Formulas and tables in mathematical statistics

1. Combinatorics

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
. Interpretation: $\binom{n}{k} = \text{number of subsets of size } k$

formed from a set of n elements.

2. Random variables

$$V(X) = E(X^{2}) - (E(X))^{2}$$

$$C(X,Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

$$\rho(X,Y) = \frac{C(X,Y)}{D(X)D(Y)}$$

3. Discrete distributions

Binomial distribution

X is Bin
$$(n, p)$$
 if $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$, $k = 0, 1, ..., n$, where $0 .
 $E(X) = np$, $V(X) = np(1-p)$$

"For-the-first-time"-distribution

$$X \text{ is } \mathrm{fft}(p) \text{ if } p_X(k) = p(1-p)^{k-1}, \ k=1,2,3,\ldots, \text{ where } 0< p<1.$$

$$E(X) = \frac{1}{p}, \ V(X) = \frac{1-p}{p^2}$$

Hypergeometric distribution

$$X \text{ is } \mathrm{Hyp}(N,n,p) \text{ if } p_X(k) = \frac{\binom{Np}{k}\binom{N(1-p)}{n-k}}{\binom{N}{n}}, \ 0 \leq k \leq Np,$$

$$0 \leq n-k \leq N(1-p), \text{ where } N, \ Np \text{ and } n \text{ are positive integers and } N \geq 2,$$

$$n < N, \ 0 < p < 1. \ E(X) = np, \ V(X) = \frac{N-n}{N-1} \cdot np(1-p)$$

Poisson distribution

$$X$$
 is Po(μ) where $\mu>0$ if $p_X(k)=\frac{\mu^k}{k!}\cdot e^{-\mu},\ k=0,1,2,\dots$
$$E(X)=\mu,\ V(X)=\mu$$

4. Continuous distributions

Uniform distribution

$$X \text{ is } U(a,b) \text{ where } a < b \text{ if } f_X(x) = \left\{ \begin{array}{ll} \frac{1}{b-a} & \text{for } a < x < b \\ 0 & \text{otherwise} \end{array} \right.$$

$$E(X) = \frac{a+b}{2} \;, \;\; V(X) = \frac{(b-a)^2}{12}$$

Exponential distribution

$$X \text{ is } \mathrm{Exp}(\lambda) \text{ where } \lambda > 0 \text{ if } f_X(x) = \begin{cases} \lambda \cdot e^{-\lambda x} & \text{for } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = \frac{1}{\lambda}, \ \ V(X) = \frac{1}{\lambda^2}$$

Normal distribution

$$X \text{ is } N(\mu,\sigma) \text{ if } f_X(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty, \quad \sigma > 0.$$

$$E(X) = \mu, \quad V(X) = \sigma^2$$

X is
$$N(\mu, \sigma)$$
 if and only if $\frac{X - \mu}{\sigma}$ is $N(0, 1)$.

If Z is N(0,1) then Z has the distribution function $\Phi(x)$ according to Table 1 and the density function $\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}, -\infty < x < \infty$.

A linear combination $\sum a_i X_i + b$ of independent, normally distributed random variables is normally distributed.

5. Central limit theorem

If X_1, X_2, \ldots, X_n are independent identically distributed random variables with expectation μ and standard deviation $\sigma > 0$ then $Y_n = X_1 + \cdots + X_n$ is approximatively $N(n\mu, \sigma\sqrt{n})$ if n is large.

6. Approximation

$$\begin{aligned} &\operatorname{Hyp}(N,n,p) \sim \operatorname{Bin}(n,p) & \text{ if } \frac{n}{N} \leq 0.1 \\ &\operatorname{Bin}(n,p) \sim \operatorname{Po}(np) & \text{ if } p \leq 0.1 \\ &\operatorname{Bin}(n,p) \sim N \big(np, \sqrt{np(1-p)} \big) & \text{ if } np(1-p) \geq 10 \\ &\operatorname{Po}(\mu) \sim N(\mu, \sqrt{\mu}) & \text{ if } \mu \geq 15 \end{aligned}$$

