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Lecture 7

13. Point Estimation

Let Θ be a parameter with parameter space Ω and g : Ω → G a function of Θ.
The objective of point estimation is to find a guess for the “true” value θ of Θ used
to generate the data. Alternatively, to find the true value of g(Θ), some function
of the parameter. For instance, if Θ is multidimensional we might be interested in
just the first component of Θ, say.

Definition 21. Let G′ ⊃ G. A measurable function φ : X → G′ is called an
estimator of g(Θ). It is called an unbiased estimator if Eθ[φ(X)] = g(θ) for all
θ ∈ Ω. The bias is defined as

bφ(θ) = Eθ[φ(X)]− g(θ).

13.1. Moment matching – An engineering approach. The first approach we
will consider is called moment matching or method of moments. This is sort of an
engineering approach of fiddeling with the parameters until the sample moments
matches the theoretical moments.

Let X1, . . . , Xn be an iid sample from fX|Θ(x | θ), let µk(θ) = Eθ[X
k
i ] be the

k:th moment and

mk =
1

n

n∑

i=1

Xk
i

be the k:th sample moment. Find θ such that µi(θ) = mi for i = 1, . . . , k. Here
one has to decide how many moments to fit. As a rule of thumb, the number of
moments to fit should equal the dimension of Θ. Then you have as many equations
as you have unknown variables.

Example 23. Suppose X1, . . . , Xn are iid N(µ, σ2). Then µ1 = µ and µ2 = σ2+µ2

and to match the moments we need to solve

µ = X̄, σ2 + µ2 =
1

n

n∑

i=1

X2
i ,

which gives

µ = X̄, σ2 =
1

n

n∑

i=1

(Xi − X̄)2.

In this case it happens to result in a sensible estimator.

13.2. Maximum likelihood estimation. A very popular method to find estima-
tors is the maximum likelihood method.

Definition 22. Let fX|Θ(x | θ) be the conditional density of X given Θ = θ. If
x is observed the function θ 7→ fX|Θ(x | θ) is called the likelihood function. Any

random quantity Θ̂ such that

max
θ∈Ω

fX|Θ(X | θ) = fX|Θ(X | Θ̂)

is called a maximum likelihood estimator (MLE) of Θ.
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When interested in estimating a function g(Θ) we have an invariance property;

the MLE of g(Θ) is equal to g(Θ̂). But wait! one has to be careful if g is not
one-to-one.

Let Ψ = g(Θ) be the new parameter. If g is one-to-one we can write

fX|Ψ(x | ψ) = fX|Θ(x | g−1(ψ))

for the likelihood of Ψ. If ψ̂ maximizes the left-hand-side we see that g−1(ψ̂) = θ̂

and hence g(θ̂) = ψ̂.
If g is not one-to-one we could introduce the induced likelihood of ψ by

L∗(ψ) = sup
{θ:g(θ)=ψ}

fX|Θ(x | θ)

and call the maximizer of L∗ the MLE of Ψ. Then we have the following result

Theorem 17. Let g : Ω → G be a measurable function. If Θ̂ is an MLE of Θ, then
g(Θ̂) is an MLE of g(Θ).

Proof. Let ψ̂ be the maximizer of L∗. We need to show that L∗(ψ̂) = L∗(g(θ̂)),
where L(θ) = fX|Θ(x | θ). Note that

sup
ψ
L∗(ψ) = sup

ψ
sup

{θ:g(θ)=ψ}

L(θ) = sup
θ
L(θ) = L(θ̂).

Then the claim follows since

L(θ̂) = sup
{θ:g(θ)=g(θ̂)}

L(θ) = L∗(g(θ̂)).

�

13.3. Bayesian decision theory and estimation. Within the Bayesian method-
ology one obtains the posterior distribution of Θ givenX = x. Thus we get an entire
distribution, not only a particular value. The most common choices for deciding
on a point estimate in the Bayesian context is using either

• MAP - the maximum of the posterior distribution, or
• the mean of the posterior distribution, or
• the median of the posterior distribution.

These choices seem intuitive if the posterior is unimodal and reasonably concen-
trated (by this I mean that you can imagine the posterior being a normal distribu-
tion, or deviate slightly from a normal).

