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Lecture 9

17. Hypothesis testing

A special type of decision problem is hypothesis testing. We partition the pa-
rameter space into ΩH ∪ΩA with ΩH ∩ΩA = ∅. We write

H : Θ ∈ ΩH

A : Θ ∈ ΩA.

A decision problem is called hypothesis testing if ℵ = {0, 1} and

L(θ, 1) > L(θ, 0), θ ∈ ΩH ,

L(θ, 1) < L(θ, 0), θ ∈ ΩA.

The action a = 1 is called rejecting the hypothesis and a = 0 is called not rejecting
the hypothesis. Note that the condition above says that the loss is greater if we
reject the hypothesis than if we do not reject when the hypothesis is true, and
similarly the loss is greater if we do not reject when the hypothesis is false.

• Type I error: If we reject H when H is true we have made a type I error.
• Tupe II error: If we do not reject H when H is false we have made a type
II error.

We can put

L(θ, 0) = 0, θ ∈ ΩH , not reject when H true,

L(θ, 1) = c, θ ∈ ΩH , reject when H true,

L(θ, 0) = 1, θ ∈ ΩA, not reject when H is false,

L(θ, 1) = 0, θ ∈ ΩA, reject when H false.

Such a loss function is called a 0 − 1 − c loss function. If c = 1 it is a 0 − 1 loss
function.

Here are some standard definitions:

• The test function of a test is the function φ : X → [0, 1] given by

φ(x) = δ({1};x),

the probability of choosing a = 1 (reject) when we observe x.
• The power function of a test φ is

βφ(θ) = Eθφ(X).

It is the probability to reject H given Θ = θ.
• The characteristic operating curve is ρφ = 1 − βφ. It is the probability of
not rejecting H given Θ = θ.

• The size of a test is supθ∈ΩH
βφ(θ). It is the maximum probability of

rejecting H when H is true.
• The test is called level α if its size is at most α.
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17.1. Hypothesis testing in Bayesian case. In the Bayesian setting the hy-
pothesis is simply the decision problem with ℵ = {0, 1} and 0− 1− c-loss function.
Hence, the posterior risk is

r(1 | x) = cµΘ|X(ΩH | x),

r(0 | x) = µΘ|X(ΩA | x).

The optimal decision is to take a = 1 “reject the hypothesis” if

cµΘ|X(ΩH | x) < µΘ|X(ΩA | x).

This is equivalent to rejecting the hypothesis if

µΘ|X(ΩH | x) <
1

1 + c
,

that is, if the posterior odds are too low.

Simple-simple hypothesis.

Definition 26. Let Ω = {θ0, θ1}. The hypothesis H : Θ = θ0 versus A : Θ = θ1 is
called a simple-simple hypothesis.

Let us write f0 for the density when Θ = θ0 and f1 when Θ = θ1. Then, if
p0 = µΘ(θ0) and p1 = 1− p0, we have

µΘ|X(ΩH | x) =
p0f0(x)

p0f0(x) + p1f1(x)
.

We reject the hypothesis when this ratio is less than 1/(1 + c).

One-sided tests.

Definition 27. Let Ω ⊂ R. A hypothesis of the form H : Θ ≤ θ0 or H : Θ ≥ θ0 is
called a one-sided hypothesis.

A test with test function

φ(x) =







1, x > x0,
γ, x = x0,
0, x < x0,

or φ(x) =







1, x < x0,
γ, x = x0,
0, x > x0,

is called a one-sided test.

Bayesian hypothesis testing leads to one-sided tests if the posterior µΘ|X(ΩH | x)
is monotone. Suppose, for instance, H : Θ ≤ θ0 and A : Θ > θ0. If µΘ|X(ΩH | x)
is decreasing in x, then rejecting the hypothesis for x0 implies that one should reject
the hypothesis for all x > x0. Thus, the formal Bayes rule is to use a test with test
function of the form

φ(x) =







1, x > x0,
γ, x = x0,
0, x < x0,

for some x0. Similar remarks apply if µΘ|X(ΩH | x) is increasing (then the other
form of one-sided tests should be used) as well as for one-sided hypothesis of the
form H : Θ ≥ θ0.
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Definition 28. If Ω ⊂ R, X ⊂ R, and dPθ/dν = fX|Θ(x | θ), then the parametric
family is said to have monotone likelihood ration (MLR) if for each θ1 < θ2 the
ratio

fX|Θ(x | θ2)

fX|Θ(x | θ1)

is a monotone function if x a.e. Pθ1 + Pθ2 in the same direction (inreasing or
decreasing) for each θ1 < θ2. If the ratio is increasing the family has increasing
MLR. If the ratio is decreasing the family has decreasing MLR.