7. Chebychev's inequality

If
$$E(X) = \mu$$
 and $D(X) = \sigma > 0$ then for every $k > 0$
$$P(|X - \mu| > k\sigma) \le \frac{1}{k^2}$$

8. Statistical material

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$$

$$s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \overline{x})^2 = \frac{1}{n-1} \left[\sum_{j=1}^{n} x_j^2 - \frac{1}{n} \left(\sum_{j=1}^{n} x_j \right)^2 \right]$$

9. Point estimation

9.1 Method of Maximum likelihood

Let x_i be an observation of X_i , $i=1,2,\ldots,n$, where the distribution of X_i depends on an unknown parameter θ . The value $\theta_{\rm obs}^*$ which maximizes the L-function

$$L(\theta) = \begin{cases} p_{X_1, \dots, X_n}(x_1, \dots, x_n; \theta) = (\text{if independent}) = p_{X_1}(x_1; \theta) \cdots p_{X_n}(x_n; \theta) \\ f_{X_1, \dots, X_n}(x_1, \dots, x_n; \theta) = (\text{if independent}) = f_{X_1}(x_1; \theta) \cdots f_{X_n}(x_n; \theta) \end{cases}$$

is called the Maximum likelihood estimate (ML estimate) of θ .

9.2 Method of Least squares

Let x_i be an observation of X_i , i = 1, 2, ..., n, and suppose that

$$E(X_i) = \mu_i(\theta_1, \theta_2, \dots, \theta_k)$$
 and $V(X_i) = \sigma^2$, where

 $\theta_1, \theta_2, \dots, \theta_k$ are unknown parameters and X_1, X_2, \dots, X_n are independent.

The estimates of Least squares (LS estimates) of $\theta_1, \theta_2, \dots, \theta_k$

are the values $(\theta_1)_{\text{obs}}^*, (\theta_2)_{\text{obs}}^*, \dots, (\theta_k)_{\text{obs}}^*$ which minimize the sum of squares

$$Q = Q(\theta_1, \theta_2, \dots, \theta_k) = \sum_{i=1}^{n} (x_i - \mu_i(\theta_1, \theta_2, \dots, \theta_k))^2.$$

9.3 Mean error

An estimate of $D(\theta^*)$ is called the mean error of θ^* and is written $d(\theta^*)$.

9.4 Error propagation

With notations and assumptions according to the text-book we have

a)
$$E(g(\theta^*)) \approx g(\theta^*_{\text{obs}})$$

 $D(g(\theta^*)) \approx |g'(\theta^*_{\text{obs}})| \cdot D(\theta^*)$

b)
$$E(g(\theta_1^*, \dots, \theta_n^*)) \approx g((\theta_1)_{\text{obs}}^*, \dots, (\theta_n)_{\text{obs}}^*)$$

 $V(g(\theta_1^*, \dots, \theta_n^*)) \approx \sum_{i=1}^n \sum_{j=1}^n C(\theta_i^*, \theta_j^*) \cdot \left[\frac{\partial g}{\partial x_i} \cdot \frac{\partial g}{\partial x_j}\right]_{x_k = (\theta_k)_{\text{obs}}^*, k = 1, \dots, n}$

10. Some common distributions in statistics

χ^2 -distribution

If X_1, X_2, \ldots, X_f are independent and N(0,1), we have that $\sum_{k=1}^f X_k^2 \text{ is } \chi^2(f)\text{-distributed.}$

t-distribution

If X is N(0,1) and Y is $\chi^2(f)$ and if X and Y are independent, we have that $\frac{X}{\sqrt{Y/f}}$ is t(f)-distributed.

