can proceed exactly as in Case 1 because k∗ is
finite. This finishes the proof that C′ is complete.

To reduce from C′ to C we need to show that if δ ∈ C′ \ C then there is a rule
δ′ ∈ C that dominates δ. This will show that C is a complete class.

Take δ′ ∈ C′ \ C. Then the test function is φ0,γ for some γ : X → [0, 1] such that
P0(γ(X) > 0) > 0. Let δ0 be the test function with test function φ0. Since f1(x) = 0
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for all x in the set A = {x : φ0,γ(x) 6= φ0(x)} it follows that R(1, δ) = R(1, δ0).
However,

R(0, δ) = k0E0[γ(X)IA(X)] + k0P0(f1(X) > 0)

= k0E0[γ(X)IA(X)] +R(0, δ0) > R(0, δ0).

Hence δ0 dominates δ. It only remains to show that no element in C is dominated
by any other element in C. This shows the minimality of the class. The proof of
this final step is an exercise (Problem 29, p. 212). �


