
1 Probability theory

1.1 Basics

Consider a finite sample space Ω

Ω = {ω1, ω2, . . . , ωM}, M < ∞

Define a probability measure P on Ω such that

P ({ωi}) = P (ωi) = pi > 0, i = 1, . . . ,M

M
∑

i=1

pi = 1.

For every subset A of Ω, A ⊆ Ω, we have that

P (A) =
∑

ωi∈A

P (ωi).

A random variable X on Ω is a mapping

X : Ω −→ R.

The expectation of X is defined as

E[X] =
M
∑

i=1

X(ωi)P (ωi).

1.2 Sigma-algebras and information

It is important to know which information is available to investors. This is formalized using
σ-algebras and filtrations.

Definition 1 A collection F of subsets of Ω is called a σ-algebra (or σ-field) if the following
hold.

1. ∅ ∈ F .

2. If A ∈ F then Ac ∈ F .

3. If An ∈ F , n = 1, 2, . . . then
∞
⋃

n=1

∈ F

Remark 1 When working on a finite sample space Ω condition 3 will reduce to

3.’ If A and B F then A ∪B ∈ F .

Example 1 The following are examples of σ-algebras.

1. F = 2Ω = {A|A ⊆ Ω}, the power set of Ω.

2. F = {∅,Ω}, the trivial σ-algebra.

3. F = {∅, A,Ac,Ω}.

✷
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Definition 2 A set P = {A1, . . . , An} of nonempty subsets of the sample space Ω is called a
(finite) partition of Ω if

1.
n
⋃

i=1

Ai = Ω

2. Ai ∩Aj = ∅ for i 6= j

The σ-algebra consisting of all possible unions of the Ai:s (including the empty set) is called
the σ-algebra generated by P and is denoted by σ(P).

Remark 2 On a finite sample space every σ-algebra is generated by a partition.

When making decisions investors may only use the information available to them. This is
formalized by measurability requirements.

Definition 3 A function X : Ω −→ {x1, . . . , xK} is F-measurable if

f−1(xi) = {ω ∈ Ω|X(w) = xi} ∈ F for all xi

If X is F-measurable we write f ∈ F .

Remark 3 Let F = σ(P). Then a function f : Ω −→ R is F-measurable if and only if f is
constant on each set Ai, i = 1, . . . , n.

This captures the idea that based on the available information we should be able to determine
the value of X.
Measurability is preserved under a lot of operations which is the content of the next propo-
sition.

Proposition 1 Assume that X and Y are F-measurable. Then the following hold:

1. For all real numbers α and β the functions

αX + βY, X · Y

are measurable.

2. If Y (ω) 6= 0 for all ω, then
X

Y

is measurable.

3. If {Xn}
∞
n=1 is a (countable) sequence of measurable functions, then the functions

sup
n

Xn, inf
n

Xn, lim sup
n

Xn, lim inf
n

Xn,

are measurable.

Definition 4 Let X be a function X : Ω −→ R. Then F = σ(X) is the smallest σ-algebra
such that X is F-measurable.
If X1, . . . ,Xn are functions such that Xi : Ω −→ R, then F = σ(X1, . . . ,Xn) is the smallest
σ-algebra such that X1, . . . ,Xn are G-measurable.
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The next proposition formalizes the idea that if Z is measurable with respect to a certain
σ-algebra, then “the value of Z is completely determined by the information in the σ-algebra”.

Proposition 2 Let X1, . . . ,Xn be mappings such that Xi : Ω −→ R. Assume that Z : Ω −→
R is σ(X1, . . . ,Xn)-measurable. Then there exists a function f : Rn −→ R such that

Z(ω) = f(X1(ω), . . . ,Xn(ω)).

We also need to know what is meant by independence. Recall that two events A and B on a
probability space (Ω,F , P ) are independent if

P (A ∩B) = P (A) · P (B).

For σ-algebras and random variables on (Ω,F , P ) we have the following definition.

Definition 5 The σ-algebras F1, . . . ,Fn are independent if

P

(

n
⋂

i=1

Ai

)

=
n
∏

i=1

P (Ai) whenever Ai ∈ Fi, i = 1 . . . , n.

Random variables X1, . . . ,Xn are independent if σ(X1), . . . , σ(Xn) are independent.

1.3 Stochastic processes and filtrations

Let N = {0, 1, 2, 3, . . .}.

Definition 6 A stochastic process {Sn}
∞
n=0 on the probability space (ω,F , P ) is a mapping

S : N× Ω −→ R

such that for each n ∈ N

Sn(·) : Ω −→ R

is F-measurable

Note that Sn(ω) = S(n, ω). We have that for a fixed n

ω −→ S(n, ω)

is a random variable. For a fixed ω

n −→ S(n, ω)

is a deterministic function of time, called the realization or sample path of S for the outcome
ω.

Remark 4 In this course we will mostly be looking at a fixed time horizon so the process
will only live up until time T , that is we will be looking at processes {Sn}

T
n=0.
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A stochastic process generates information and as before this is formalized in terms of σ-
algebras, only now there will be a time dimension as well.

Definition 7 Let {Sn}
∞
n=0 be random process on (Ω,F , P ). The σ-algebra generated by S

over [0, t] is defined by
FS
t = σ{Sn;n ≤ t}.