The formal approach to Bayesian point estimation is through the language of
decision theory. The problem of estimating g(Θ) can be viewed as a decision prob-
lem where the action space is G′. The decision rule is to take the action φ(X). The
loss function is usually increasing as a function of the distance between g(Θ) and
φ(X). The most common is the square loss with L(θ, a) = (g(θ)− a)2. In Bayesian
decision theory we look for a formal Bayes rule. For a quadratic loss function one
should use the posterior mean.

Proposition 1. Let g : Ω → G and ℵ = G. Suppose the loss function is L(θ, a) =
(g(θ)− a)2. If the posterior variance is finite, then a formal Bayes rule is E[g(Θ) |
X = x].
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Proof. For any decision rule δ,

r(δ | x) =
∫

Ω

(g(θ)− δ(x))2µΘ|X(dθ | x)

= E[g(Θ)2 | X = x]− 2δ(x)E[g(Θ) | X = x] + δ(x)2.

This is minimized by taking δ(x) = E[g(Θ) | X = x]. �

Another loss function that increases as a function of the distance is L(θ, a) =
|θ − a|. This loss function suggests using the median of the posterior distribution.
More generally, we have the following.

Theorem 18. Suppose Θ has finite posterior mean. For the loss function

L(θ, a) = c(a− θ)I{a≥θ} + (1 − c)(θ − a)I{a<θ},

a formal Bayes rule is the 1− c quantile of the posterior distribution of Θ.

Proof. Suppose a′ is the 1− c quantile of µΘ|X(· | x). Then
µΘ|X((−∞, a′] | x) ≥ 1− c, µΘ|X([a′,∞) | x) ≥ c.

If a > a′ then

L(θ, a)− L(θ, a′) =







c(a− a′), a′ ≥ θ,
c(a− a′)− (θ − a′), a ≥ θ > a′,
(1− c)(a′ − a), θ > a.

= c(a− a′) +







0, a′ ≥ θ,
a′ − θ, a ≥ θ > a′,
a′ − a, θ > a.

Hence the difference in posterior risks is

r(a | x)− r(a′ | x) = c(a− a′) +

∫

(a′,a]

(a′ − θ)µΘ|X(dθ | x)
︸ ︷︷ ︸

≥0

+(a′ − a)µΘ|X(a,∞) | x)

≥ c(a− a′) + (a′ − a)µΘ|X((a′,∞) | x)
= (a− a′)(c− µΘ|X((a

′,∞) | x)).
Since µΘ|X((a′,∞) | x) ≤ c we have r(a | x) ≥ r(a′ | x). A similar computation
with a < a′ gives also r(a | x) ≥ r(a′ | x). Hence a′ provides the minimum posterior
risk. �

If we choose c = 1/2 then we get the median as a formal Bayes rule.

14. Point estimation and classical decision theory

The problem of estimating g(Θ) where g : Ω → G can be viewed as a decision
problem where the action space is G′ ⊃ G. The decision rule is to take the action
φ(X) where φ : X → G′ is the point estimator. The loss function is usually
increasing as a function of the distance between g(Θ) and φ(X). The most common
is the square loss with L(θ, a) = (g(θ)− a)2 which gives the risk function

R(θ, φ) = Eθ[(g(θ) − φ(X))2] = b2φ(θ) + Varθ(X),

where bφ(θ) is the bias Eθ[φ(X)]−g(θ). It is convenient to use unbiased estimators
(bφ(θ) = 0 for all θ) as they do “on average” a good job of estimating the unknown
parameter.
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Here is a natural optimality criteria for unbiased estimators.

Definition 23. An unbiased estimator φ is called uniformly minimum variance un-
biased estimator (UMVUE) if φ has finite variance and for every unbiased estimator
ψ, Varθ(φ(X)) ≤ Varθ(ψ(X)).

With this definition in mind we would like to check if a suggested estimator
has as low variance as possible. This will be easier if we require some regularity
on the distributions at hand. These conditions are satisfied for most examples we
encounter in practise.

Definition 24. Suppose Θ is k-dimensional and for each θ, Pθ has density fX|Θ(x |
θ) with respect to ν. Suppose

(i) the derivative ∂
∂θi
fX|Θ(x | θ) exists for all θ, each i, and every x in a set B

with ν(Bc) = 0,
(ii)

∫

X
fX|Θ(x | θ)ν(dx) can be differentiated under the integral sign with re-

spect to each coordinate of θ, and
(iii) the set C = {x : fX|Θ(x | θ) > 0} does not depend on θ.

