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LECTURE 7

13. POINT ESTIMATION

Let © be a parameter with parameter space {2 and g : ) — G a function of ©.
The objective of point estimation is to find a guess for the “true” value 6 of © used
to generate the data. Alternatively, to find the true value of g(©), some function
of the parameter. For instance, if © is multidimensional we might be interested in
just the first component of O, say.

Definition 21. Let G’ D G. A measurable function ¢ : X — G’ is called an
estimator of g(©). Tt is called an unbiased estimator if Ey[¢(X)] = g(0) for all
0 € Q). The bias is defined as

by(0) = Eg[¢(X)] — 9(0)-

13.1. Moment matching — An engineering approach. The first approach we
will consider is called moment matching or method of moments. This is sort of an
engineering approach of fiddeling with the parameters until the sample moments
matches the theoretical moments.

Let X1,...,X, be an iid sample from fyjo(z | 6), let px(6) = Eg[X[] be the
k:th moment and

mig = % in
=1

be the k:th sample moment. Find € such that p;(0) = m; for i = 1,..., k. Here
one has to decide how many moments to fit. As a rule of thumb, the number of
moments to fit should equal the dimension of ©. Then you have as many equations
as you have unknown variables.

Example 23. Suppose X1, ..., X,, areiid N(u,0?). Then p; = pand pug = o2+ >
and to match the moments we need to solve
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which gives

In this case it happens to result in a sensible estimator.

13.2. Maximum likelihood estimation. A very popular method to find estima-
tors is the maximum likelihood method.

Definition 22. Let fxjo(x | ) be the conditional density of X given © = 6. If

x is observed the function 0 — fx|e(x | 0) is called the likelihood function. Any
random quantity © such that

Igl&%(fm@(X 10) = fxje(X | ©)

is called a mazimum likelihood estimator (MLE) of ©.
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When interested in estimating a function g(©) we have an invariance property;
the MLE of ¢(0) is equal to g(©). But wait! one has to be careful if g is not
one-to-one.

Let ¥ = g(©) be the new parameter. If g is one-to-one we can write
fxpu(@ | ¢) = fxje(@ | g7 ()
for the likelihood of W. If ¢) maximizes the left-hand-side we see that g~1(¢) = 6

and hence g(0) = 1.
If ¢ is not one-to-one we could introduce the induced likelihood of ¢ by

L* ()= sup fxjel(z|0)
{0:9(0)=2}

and call the maximizer of L* the MLE of W. Then we have the following result

Theorem 17. Let g : Q — G be a measurable function. ]fé is an MLFE of ©, then
9(©) is an MLE of g(©).

Proof. Let 1 be the maximizer of L*. We need to show that L*(¢)) = L*(g(f)),
where L(0) = fxjo(x | 8). Note that

sup L*(¢) =sup sup L(0) =sup L(0) = L(0).
P ¢ {0:9(0)=v} 4

Then the claim follows since

L) = s L©) = L*(g(0).
{0:9(8)=g(0)}

d

13.3. Bayesian decision theory and estimation. Within the Bayesian method-
ology one obtains the posterior distribution of © given X = z. Thus we get an entire
distribution, not only a particular value. The most common choices for deciding
on a point estimate in the Bayesian context is using either

e MAP - the maximum of the posterior distribution, or
e the mean of the posterior distribution, or
e the median of the posterior distribution.

These choices seem intuitive if the posterior is unimodal and reasonably concen-
trated (by this I mean that you can imagine the posterior being a normal distribu-
tion, or deviate slightly from a normal).

The formal approach to Bayesian point estimation is through the language of
decision theory. The problem of estimating g(©) can be viewed as a decision prob-
lem where the action space is G’. The decision rule is to take the action ¢(X). The
loss function is usually increasing as a function of the distance between g(©) and
#(X). The most common is the square loss with L(#,a) = (g(f) —a)?. In Bayesian
decision theory we look for a formal Bayes rule. For a quadratic loss function one
should use the posterior mean.

Proposition 1. Let g: Q — G and X = G. Suppose the loss function is L(0,a) =
(g(0) — a)?. If the posterior variance is finite, then a formal Bayes rule is E[g(©)
X =1z
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Proof. For any decision rule ¢,
(6 12) = [ (906) - 5(0))Puerx(d9] 2
Q
= E[9(0)? | X = a] - 26(x)E[g(©) | X = a] +d(x)*.
This is minimized by taking §(z) = E[g(0) | X = x]. O

Another loss function that increases as a function of the distance is L(0,a) =
|0 — a|. This loss function suggests using the median of the posterior distribution.
More generally, we have the following.