Example 26. Let fX|Θ form a one-parameter exponential family with natural
parameter θ and natural statistic T (X). Recall that (Lecture 4) T has a density of
the form c(θ) exp{θt} w.r.t. a measure ν′T . Then

fT |Θ(t | θ2)

fT |Θ(t | θ1)
=
c(θ1)

c(θ2)
exp{t(θ2 − θ1)}

is increasing for each θ1 < θ2. Hence, it has increasing MLR.

The MLR condition is sufficient to come up with one-sided tests.

Theorem 24. Suppose the parametric family fX| Θ is MLR and µΘ is a prior.
Then the posterior probability µΘ|X([θ0,∞) | x) and µΘ|X((−∞, θ0] | x) are mono-
tone in x for each θ0.

Proof. Let us prove the case of increasing MLR and the interval [θ0,∞). We show
that µΘ|X([θ0,∞) | x) is nondecreasing. Take x1 < x2. Then

µΘ|X([θ0,∞) | x2)

µΘ|X((∞, θ0) | x2)
−
µΘ|X([θ0,∞) | x1)

µΘ|X((∞, θ0) | x1)

=

∫

[θ0,∞) fX|Θ(x2 | θ)µΘ(dθ)
∫

(−∞,θ0)
fX|Θ(x2 | θ)µΘ(dθ)

−

∫

[θ0,∞) fX|Θ(x1 | θ)µΘ(dθ)
∫

(−∞,θ0)
fX|Θ(x1 | θ)µΘ(dθ)

=

∫

[θ0,∞)

∫

(−∞,θ0)
[fX|Θ(x2 | θ2)fX|Θ(x1 | θ1)− fX|Θ(x2 | θ1)fX|Θ(x1 | θ2)]µΘ(dθ1)µΘ(dθ2)
∫

(−∞,θ0)
fX|Θ(x2 | θ)µΘ(dθ)

∫

(−∞,θ0)
fX|Θ(x1 | θ)µΘ(dθ)

.

Since the family has increasign MLR the integrand in the numerator is nonnegative
for each x1 < x2 and θ1 < θ2. Hence

0 ≤
µΘ|X([θ0,∞) | x2)

µΘ|X((∞, θ0) | x2)
−
µΘ|X([θ0,∞) | x1)

µΘ|X((∞, θ0) | x1)

=
µΘ|X([θ0,∞) | x2)

1− µΘ|X([θ0,∞) | x2)
−

µΘ|X([θ0,∞) | x1)

1− µΘ|X([θ0,∞) | x1)
.

The result follows since x/(1− x) is increasing on [0, 1]. �

Corollary 2. Suppose fX|Θ form a parametric family with MLR and µΘ is a prior.
Suppose we are testing a one-sided hypothesis against the corresponding one-sided
alternative with a 0 − 1 − c loss function. Then one-sided tests are formal Bayes
rules.

Proof. We prove the case of increasing MLR and H : Θ ≥ θ0, A : Θ < θ0. Then
µΘ|X([θ0,∞) | x) is increasing in x and µΘ|X(−∞, θ0) | x) is decreasing in x. For
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a decision rule δ with test function φ(x) we have

r(δ | x) = cφ(x)µΘ|X([θ0,∞) | x) + (1 − φ(x))µΘ|X(−∞, θ0) | x).

It is optimal to choose

φ(x) =







1, if µΘ|X([θ0,∞) | x) < 1/(1 + c),
0, if µΘ|X([θ0,∞) | x) > 1/(1 + c),
γ, if µΘ|X([θ0,∞) | x) = 1/(1 + c).

The one-sided test with

φ(x) =







1, x < x0,
γ, x = x0,
0, x < x0,

or φ(x) =







0, x > x0,
γ, x = x0,
0, x > x0,

can be written in the form above with x0 that solves (1+c)−1 = µΘ|X([θ0,∞) | x0).
Hence, it is a formal Bayes rule with this loss function. �

Point hypothesis. In this section we are concerned with hypothesis of the form
H : Θ = θ0 vs A : Θ 6= θ0. Again it seems reasonable that tests of the form ψ in
Theorem 1 are appropriate.