11. Distributions for sample variables when the sample is normally distributed

11.1 Let X_1, \ldots, X_n be independent random variables which are all $N(\mu, \sigma)$.

Then we have:

a)
$$\overline{X}$$
 is $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

b)
$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2}$$
 is $\chi^2(n-1)$

c) \overline{X} and S^2 are independent

d)
$$\frac{\overline{X} - \mu}{S/\sqrt{n}}$$
 is $t(n-1)$

11.2 Let X_1, \ldots, X_{n_1} be $N(\mu_1, \sigma)$ and Y_1, \ldots, Y_{n_2} be $N(\mu_2, \sigma)$ and all random variables are supposed to be independent. Then we have:

a)
$$\overline{X} - \overline{Y}$$
 is $N\left(\mu_1 - \mu_2, \sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$

b)
$$\frac{(n_1 + n_2 - 2)S^2}{\sigma^2}$$
 is $\chi^2(n_1 + n_2 - 2)$ where $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$, $S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2$ and $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$

c)
$$\overline{X} - \overline{Y}$$
 and S^2 are independent

d)
$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 is $t(n_1 + n_2 - 2)$

11.3 Let X_1, \ldots, X_{n_1} be $N(\mu_1, \sigma_1)$ and Y_1, \ldots, Y_{n_2} be $N(\mu_2, \sigma_2)$ and all random variables are supposed to be independent. Then we have:

$$\overline{X} - \overline{Y}$$
 is $N\left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$

12. Confidence intervals

12.1 λ -method

Let θ^* be $N(\theta,D)$ where D is known and θ unknown. Then $\theta^*_{\rm obs} \pm D \cdot \lambda_{\alpha/2}$

is a confidence interval for θ with the confidence level $1-\alpha$.

12.2 t-method

Let θ^* be $N(\theta, D)$ where D and θ are unknown and D does not depend on θ . Let D_{obs}^* be a point estimate of D such that $\frac{\theta^* - \theta}{D^*}$ is t(f). Then $\theta_{\text{obs}}^* \pm D_{\text{obs}}^* \cdot t_{\alpha/2}(f)$

is a confidence interval for θ with the confidence level $1-\alpha$.

12.3 Approximative method

Let θ^* be approximatively $N(\theta, D)$.

Suppose that $D^*_{\rm obs}$ is a suitable point estimate of D. Then $\theta^*_{\rm obs} \pm D^*_{\rm obs} \cdot \lambda_{\alpha/2}$ is a confidence interval

for θ with the approximate confidence level $1-\alpha$.

12.4 Method based on χ^2 -distribution

Let $\theta_{\mathrm{obs}}^{*}$ be a point estimate of a parameter θ such that

$$f \cdot \left(\frac{\theta^*}{\theta}\right)^2$$
 is $\chi^2(f)$. Then
$$\left(\theta_{\text{obs}}^* \sqrt{\frac{f}{\chi_{\alpha/2}^2(f)}}, \theta_{\text{obs}}^* \sqrt{\frac{f}{\chi_{1-\alpha/2}^2(f)}}\right)$$

is a confidence interval for θ with the confidence level $1-\alpha$.

13. Linear regression

13.1 Distributions

Let Y_i be $N(\alpha + \beta x_i, \sigma)$, i = 1, 2, ..., n, and independent. Then we have:

a)
$$\beta^* = \frac{\sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
 is $N\left(\beta, \frac{\sigma}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}\right)$

b)
$$\alpha^* = \overline{Y} - \beta^* \overline{x}$$
 is $N\left(\alpha, \sigma \sqrt{\frac{1}{n} + \frac{(\overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}\right)$

c)
$$\alpha^* + \beta^* x_0$$
 is $N\left(\alpha + \beta x_0, \sigma \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}\right)$

d)
$$\frac{(n-2)S^2}{\sigma^2}$$
 is $\chi^2(n-2)$ where $S^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \alpha^* - \beta^* x_i)^2$

e) S^2 is independent of α^* and β^*

13.2 Confidence intervals

$$I_{\alpha}: \ \alpha_{\text{obs}}^{*} \pm t_{p/2}(n-2)s\sqrt{\frac{1}{n} + \frac{(\overline{x})^{2}}{\sum_{i=1}^{n}(x_{i} - \overline{x})^{2}}}$$

$$I_{\beta}: \ \beta_{\text{obs}}^{*} \pm t_{p/2}(n-2)\frac{s}{\sqrt{\sum_{i=1}^{n}(x_{i} - \overline{x})^{2}}}$$

$$I_{\alpha+\beta x_{0}}: \ \alpha_{\text{obs}}^{*} + \beta_{\text{obs}}^{*}x_{0} \pm t_{p/2}(n-2)s\sqrt{\frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{\sum_{i=1}^{n}(x_{i} - \overline{x})^{2}}}$$