Theorem 18. Suppose © has finite posterior mean. For the loss function
L(0,a) = c(a — 0)I{a>ey + (1 — ¢)(0 — a)I{a<py
a formal Bayes rule is the 1 — ¢ quantile of the posterior distribution of ©.
Proof. Suppose a’ is the 1 — ¢ quantile of ug x (- | 2). Then
po|x((—o0,al | x) > 1 —¢, pex([a’,o0)|x)>c.
If a > @’ then

cla—a’), a >0,
L(eua)_L(eua/): C(a_a’/)_(e_a/)a CL29>CL/,
(1-c¢)(a' —a), 0> a.
0, a >0,

=cla—ad)+S d -0, a>60>d,
a —a, 0>a.

Hence the difference in posterior risks is

o) =rla | 2) =)+ [ @~ Do (@0 2) 4o —a)orx(0,09) | )

> cla— a) ( G)MO\X((G ,00) | )
= (a—d')(c - pe|x((a’,00) | z)).
Since uO|X((a o0) | #) < ¢ we have r(a | ) > r(a’ | ). A similar computation

with a < a’ gives also 7(a | ) > r(a’ | ). Hence @’ provides the minimum posterior
risk. g

If we choose ¢ = 1/2 then we get the median as a formal Bayes rule.

14. POINT ESTIMATION AND CLASSICAL DECISION THEORY

The problem of estimating ¢g(©) where g : @ — G can be viewed as a decision
problem where the action space is G’ D G. The decision rule is to take the action
d(X) where ¢ : X — G’ is the point estimator. The loss function is usually
increasing as a function of the distance between ¢g(0) and ¢(X). The most common
is the square loss with L(0,a) = (g(6) — a)? which gives the risk function

R(9,¢) = Eo[(9(0) — ¢(X))?] = b3(6) + Varg(X),

where by (0) is the bias Eg[¢p(X)]—g(#). It is convenient to use unbiased estimators
(bg(0) = 0 for all §) as they do “on average” a good job of estimating the unknown
parameter.
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Here is a natural optimality criteria for unbiased estimators.

Definition 23. An unbiased estimator ¢ is called uniformly minimum variance un-
biased estimator (UMVUE) if ¢ has finite variance and for every unbiased estimator

3, Varg(¢(X)) < Varg(4(X)).

With this definition in mind we would like to check if a suggested estimator
has as low variance as possible. This will be easier if we require some regularity
on the distributions at hand. These conditions are satisfied for most examples we
encounter in practise.

Definition 24. Suppose O is k-dimensional and for each 6, Py has density fx|o( |
) with respect to v. Suppose

(i) the derivative a%ifX\@(x | 0) exists for all 0, each i, and every x in a set B
with v(B°) =0
(i) [y fxje(x | O)v(dx) can be differentiated under the integral sign with re-
spect to each coordinate of 6, and
(iii) the set C' = {x: fx|o(x | #) > 0} does not depend on 6.

Then fx|e is said to satisfy the Fisher information (FI) regularity conditions.

Definition 25. Suppose fx|e satisfies the FI regularity conditions. The random
function U(X) = (U1(X), ..., Ux(X)) given by

0
Ui(X) = 6_9iIngX|6(X | 6)

is called the score function. The k X k-matrix Zx (6) with entries
(Zx(0))sj = cove(Ui(X), U; (X))

is called the Fisher information matriz about © based on X.
If T is a statistic the conditional score function is given by

0
Us(X | t) = ﬁlogfxme(X |t,0)

and the conditional Fisher information matriz Zxp(0 | t) is given by
(Zx|r(0 [ 1))i = cove(Us(X [ 1), Uj(X | 1)).

Example 24. Suppose o2 is known and X ~ N(6,02) given © = 6. Then the FI
regularity conditions are satisfied and

Fxiole | 0) = == 5
olT = e 202
x1o 2mo?
X -0
U(X): o2
1
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Hence, if the variance is small there is a lot of information about ©. Similarly, if
X = (Xy,...,X,) are conditionally IID N(6,0?) given © = . Then

1 X (@i—0)?
202

Ixie(z]0) = We ;

U(X) _ Z?:l(Xi — 9)

o2 ’

Ix(0) = —

o2’
Hence, more data also gives more information.

For any estimator (biased or unbiased) the next theorem give a lower bound on
the variance when the FI regularity conditions hold.

Theorem 19 (Cramér-Rao lower bound). Suppose the FI regularity conditions
hold and let Ix(0) be the Fisher information. Suppose that Ix(0) > 0 for all 0.
Let ¢(X) be a one-dimensional statistic with Eg[|¢p(X)|] < oo for all 6. Suppose
also that [ ¢(x)fxe(z | O)v(dx) can be differentiated under the integrals sign with
respect to 0. Then

(D9 Eg[p(X)])?
)

Proof. Let B be the set with v(B) = 0 such that for all 6, 9y, fx|e(x | 0) exists
for . ¢ B. Let C = {z : fxjo(z | ) > 0}. Put D = C'N B so that for all 6,
Py(D) =1, and [}, fxje(z | O)v(dz) = 1. Take the derivative w.r.t. § gives
0= [ autxiole] O)v(dz)
D

_ [ Sixe@l6) o e
= b Tre@g) xel | fvide)

= Ey[0plog fxje(z | 0)].
Similarly by differentiating Ep[¢p(X)] we get
Qo)) = [ 6@nfxiale | Ov(ds)

= Ep[¢p(X)0 log fxje(X | 0)
= Ey[(¢(X) — Eg[¢(X)])0p log fxje(X | 6).
——

=0

Varg(¢(X)) >

Using Cauchy-Schwarts inequality

00 Eglo(X)]| < (Eal(0(X) — Bolo(X)])?]) " (Esl(0y log Fr0(X | 0))2)
= \/Varg ¢(X)\/Zx(6).

1/2

O

Note that the only inequality used in the proof is the Cauchy-Schwartz inequality.
Hence, a necessary and sufficient condition for the Cramer-Rao lower bound to be
achieved is that the inequality becomes an equality. This happens if and only if
the two quantities are linearly related, i.e. if EX = 0 and EY = 0 then |[EXY| =
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(EX?)Y/2(EY?2)Y/2 iff there is a # 0 such that X = aY. Thus in our case the
inequality becomes equality iff there is a function a(6) such that
9plog fxje(x | 0) = a(0)(¢(x) — Eplp(X))).
———
d(0)

Solving this differential equation we see that
fxje(@ | 0) = c(0)h(x) exp{m(0)¢(x)},

with ¢(0) = exp{— [a(#)d(0)df} and n(#) = [a(#)df. That is, the Cramér-Rao
lower bound is sharp only in a one-parameter exponential family with ¢(z) being
a sufficient statistic.

14.1. Point estimation, sufficient statistics, and nonrandomized decision
rules. Recall that in decision theory decisions only need to be based on sufficient
statistics. We showed this in Theorem 9 (Lecture 6) where we showed that if
0 is a decision rule and T is a sufficient statistic then there is a decision rule
0 (t; A) = E[6(X;A) | T = t] with R(0,61) = R(6,0) for all . However, the &,
may be randomized even if § is not. It is not very nice to use randomized point
estimators so a question is if it can be avoided. The next two results come up with
a solution in the case of point estimation.

Proposition 2. Suppose X C R™ is convezx and for each 6, a — L(0,a) is convex.
Let 6 be a randomized rule, B = {x : fN |ald(da; x) < oo} and put

50(X) = [ ad(daia),
R
the mean of the randomized rule 6. Then L(0,d0(x)) < L(0,(x)) for each 0 and
z € B.

Proof. By Jensen’s inequality

L(6,00(x)) = L(G,/

R

ad(da;x)) < / L(0,a)0(da;z) = L(0,5(x)).

R
O

An important result in this area is the next theorem. It says when we can find
a good deterministic rule.

Theorem 20 (Rao-Blackwell theorem). Suppose X C R™ is convex, for each 0,
a— L(0,a) is convex, T is a sufficient statistic, and 0y a deterministic rule with
Ep[||60(X)|]] < co. Put

d1(t) = Elbo(X) | T =],
then R(0,61) < R(0, o).
Proof. Think of §p as random by putting d5(A; z) = I4(do(x)). We also put
01(Ast) = E[03(A; X) | T =1t],

5a(t) = /N ada(das t).
Then,
R(0,6,) < {Thm 2} < R(0,64) — {Thm 9} — R(0,65) — R(0, 6.
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It remains to show dy = d1:
5a(t) = / a8 (das t) — E[/ ads(da; X) | T = 1] = E5o(X) | T = 1] = 61 (8).
N N
0

Let’s be explicit in the context if point estimation. If ¢(X) is an unbiased
estimator and L(6,a) = (g(f) — a)? is the loss function, then if T is a sufficient
statistic

¢(T) = Ep[(X) | T| = E[(X) | T]
satisfies Eg[p(T)] = Ep[p(X)] = ¢(0), so ¢ is unbiased and Varg(¢(T')) = R(0, ¢) <

R(6,1) = Varg(y(X)). Thus,
Complete sufficient statistics play an important role for unbiased estimators.

Theorem 21. If T is a complete statistic, then all unbiased estimators of g(©)
that are functions of T alone, are equal Py-a.s. for all € Q. If there exists an
unbiased estimator that is a function of a complete sufficient statistic, then it is

UMVUE.

Proof. Suppose ¢1(T') and ¢3(T') are unbiased estimators of g(0). Then Eg[¢1(T)—
¢2(T)] = 0 for each 0 and hence, by completeness, ¢1(T) = ¢p2(T) Pp-a.s.

Suppose there is an unbiased ¢ with finite variance. Put ¢3(T) = E[¢p(X) | T).
Then ¢3 is unbiased and the Rao-Blackwell theorem says R(6, ¢3) < R(6, ) for
all #. Since the risk function of unbiased estimators is the variance, this makes ¢3
UMVUE. (]