Bayes factors. The Bayesian methodology also has a way of testing point hypoth-
esis. Suppose we want to test H : Θ = θ0 against A : Θ 6= θ0. If the prior has a
continuous distribution then the prior probability and the posterior probability of
ΩH is 0. Either one could replace the hypothesis with a small interval or use what
is called Bayes factors. Suppose we assign a probability p0 to the hypothesis so
that the prior is

µΘ(A) = p0IA(θ0) + (1− p0)λ(A \ {θ0})

where λ is a probability measure on (Ω, τ). Then the joint density of (X,Θ) is

fX,Θ(x, θ) = p0fX|Θ(x | θ0)I{θ=θ0} + (1− p0)fX|Θ(x | θ)I{θ 6=θ0}.

The posterior density is

fΘ|X(θ | x) = p1I{θ=θ0} + (1 − p1)
fX|Θ(x | θ)

fX(x)
I{θ 6=θ0}

where p1 = p0fX|Θ(x | θ0)/fX(x) is the posterior probability of the hypothesis.
Note that

p1
1− p1

=
p0

1− p0

fX|Θ(x | θ0)
∫

fX|Θ(x | θ)λ(dθ)
.

The second factor on the right is called the Bayes factor. Thus, the posterior odds
in favor of the hypothesis is the prior odds for the hypothesis times the Bayes factor.
It tells you how much the odds has increased or decreased after observing the data.
Testing a point hypothesis can be stated as ”reject H if the Bayes factor is below
a threshold k”.
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18. Classical hypothesis testing

18.1. Most powerful tests. In the classical setting the risk function of a test is
closely related to the power function. If the loss function is 0− 1− c then the risk
function is

R(θ, φ) =

{

cβφ(θ), θ ∈ ΩH ,
1− βφ(θ), θ ∈ ΩA.

Hence, most attention is on the power function.

Definition 29. Suppose Ω = ΩH ∪{θ1}, where θ1 /∈ ΩH . A level α test φ is called
most powerful (MP) level α if, for every other level α test ψ, βψ(θ1) ≤ βφ(θ1).

A level α test φ is called uniformly most powerful (UMP) level α if, for every
other level α test ψ, βψ(θ) ≤ βφ(θ) for all θ ∈ ΩA.

Example 27. Suppose that Ω = {θ0, θ1} and fi(x) is the density of Pθi w.r.t. some
measure ν for both values of θ (one can take ν = Pθ0 + Pθ1). Let

H : Θ = θ0,

A : Θ = θ1.

Then, the Neyman-Pearson fundamental lemma yields the form of the test functions
of all admissible tests. The test corresponding to the test function φk,γ is

Reject H if f1(x) > kf0(x),

Do not reject H if f1(x) < kf0(x),

Reject H with probability γ(x) if f1(x) = kf0(x).

All these tests are MP of their respective levels. Indeed, since these decision rules
form a minimal complete class we have for any other test ψ with the same level
that R(θ0, φk,γ) = R(θ0, ψ), i.e. βφ(θ0) = βψ(θ0) and R(θ1, φk,γ) ≤ R(θ1, ψ),
i.e. βψ(θ1) ≤ βφk,γ

(θ1).

18.2. Simple-simple hypothesis.

Definition 30. Let Ω = {θ0, θ1}. The hypothesis H : Θ = θ0 versus A : Θ = θ1 is
called a simple-simple hypothesis.

Simple-simple hypothesis are covered by Neyman-Pearson’s fundamental lemma.
We will now take a closer look at them. Suppose for simplicity that the loss function
is 0− 1 so the risk function is

R(θ, φ) =

{

βφ(θ), θ = θ0,
1− βφ(θ), θ = θ1.

Then the risk function can be represented by a point (α0, α1) ∈ [0, 1]2 where α0 =
R(θ0, φ) and α1 = R(θ1, φ). The risk set R corresponding to this decision problem
is a subset of [0, 1]2. Note that the test function φ(x) ≡ α0 corresponds to the
risk function (α0, 1 − α0). As we let α0 vary in [0, 1] we see that R contains the
line y = 1 − x, x ∈ [0, 1]. Furthermore, R is symmetric around (1/2, 1/2). Indeed,
if the risk function of a test φ is (a, b) then the risk function of the test 1 − φ is
(1− a, 1− b), so this point is also in R. We know from Lecture 9, that R is convex.