13.3 Computational aspects

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} (x_i - \overline{x})y_i = \sum_{i=1}^{n} x_i(y_i - \overline{y}) = \sum_{i=1}^{n} x_iy_i - n\overline{x}\overline{y}$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$(n-2)s^2 = S_{yy} - (\beta_{\text{obs}}^*)^2 S_{xx} = S_{yy} - \beta_{\text{obs}}^* \cdot S_{xy} = \min_{\alpha, \beta} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

14. Hypothesis testing

14.1 Definitions

The significance level (probability of error of first kind) α is (the maximal value of) $P(\text{reject } H_0)$ when the hypothesis H_0 is true. The power function $h(\theta) = P(\text{reject } H_0)$ when θ is the correct parameter value.

14.2 Confidence method

Reject $H_0: \theta = \theta_0$ on the level α if θ_0 does not fall within a suitably chosen confidence interval with the confidence level $1 - \alpha$.

14.3 χ^2 -test

We make n independent repetitions of an experiment which gives one of the results A_1, A_2, \ldots, A_r with respective probabilities $P(A_1), P(A_2), \ldots, P(A_r)$. Let for $j = 1, 2, \ldots, r$ the random variable X_j denote the number of trials which give the result A_j .

Test of given distribution: We want to test $H_0: P(A_1) = p_1, P(A_2) = p_2, \ldots,$ $P(A_r) = p_r$ for given probabilities p_1, p_2, \ldots, p_r . Then

$$Q = \sum_{j=1}^{r} \frac{(x_j - np_j)^2}{np_j}$$
 is an outcome of an approximatively $\chi^2(r-1)$ -

distributed random variable if H_0 is true and $np_j \geq 5$, $j=1,2,\ldots,r$.

If we estimate k parameters out of our data, $\theta = (\theta_1, \dots, \theta_k)$, in order to estimate p_1, p_2, \dots, p_r with $p_1(\theta_{\text{obs}}^*), p_2(\theta_{\text{obs}}^*), \dots, p_r(\theta_{\text{obs}}^*)$ then

$$Q' = \sum_{j=1}^{r} \frac{\left(x_j - np_j(\theta_{\text{obs}}^*)\right)^2}{np_j(\theta_{\text{obs}}^*)} \text{ is an outcome of an approximatively}$$

 $\chi^2(r-k-1)$ -distributed random variable.

$$Computational \ aspect: \ Q = \sum_{j=1}^r \frac{x_j^2}{np_j} - n \,, \quad Q' = \sum_{j=1}^r \frac{x_j^2}{np_j(\theta_{\rm obs}^*)} - n$$

Homogeneity test: We want to test if the probabilities for the results A_1, A_2, \ldots, A_r are the same in s series of trials. Introduce notation according to the following table:

Series	Number of observations of					Number of trials
	A_1	A_2	A_3		A_r	
1	x_{11}	x_{12}	x_{13}		x_{1r}	n_1
2	x_{21}	x_{22}	x_{23}		x_{2r}	n_2
<u>:</u>	:					:
s	x_{s1}	x_{s2}	x_{s3}		x_{sr}	n_s
Column sum	m_1	m_2	m_3		m_r	N

Compute
$$Q = \sum_{i=1}^{s} \sum_{j=1}^{r} \frac{\left(x_{ij} - \frac{n_i m_j}{N}\right)^2}{\frac{n_i m_j}{N}}$$
.

Q is an outcome of an approximatively $\chi^2((r-1)(s-1))$ -distributed random variable.

Contingency table (test av independence between rows and columns): The same test variable and distribution as above.