

Laboration 1 i 5B2501 Matematisk statistik Grupp.....

Namn:

Laborationen syftar till ett ge information och träning i Excels rutiner för sannolikhetsterori och statistisk behandling av data.

- 1. I cellerna A1 till A12 skriv in 12 tal som du väljer själv. Anteckna talen här:
- 2. Aktivera cell A15 (ställ pekaren där och tryck på return) och addera talen i A1 till A12 genom att klicka på summaknappen. Notera svaret.
- 3. Aktivera cell B3 och beräkna produkten av de talen i A1 till A3 genom att ange formeln "=A1*A2*A3". Notera svaret.
- 4. Ändra talet i A1. Ange det det nya talet samt resultaten i cellerna A15 och B3.
- 5. Aktivera en ny cell, samt beräkna medelvärdet av talen i A1 till A12 genom funktionen "AVERAGE". Den når du genom klick på funktionsknappen. De statistiska funktionerna finns sedan i Statistical-mappen. Du måste sedan skriva in eller med musen markera de celler med data som skall behandlas, i detta fall A1 till A12. Notera värdet.
- 6. Beräkna på samma sätt standardavvikelsen och variansen, funktionerna "STDEV" respektive "VAR". Notera svaren.

- 7. Ändra talet i A2. Notera detta och hur medelvärde och varians ändras.
- 8. Öppna "Data Analysis Toolpak". Klicka på menyn "Tools". Om man inte hittar den där måste man först klicka på "Add Ins", markera "Analysis Toolpak" och därefter öppna den.
- 9. När du öppnat Data Analysis Toolpak, markera "Descriptive statistics". Skriv in cell-området A1 till A12. Använd musen för detta (markera cellerna) och markera boxen "Summary statistics". Därefter "OK". Du kommer då att få en tabell. Fyll i dina värden i högra kolumnen.

Engelsk benämning	<u>Svensk förklaring</u>	<u>Dina värden</u>
Mean	Medelvärde	
Standard Error	Medelfel ($_{S}/\sqrt{n}$)	
Median	Median	
Mode	Vanligaste värde	
Standard Deviation	Stickprovsstandardavikelse	
Sample Variance	Stickprovsvarians	
Kurtosis	Kurtosis (toppighetsmått)	
Skewness	Skevhet (symmetrimått)	
Range	Variationsbredd (max-min)	
Minimum	Minsta värde	
Maximum	Största värde	
Sum	Summa	
Count	Antal data	

- 10. Låt *X* vara standard normal, N(0,1). Funktionen "NORMSDIST" (obs namnet) ger sannolikheten $P(X \le x) dvs \Phi(x)$. Använd denna funktion för att beräkna $P(X \le 0.523) =$ $P(X \le -1.742) =$ $P(-0.489 \le X \le 1.23) =$
- 11. Låt *X* vara normal, N(3,7). Funktionen "NORMDIST" (obs namnet) ger sannolikheten $P(X \le x)$. Använd denna funktion för att beräkna
 - a. $P(X \le 4, 523) =$
 - b. *P(X*≤ 1,267)=
 - c. $P(0.53 \le X \le 6, 34) =$
- 12. Funktionen "NORMSINV" ger inversen till fördelningsfunktionen till N(0,1). Det betyder att α -kvantilen λ_{α} är NORMSINV taget i 1- α (observera att $\Phi(\lambda_{\alpha}) = 1-\alpha$), Använd NORMSINV för att beräkna 4%-, 5%- och 0,2%-kvantilerna standard normalfördelning:

- 13. Funktionen "NORMINV" ger inversen till fördelningsfunktionen till N(μ , σ). Det betyder att α -kvantilen x_{α} är NORMINV taget i 1- α , Använd NORMINV för att beräkna 4%-, 5%- och 0,2%-kvantilerna för N(3,6):
- 14. Det finns en funktion som ger binomialfördelningens fördelningsfunktion och sannolikhetsfunktion. Försök hitta den och beräkna P(X≤4) när X har fördelningen Bin(20,0.gruppnumret). Beräkna även P(2≤X≤7) samt P(X=4).