Recall the definition of the lower boundary ∂L of the risk set. By definition ∂L
contains the admissible rules. Hence, the lower boundary is contained in the risk
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set R, so the risk set is closed from below. By symmetry around (1/2, 1/2) the risk
set is closed.

Recall that the admissible rules are given by the minimal complete class C in
Neyman-Pearson’s fundamental lemma. Hence, the good tests to choose to test a
simple-simple hypothesis are the tests in the class C.

From the Bayesian perspective the tests in C are Bayes rules with respect to
different priors. Indeed, each φk,γ is a Bayes rule with respect a prior λ = (λ0, λ1)
with 0 < λ0 < 1. To see this, note that a Bayes rule w.r.t. λ corresponds to a point
(α0, α1) that minimizes

r(λ, φ) = λ0α0 + λ1α1.

This is the inner product of (λ0, λ1) with (α0, α1) and graphically it is easy to see
that the minimum is on the lower boundary ∂L of the risk set.

One-sided tests. Recall the definition of one-side hypothesis and one-sided test
from Definition 27 (Lecture 15).

In this section we are interested in finding one-sided UMP tests. Recall a test φ
is UMP level α if for any other level α test ψ, βψ(θ) ≤ βφ(θ) for all θ ∈ ΩA. (Level
α is that supθ∈ΩH

βφ(θ) ≤ α).
In the Bayesian context we saw that the notion of MLR was convenient to de-

termine formal Bayes rules. The situation is similar here.

Theorem 25. If fX|Θ forms a parametric family with increasing MLR, then any
test of the form

φ(x) =







1, x > x0,
γ, x = x0,
0, x < x0,

has nondecreasing power function. Each such test is UMP of its size for testing
H : Θ ≤ θ0 versus A : Θ > θ0, for each θ0. Moreover, for each α ∈ [0, 1] and
each θ0 ∈ Ω there exists x0 and γ ∈ [0, 1] such that φ is UMP level α for testing H
versus A.

Proof. First we show φ has nondecreasing power function. Let θ1 < θ2. By
Neyman-Pearson’s fundamental lemma the MP test of H1 : Θ = θ1 versus A1 :
Θ = θ2 is

φ(x) =







1, fX|Θ(x | θ2) > kfX|Θ(x | θ1),
γ(x), fX|Θ(x | θ2) = kfX|Θ(x | θ1),
0, fX|Θ(x | θ2) < kfX|Θ(x | θ1).

Since the MLR is increasing we can write φ as

φ(x) =







1, x > t−,
γ(x), t− ≤ x ≤ t−,
0, x < t−,

(18.1)

For φ of this form put α′ = βφ(θ1). Let φα′ ≡ α′. Then, since φ is MP we must
have βφ(θ2) ≥ α′. Hence φ has nondecreasing power function.

Next, we show that we can have arbitrary level. Take α ∈ [0, 1] and put

x0 =

{

inf{x : Pθ0(−∞, x] ≥ 1− α, α < 1,
inf{x : Pθ0(−∞, x] > 0, α = 1.
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Then α∗ = Pθ0(x0,∞) ≤ α and Pθ0({x0}) ≥ α− α∗. Now we take φ of the form in
(18.1) with t− = x0 = t− and γ(x0) = γ∗. Then

βφ(θ0) = Eθ0 [φ(X)] = Pθ0(x0,∞) + γ∗Pθ0({x0}) = α∗ + γ∗Pθ0({x0}).

This is equal to α if we take

γ∗ =

{

0 Pθ0({x0}) = 0,
α∗−α

Pθ0
({x0})

Pθ0({x0}) > 0.

This φ is MP level α for testing H0 = Θ = θ0 versus A : Θ = θ1 for every θ0 < θ1,
since it is the same test for all θ1. Hence φ is UMP for testing H0 versus A. Since
βφ(θ) is nondecreasing, φ has level α for H , so it is UMP level α for testing H
versus A. �

Remark 3. There are similar results for testing H : Θ ≥ θ0 when the family has
increasing MLR and for testing either H : Θ ≤ θ0 or H : Θ ≥ θ0 when the family
has decreasing MLR. The test φ has to be modified, interchanging the condition
x > x0 to x < x0 accordingly.