We interpret FS
t as the information generated by observing S over the time interval [0, t].

More generally information developing over time is formalized by filtrations. The are families
of increasing σ-algebras.

Definition 8 A filtration F = {Fn}n≥0 on (Ω,F , P ) is an indexed family of σ-algebras on
Ω such that

1. Fn ⊆ F , n ≥ 0,

2. if m ≤ n then Fm ⊆ Fn.

Remark 5 As stated before, we will mostly be looking at a fixed time horizon in this
course so the filtration will only live up until time T , that is we will be looking at filtrations
F = {Fn}Tn=0.

For stochastic process the following measurability conditions are relevant.

Definition 9 Given a filtration F and a random process S on (Ω,F , P ) we say that S is
adapted to F if

Sn ∈ Fn for all n ≥ 0,

and S is predictable with respect to F if

Sn ∈ Fn−1 for all n ≥ 1.

1.4 Conditional expectation

Let X be a random variable on (Ω,F , P ) and G a σ-algebra such that G ⊆ F . In this section
we aim to define the expectation ofX given the information in G, or conditional on G, E[X|G].
We will do this in three steps.

1. First we will define the expectation of X given a set B ∈ F , such that P (B) 6= 0, i.e.
E[X|B]. Recall that

E[X] =
M
∑

i=1

X(ωi)P (ωi) =
∑

ω∈Ω

X(ω)P (ω)

Now it would seem natural (?) to use the normalized probabilities

P (ωi)

P (B)
on B.

We thus define

E[X|B] =
∑

ωi∈B

X(ωi)
P (ωi)

P (B)
=

1

P (B)

∑

ω∈B

X(ω)P (ω)
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Example 2 Consider the finite sample space Ω = {ω1, ω2, ω3} endowed with the power
σ-algebra F = 2Ω, and a probability measure P such that P (ωi) = 1/3, i = 1, 2, 3.
Furthermore let B1 = {ω1, ω3}, B2 = {ω2}, P = {B1, B2}, and G = σ(P). Finally, let

X(ω) = I{ω1}(ω) =

{

1, if ω = ω1

0, otherwise.

Then we have that

E[X] =
∑

ω∈Ω

X(ω)P (ω) = 1 ·
1

3
+ 0 ·

1

3
+ 0 ·

1

3
=

1

3

and that

E[X|B1] =
1

P (B1)

∑

ω∈B1

X(ω)P (ω) =
1

1/3 + 1/3

(

1 ·
1

3
+ 0 ·

1

3

)

=
1

2
,

whereas

E[X|B2] =
1

P (B2)

∑

ω∈B2

X(ω)P (ω) =
1

1/3
· 0 ·

1

3
= 0.

✷

2. Next we will define the expectation of X conditional on a partition P of Ω. Suppose
that P = {B1, . . . , BK} and that P (Bi) 6= 0, i = 1, . . . ,K. Note that for any random
variable Y measurable with respect to σ(P) we have that if ωi ∈ Bj

Y (ωi) = E[Y |Bj ]

since Y is constant on each Bi. This means that

Y (ω) =
K
∑

i=1

E[Y |Bi]IBi
(ω),

where IBi
denotes the indicator function of Bi, i.e.

IBi
(ω) =

{

1, if ω ∈ Bi

0, otherwise.

We now define

E[X|P](ω) =
K
∑

i=1

E[X|Bi]IBi
(ω).

Note that this means that E[X|P] is a random variable Z such that

(a) Z ∈ σ(P) and that

(b) for all B ∈ σ(P) we have that

∑

ω∈B

Z(ω)P (ω) =
∑

ω∈B

X(ω)P (ω).
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Example 3 Continuing on Example 2 we can compute

E[X|P] =
2
∑

i=1

E[X|Bi]IBi
(ω) =

1

2
· IB1

(ω) + 0 · IB2
(ω).

✷

3. Now we are ready to give the general definition of E[X|G].

Definition 10 Consider a random variable X on (Ω,F , P ) and a σ-algebra G such
that G ⊆ F . The conditional expectation of X given G denoted E[X|G] is any random
variable Z such that

(a) Z ∈ G, and

(b) for all A ∈ G we have that
∑

ω∈A

Z(ω)P (ω) =
∑

ω∈A

X(ω)P (ω).

The proposition below states some properties of the conditional expectation.

Proposition 3 The conditional expectation has the following properties. Suppose that α, β ∈
R and that X and Y are random variables on (Ω,F , P ). Let G be a σ-algebra such that G ⊆ F .
Then the following hold.

1. Linearity.
E[αX + βY |G] = αE[X|G] + βE[Y |G].

2. Monotonicity. If X ≤ Y then
E[X|G] ≤ E[Y |G].

3.

E[E[X|G]] = E[X].

4. If H is σ-algebra such that H ⊆ G ⊆ F then

(a)

E[E[X|H]|G] = E[X|H],

(b)

E[E[X|G]|H] = E[X|H].

Thus “the smallest σ-algebra always wins”.

5. Jensen’s inequality. If ϕ is a convex function, then

ϕ(E[X|G]) ≤ E[ϕ(X)|G].

6. If X is independent of G then
E[X|G] = E[X].

7. Taking out what is known. If X ∈ G then

E[XY |G] = X · E[Y |G].
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