Then fX|Θ is said to satisfy the Fisher information (FI) regularity conditions.

Definition 25. Suppose fX|Θ satisfies the FI regularity conditions. The random
function U(X) = (U1(X), . . . , Uk(X)) given by

Ui(X) =
∂

∂θi
log fX|Θ(X | θ)

is called the score function. The k × k-matrix IX(θ) with entries

(IX(θ))ij = covθ(Ui(X), Uj(X))

is called the Fisher information matrix about Θ based on X .
If T is a statistic the conditional score function is given by

Ui(X | t) = ∂

∂θi
log fX|T,Θ(X | t, θ)

and the conditional Fisher information matrix IX|T (θ | t) is given by

(IX|T (θ | t))ij = covθ(Ui(X | t), Uj(X | t)).

Example 24. Suppose σ2 is known and X ∼ N(θ, σ2) given Θ = θ. Then the FI
regularity conditions are satisfied and

fX|Θ(x | θ) = 1√
2πσ2

e−
(x−θ)2

2σ2 ,

U(X) =
X − θ

σ2
,

IX(θ) =
1

σ2
.
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Hence, if the variance is small there is a lot of information about Θ. Similarly, if
X = (X1, . . . , Xn) are conditionally IID N(θ, σ2) given Θ = θ. Then

fX|Θ(x | θ) = 1

(2πσ2)n/2
e−

∑n
i=1(xi−θ)2

2σ2 ,

U(X) =

∑n
i=1(Xi − θ)

σ2
,

IX(θ) =
n

σ2
.

Hence, more data also gives more information.

For any estimator (biased or unbiased) the next theorem give a lower bound on
the variance when the FI regularity conditions hold.

Theorem 19 (Cramér-Rao lower bound). Suppose the FI regularity conditions
hold and let IX(θ) be the Fisher information. Suppose that IX(θ) > 0 for all θ.
Let φ(X) be a one-dimensional statistic with Eθ[|φ(X)|] < ∞ for all θ. Suppose
also that

∫
φ(x)fX|Θ(x | θ)ν(dx) can be differentiated under the integrals sign with

respect to θ. Then

Varθ(φ(X)) ≥ (∂θEθ[φ(X)])2

IXθ)
.

Proof. Let B be the set with ν(B) = 0 such that for all θ, ∂θifX|Θ(x | θ) exists
for x /∈ B. Let C = {x : fX|Θ(x | θ) > 0}. Put D = C ∩ Bc so that for all θ,

Pθ(D) = 1, and
∫

D
fX|Θ(x | θ)ν(dx) = 1. Take the derivative w.r.t. θ gives

0 =

∫

D

∂θfX|Θ(x | θ)ν(dx)

=

∫

D

∂θfX|Θ(x | θ)
fX|Θ(x | θ) fX|Θ(x | θ)ν(dx)

= Eθ[∂θ log fX|Θ(x | θ)].
Similarly by differentiating Eθ[φ(X)] we get

∂θEθ[φ(X)] =

∫

φ(x)∂θfX|Θ(x | θ)ν(dx)

= Eθ[φ(X)∂θ log fX|Θ(X | θ)
= Eθ[(φ(X)− Eθ[φ(X)]

︸ ︷︷ ︸

=0

)∂θ log fX|Θ(X | θ).

Using Cauchy-Schwarts inequality

|∂θEθ[φ(X)]| ≤
(

Eθ[(φ(X)− Eθ[φ(X)])2]
)1/2(

Eθ[(∂θ log fX|Θ(X | θ))2]
)1/2

=
√

Varθ φ(X)
√

IX(θ).

�

Note that the only inequality used in the proof is the Cauchy-Schwartz inequality.
Hence, a necessary and sufficient condition for the Cramer-Rao lower bound to be
achieved is that the inequality becomes an equality. This happens if and only if
the two quantities are linearly related, i.e. if EX = 0 and EY = 0 then |EXY | =
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(EX2)1/2(EY 2)1/2 iff there is a 6= 0 such that X = aY . Thus in our case the
inequality becomes equality iff there is a function a(θ) such that

∂θ log fX|Θ(x | θ) = a(θ)(φ(x) − Eθ[φ(X)]
︸ ︷︷ ︸

d(θ)

).

Solving this differential equation we see that

fX|Θ(x | θ) = c(θ)h(x) exp{π(θ)φ(x)},
with c(θ) = exp{−

∫
a(θ)d(θ)dθ} and π(θ) =

∫
a(θ)dθ. That is, the Cramér-Rao

lower bound is sharp only in a one-parameter exponential family with φ(x) being
a sufficient statistic.

14.1. Point estimation, sufficient statistics, and nonrandomized decision

rules. Recall that in decision theory decisions only need to be based on sufficient
statistics. We showed this in Theorem 9 (Lecture 6) where we showed that if
δ is a decision rule and T is a sufficient statistic then there is a decision rule
δ1(t;A) = E[δ(X ;A) | T = t] with R(θ, δ1) = R(θ, δ) for all θ. However, the δ1
may be randomized even if δ is not. It is not very nice to use randomized point
estimators so a question is if it can be avoided. The next two results come up with
a solution in the case of point estimation.

Proposition 2. Suppose ℵ ⊂ R
m is convex and for each θ, a 7→ L(θ, a) is convex.

Let δ be a randomized rule, B = {x :
∫

ℵ |a|δ(da;x) <∞} and put

δ0(X) =

∫

ℵ

aδ(da;x),

the mean of the randomized rule δ. Then L(θ, δ0(x)) ≤ L(θ, δ(x)) for each θ and
x ∈ B.

Proof. By Jensen’s inequality

L(θ, δ0(x)) = L(θ,

∫

ℵ

aδ(da;x)) ≤
∫

ℵ

L(θ, a)δ(da;x) = L(θ, δ(x)).

�

An important result in this area is the next theorem. It says when we can find
a good deterministic rule.

Theorem 20 (Rao-Blackwell theorem). Suppose ℵ ⊂ R
m is convex, for each θ,

a 7→ L(θ, a) is convex, T is a sufficient statistic, and δ0 a deterministic rule with
Eθ[‖δ0(X)‖] <∞. Put

δ1(t) = E[δ0(X) | T = t],

then R(θ, δ1) ≤ R(θ, δ0).

Proof. Think of δ0 as random by putting δ3(A;x) = IA(δ0(x)). We also put

δ4(A; t) = E[δ3(A;X) | T = t],

δ2(t) =

∫

ℵ

aδ4(da; t).

Then,

R(θ, δ2) ≤ {Thm 2} ≤ R(θ, δ4) = {Thm 9} = R(θ, δ3) = R(θ, δ0).
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It remains to show δ2 = δ1:

δ2(t) =

∫

ℵ

aδ4(da; t) = E[

∫

ℵ

aδ3(da;X) | T = t] = E[δ0(X) | T = t] = δ1(t).

�

Let’s be explicit in the context if point estimation. If ψ(X) is an unbiased
estimator and L(θ, a) = (g(θ) − a)2 is the loss function, then if T is a sufficient
statistic

φ(T ) = Eθ[ψ(X) | T ] = E[ψ(X) | T ]
satisfies Eθ[φ(T )] = Eθ[ψ(X)] = g(θ), so φ is unbiased and Varθ(φ(T )) = R(θ, φ) ≤
R(θ, ψ) = Varθ(ψ(X)). Thus,

Complete sufficient statistics play an important role for unbiased estimators.

Theorem 21. If T is a complete statistic, then all unbiased estimators of g(Θ)
that are functions of T alone, are equal Pθ-a.s. for all θ ∈ Ω. If there exists an
unbiased estimator that is a function of a complete sufficient statistic, then it is
UMVUE.

Proof. Suppose φ1(T ) and φ2(T ) are unbiased estimators of g(Θ). Then Eθ[φ1(T )−
φ2(T )] = 0 for each θ and hence, by completeness, φ1(T ) = φ2(T ) Pθ-a.s.

Suppose there is an unbiased φ with finite variance. Put φ3(T ) = E[φ(X) | T ].
Then φ3 is unbiased and the Rao-Blackwell theorem says R(θ, φ3) ≤ R(θ, φ) for
all θ. Since the risk function of unbiased estimators is the variance, this makes φ3
UMVUE. �


