
SF2930 Regression analysis

Questions to be considered for the written exam
This document contains a set of assignments and conceptual questions on the topics
treated in SF2930 Regression Analysis during the period 3 of 2018. Questions are
constructed by Filip Allard, Alexandre Chotard, Timo Koski, Ekaterina Kruglov and
Tatjana Pavlenko. Six of these questions (or their slightly modified versions) will be
selected to constitute the written exam on Tuesday, the 13th of March, 2018, 08.00-
13.00. Observe that Hint is given after some of the questions; this hint summarizes the
formulas which will be provided for this type of question during the exam.

The answers and solutions can be obtained by study of the relevant chapters in the
main course textbook, Introduction to Linear Regression Analysis by D. Montgomery,
E. Peck, G. Vining, Wiley, 5th Edition (2012) (abbreviated in what follows by MPV),
other books suggested as a course literature, see

https://www.math.kth.se/matstat/gru/sf2930/regplanr2018.html

by similar study of the your own lecture notes and material on the webpage

https://www.math.kth.se/matstat/gru/sf2930/courselog18.html

Observe that the derivations presented on the board during the lectures are also top-
ics of the examination. In addition, some proficiency in manipulating basic calculus,
probability, linear algebra and matrix calculus is required.

This same set of questions (may be some will be removed and new added) will be valid
in the re-exam. Hence we shall NOT provide a solutions manual.
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Simple linear regression

1. (a) Describe the principle of least-squares and use it to derive the normal equa-
tions

nβ̂0 + (

n∑
i=1

xi)β̂1 =

n∑
i=1

yi

(

n∑
i=1

xi)β̂0 + (

n∑
i=1

x2i )β̂1 =

n∑
i=1

xiyi.

for the linear regression model

yi = β0 + β1xi + εi, εi ∼ N(0, σ2), i = 1, . . . , n.

(b) Solve the normal equations to obtain the least-squares estimates of β0 and
β1.

2. Derive the estimate of β1 in the no-intercept model yi = β1xi+εi, i = 1, . . . , n ,
from the least squares criterion, that is to minimize S(β1) =

∑
(yi − β1xi)2.

Give examples of when such model can be appropriate/inappropriate.

3. Verify the properties of residuals presented in 1.– 5. (see p. 20 MPV).

4. Explain the difference between the confidence interval for estimating the mean
response for a given value of the predictor x and the prediction interval for pre-
dicting a new response for a given value of the predictor x in the simple linear
regression setting. To support your explanations, sketch the graph and describe
the relationship between the two confidence bands.

5. In the analysis-of-variance, ANOVA approach to testing the significance of re-
gression, the total variation in a response y is broken down/decomposed into two
parts - a component that is due to the regression or model, and a component that
is due to random error. Derive this decomposition, use it to explain the construc-
tion of the ANOVA table and derive the ANOVA F -test for testing significance
of regression.

6. Exercises from MPV: 2.25, 2.27, 2.29, 2.33.

Multiple linear regression

1. (a) State the multiple linear regression model in matrix notations, form nor-
mal equations and derive the solution using ordinary least-squares (OLS)
estimation approach. State exactly model assumptions under which OLS
estimator of the vector of regression coefficients is obtained.

(b) Show formally that the OLS estimator of the vector of regression coeffi-
cients is an unbiased estimator under the model assumption specified in
part a).
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(c) Find the covariance matrix of the vector of estimated coefficients

(d) Find the covariance matrix of the vector of predicted responses

2. (a) For the model, y = Xβ+ε, (in matrix notations) obtain the OLS estimator
β̂ of β. Make the proper normality assumptions and derive the distribution
of β̂ under these assumptions.

(b) For the model specified in a) and proper normality assumptions on ε, ob-
tain the distribution of ŷ and e = y − ŷ.

(c) State the test of significance of a single slope parameter βj and derive the
test statistics (t-tests) in the multiple regression setting.

(d) Describe the situations in regression analysis where the assumption of nor-
mal distribution is crucial and where it is not (coefficients and mean re-
sponse estimates, tests, confidence intervals, prediction intervals). Clear
motivation must be presented.

3. For the linear regression model y = Xβ + ε (in matrix notations) where ε has
zero mean, define the error sum of squares as

SSe(β) = (y −Xβ)′(y −Xβ).

For the OLS estimator β̂, show that

SSe(β) = SSRes + (β − β̂)′X′X(β − β̂),

where SSRes = SSe(β̂).

4. Explain the problem of hidden extrapolation in predicting new responses and
estimating the mean response at given point x′0 = [1, x01, x02, . . . , x0k] in the
multiple linear regression. Motivate your explanations by sketching the graph
and explain how to detect this problem by using the properties of the hat matrix,
H = X(X′X)−1X′? Recall that the location of the point x′0 relative to the
regressor variable hull is reflected by h00 = x′0(X′X)−1x0.

5. Exercises from MPV: 3.27, 3.28, 3.29 (Hint: Recall that for the hat matrix, H,
each element hij can be expressed as hij = [1 xi](X

′X)−1[1 xj ]
′), 3.31,

3.32, 3.37, 3.38 (Hint: Recall that rank(X) = p and that the diagonal elements
hii of the hat matrix H can be expressed as x′i(X

′X)−1xi, where xi is the ith
row of X, i = 1, . . . , n.

Transforms and weighting. Detection of outliers, high leverage observations and
influential data points.

1. Define some different types of residuals (for example standardized, studentized
or PRESS), specify their properties, and explain how they can be used for de-
tecting outliers.
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2. Derive the concept of an influential data point (sketch the graph) and explain
how such points can be detected using DFFITS and Cook’s distance measure.

3. Cook’s distance measure, denoted by Di and used for detecting potentially in-
fluential observations, is defined as

Di = Di(X
′X, pMSRes) =

(β̂(i) − β̂)′X′X(β̂(i) − β̂)

pMSRes
, i = 1, . . . , n,

where β̂ is OLS estimator of β obtained by using all n observations, β̂(i) is the
estimator obtained with point i deleted and MSRes = SSRes/(n− p).

Show formally that the Cook’s Di depends on both the residual, ei and the lever-
age, hii, and can be expressed as

Di =
r2i
p

hii
1− hii

, where ri =
ei√

MSRes(1− hii)

is the studentized residual and hii is the ith diagonal element of the hat matrix
H = X(X′X)−1X′. Explain why this representation of Di in terms of both
the location of the point in x space and the response variables is desirable (for
detecting influential points).

Hint: Use the representation

β̂ − β̂(i) =
(X′X)−1xiei

1− hii

and recall that hii = x′i(X
′X)−1xi.

4. Exercises from MPV: 5.8, 5.14, 5.15 (Hint: For the case of simple linear re-
gression model without intercept, the weighted LS function is given by S(β) =∑n
i=1 wi(yi − βxi)2).

5. Suppose that the error component, ε, in the multiple regression model(Obs!
Model is in vector form) y = Xβ + ε, has mean 0 and covariance matrix
Var(ε) = σ2Ω, where Ω is a known n × n positive definite symmetric ma-
trix and σ2 > 0 is a constant (possibly unknown but you do not need to estimate
it). Let

β̂GLS =
(
X′Ω−1X

)−1
X′Ω−1y.

be the generalized least-squares estimator of β.

(a) Show that β̂GLS is obtained as the solution of the problem

Minimizeβ
[(

y −Xβ)′Ω−1 (y −Xβ)] .

(b) Show formally that β̂GLS is an unbiased estimator of β and determine its
covariance matrix.
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Hint: Use the following general matrix derivatives rules. LetA be k × k matrix
of constants, a be a k×1 vector of constants and v be a k×1 vector of variables.
Then the following holds.

If z = a′v, then
∂z

∂v
=
∂a′v

∂v
= a.

If z = v′v, then
∂z

∂v
=
∂v′v

∂v
= 2v.

If z = a′Av, then
∂z

∂v
=
∂a′Av

∂v
= A′a.

If A is symmetric, then
∂v′Av

∂v
= 2Av.

Multicollinearity

1. Explain in detail (with formulas) the concept of multicollinearity in multiple
linear regression models. Describe in detail (with formulas) at least two effects
of multicollinearity on the precision accuracy of the regression analyses. Explain
why the ordinary LS parameter estimation in multiple regression model is not
applicable under strong multicollinearity.

2. Derive in detail at least two diagnostic measures for detecting multicollinearity
in multiple linear regression and explain in which way these measures reflect the
degree of multicollinearity.

3. Suppose that there are two regressor variables, x1 and x2, in the linear regression
model. Assuming further that both regressors and the response variable y are
scaled to unit length, the model is yi = β1xi1 + β2xi2 + εi, where E(εi) = 0,
V(εi) = σ2 and Cov(εi, εj) = 0, i, j = 1, . . . , n.

State the least-squares normal equations in matrix notations and obtain the esti-
mators of β1 and β2. Show formally why the strong multicollinearity between x1
and x2 results in large variances and covariances for the least-squares estimators
of the regression coefficients.

Hint: Recall that in the unit length scaling, the matrix X′X is in the form of
correlation matrix and similarly, X′y is in the correlation form, that is

X′X =


1 r12 r13 · · · r1k
r12 1 r23 · · · r2k
r13 r23 1 · · · r3k

...
...

...
...

...
r1k r2k r3k · · · 1

 X′y =


r1y
r2y
r3y

...
rky

 ,

where rjl is the simple correlation between regressors xj and xl, and rjy is the
simple correlation between the regressor xj and the response y, j, l = 1, 2, . . . , k.
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Recall further that in general, for the LS estimator of p-vector β, Var(β̂j) =

σ2(X′X)−1jj and Cov(β̂i, β̂j) = σ2(X′X)−1ij , where (X′X)−1jj and (X′X)−1ij
are diagonal and off-diagonal elements of the the matrix (X′X)−1, respectively,
i, j = 1, . . . , p.

4. Suppose that X′X is in the correlation form, Λ is the diagonal matrix of eigen-
values of X′X, and T is the corresponding matrix of eigenvectors. Show for-
mally that VIFs, variance inflation factors, are the main diagonal elements of the
matrix TΛ−1T′.

Biased regression methods

1. Explain the idea of the ridge regression (in relation to multicollinearity) and de-
fine the ridge estimator of the vector of regression coefficients for the linear
model y = Xβ+ε where the design matrix X is in the the centered form. Show
formally that the ridge estimator is a linear transform of the ordinary LS estima-
tor of regression coefficients. Explain why the ridge estimator is also called for
shrinkage estimator that shrinks the ordinary LS estimator towards zero.

2. Show that the ridge estimator of the vector of regression coefficients for the linear
model y = Xβ+ε produces a biased estimator of the true parameter β. Assume
that design matrix X is in the centered form.

3. For the the linear model y = Xβ + ε, show that a generalized ridge regression
estimator,

β̂rr = (X′X + λΩ)
−1

X′y,

can be obtained as a solution of minimizing of SSres(β) subject to the ellipti-
cal constraint that β′Ωβ ≤ c, where Ω is known, positive-definite symmetric
matrix. Assume that both X′X and X′y are in correlation form. Hint: general
matrix derivatives rules from the end of this section.

4. For the the linear model y = Xβ + ε, derive the ridge regression estimator
β̂Ridge = β̂Ridge(λ) of β, where λ is the ridge parameter. The mean squared
error, MSE of the vector β̂Ridge is defined as

MSE(β̂Ridge) = E
(

(β̂Ridge − β)′(β̂Ridge − β)
)
.

ExpressMSE(β̂Ridge) in terms of bias and variance of the components of vector
β̂Ridge and explain the bias-variance trade-off in terms of the ridge parameter λ.
Explain why λ is often called for the bias parameter.

5. Explain in detail the idea of principal-component regression (PCR) and how this
approach combats the problem of multicollinearity in the linear regression mod-
els.
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6. Explain the idea of the ridge regression and Lasso regression and the differ-
ence between these two approaches. Specifically, which of this two approaches
behaves only as a shrinkage method and which one can directly perform vari-
able selection? Motivate your explanations by sketching the graph with traces of
ridge- and Lasso coefficient estimators as tuning parameter is varied, and explain
the difference in trace shapes.

7. Consider the multiple regression model y = Xβ+ ε and assume that both X′X
and X′y are in correlation form. Show that the ridge estimator of β, denoted by
β̂Ridge can be the obtained as the solution to the constraint optimization problem

Minimizeβ
[(
β − β̂LS)′X′X(β − β̂LS

)]
subject to β′β ≤ d,

where β̂LS is the ordinary least-squares estimator of β and d > 0 is an arbitrary
constant. Sketch the graph (for the two-parameter case) representing the con-
straint β′β ≤ d, explain the role of constant d > 0 and the relationship of β̂Ridge

to β̂LS, specifically why β̂Ridge shrinks the LS estimator β̂LS towards the origin.

Hint: Form the function φ(β) = (β−β̂LS)′X′X(β−β̂LS)+λβ′β, where λ > 0

is the Lagrangian multiplier (or ridge parameter). Assuming that β̂LS is fixed and
does not depend on β, differentiate φ(β) with respect to β, set the result equal
to zero and, at the minimum, set β = β̂Ridge(λ).

Use the following general matrix derivatives rules. Let A be k × k matrix of
constants, a be a k × 1 vector of constants and v be a k × 1 vector of variables.
Then the following holds.

If z = a′v then
∂z

∂v
=
∂a′v

∂v
= a.

If z = v′v, then
∂z

∂v
=
∂v′v

∂v
= 2v.

If z = a′Av, then
∂z

∂v
=
∂a′Av

∂v
= A′a.

If A is symmetric, then
∂v′Av

∂v
= 2Av.

Variable selection and model building

1. Regression analysis often utilities the variable selection procedure know as the
all possible regressions (also called for the best subsets regression).

(a) Describe thoroughly the steps of the all possible regressions procedure.
Specify at least two objective criteria that can be used for the model evalua-
tion, explain how to apply these criteria and motivate why they are suitable
for this type of variable selection. Explain advantages and disadvantages
of this approach to the regression model building.
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(b) Suppose that there are three candidate predictors, x1, x2, and x3, for the fi-
nal regression model. Suppose further that the intercept term, β0 is always
included in all the model equations. How many models must be estimated
and examined if one applies all possible regressions approach? Motivate
you answer.

2. Exercise 10.13 from MPV: (Hint for part c): Observe that the correlation for
of the variables is used. Recall that for the full model y = Xβ + ε, with K
candidate regressors x1, . . . , xK , and with n ≥ K+1 observations, the following
partition can be obtained

y = Xpβp + Xrβr + ε,

where Xp is an n × p matrix whose columns represent intercept and (p − 1)
regressors, Xr is an n × r matrix whose columns represent the regressors to be
removed from the model, and βp and βr are corresponding parts of β. Then for
the OLS estimator of the coefficients in the reduced model, the following holds

E(β̂p) = βp + (X′pXp)
−1X′pXrβr.

(Hint for part d): Recall that the mean square error of an estimate θ̂ of the pa-
rameter θ id defined as

MSE(θ̂) = Var(θ̂) + [E(θ̂)− θ]2.

CART, logistic regression and GLM, bootstrapping in regression

1. Let Da denote the training data set and let T be a decision tree trained on Da

through an error measuring function E (e.g. SSRes on a regression tree or cross-
entropy on a classification tree). Let T ′ denote the resulting tree after a split on
T , and suppose that E(Da, T ) = E(Da, T

′). Should the splitting process be
stopped? Justify your answer.

2. Let Da and Db be two independent data sets. Let T be a decision tree trained
on Da through an error measuring function E (e.g. SSRes on a regression tree
or cross-entropy on a classification tree). Describe how to prune a regression or
decision tree using information given by E(Da, T ) and E(Db, T ).

3. Consider a continuous (latent) variable Y ∗ given as follows:

Y ∗ = β
′
x + ε

where β
′
x = β0 + β1x1 + β2x2 + . . . + βpxp and ε ∈ N(0, 1) is independent

of x. Define further Y as the indicator

Y =

{
1 if Y ∗ > 0 i.e. − ε < β

′
x,

0 otherwise.
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(a) Show that for all real u,

P (−ε ≤ u) = P (ε ≤ u).

(b) Show that
P (Y = 1 | x) = Φ

(
β

′
x
)
,

where Φ(·) is the distribution function of N(0, 1).

You are likely to need (a) in this. But if you cannot solve (a), you are still
allowed to use the formula/result in (a)

4. Assume that the response variable Y in a regression problem is a Bernoulli ran-
dom variable, that is Y ∈ Be(π(β′x)), where π(β′x) is the logistic function,
β′x = β0 + β1x1 + β2x2 + . . . + βpxp and x = (1, x1, x2, . . . , xp), i.e., Y
follows a logistic regression.

Let (x1, y1), (x2, y2), . . . , (xn, yn) be a data set of independent samples, where
yi ∈ {0, 1} and xi = (1, xi1, xi2, . . . , xip), i = 1, . . . , n.

(a) Show that for all real β, the log likelihood function l(β) can be written as

l(β) =

n∑
i=1

yiβ
′xi −

n∑
i=1

ln
(
1 + exp(β′xi)

)
.

(b) Find the partial derivatives ∂
∂β0

l(β) and ∂2

∂β2
0
l(β) in the form they would

appear in a recursive algorithm like Newton-Raphson for finding the max-
imum likelihood estimate.

5. You are a statistics consultant, and has been hired by Skolverket to create a model
for predicting the yearly number of sick days per student in an upper secondary
school class, in different parts of Sweden, based on the Median Student Age in
the class as well as the City where the school is located. Skolverket provides you
with the data containing k observations, y1, . . . , yk, one for each combination
of Median Student Age and City. Each combination is called a “Cell”, and yi
denotes the observed number of sick days per student in cell i.

You choose a GLM (generalized linear model) for modeling the mean number of
sick days per student. The GLM model has the following form

g(µi) = β0 +

N∑
j=1

xijβj ,

where g(·) is the link function, µi = E(Yi) is the mean number of sick days for
a student qualifying for cell i, β0 is the base level and N is the number of non-
redundant parameters The “dummy variable” xij takes the value 1 if parameter
is included in cell i, else 0.(Obs! These notations are used during the lectures on
GLM).
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(a) A GLM model requires the response variable to belong to a certain family
of distributions. What is the name of this family? Also, specify which
sub-family of distributions that the number of sick days during a year is
likely to belong to.

(b) What is a suitable choice of the link function? Hint: The model is multi-
plicative.

(c) You choose cell i = 1 to be the reference cell. Complete the equation

g(µ1) = ...

(d) Describe the steps of the Maximum Likelihood estimation method for esti-
mating the parameters βj , j = 0 . . . , N using the observed data y1, . . . , yk.
Let fYi

(yi) denote the probability density function of Yi.

6. You have just created a GLM model for the mean number of car accidents within
an arbitrary geographic area, where you use Population Density and Median age
of driver as rating variables. You have found both variables to be good predictors.
Now you consider to add Average Temperature as a third variable, categorized
in three groups: “Cold”, “Medium” and “Hot”. Call the first model (excluding
temperature) the “Small (reduced) model”,RM , and the larger model (including
temperature) the “Large (full) model”, FM .

(a) How many more non-redundant parameters βj does FM include, com-
pared to RM?

(b) Describe the strategy of Wald inference for testing the significance of the
new model parameter(s).

(c) Explain how you can perform a Likelihood Ratio test to test whether the
Large (full) model fits the data significantly better than the Small (reduced)
model, using the deviance from each of the models.

(d) What is the distribution of the Log Likelihood test statistic, used for testing
the Large (full) model against the Small (reduced) model in this example?

7. A key assumption in the GLM is that the response variable distribution is an
exponential family of probability distributions, i.e. those distributions whose
density/probability mass function have the following general form

f(yi, θi, φ) = exp

(
yiθi − b(θi)

a(φ)
+ h(yi, φ)

)
,

where θi is the natural location parameter, φ is the scale parameter, b(θi) is the
cumulant function and h(yi, φ) does not depend in θ.
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The probability mass function (i.e., the density respect to counting measure) of
a Poisson random variable Yi is given as follows

fYi
(yi;λ) = e−λ

λyi

yi!
,

where λ > 0 and Y1, . . . , Yn is a sample of independent observations.

(a) Show that the Poisson distribution is an exponential family distribution
and determine the cumulant function b(θi), φ and the function h(yi, φ) in
terms of λ and yi’s.

(b) For the exponential family distribution the following holds

E(Yi) =
db(θi)

dθi
, and V(Yi) =

d2b(θi)

dθ2i
a(φ).

Find E(Yi) and V(Yi) using your results in a).

8. (a) Two main sampling procedures for bootstrapping regression estimates are
usually referred to as bootstrapping residuals and bootstrapping cases.
Give in detail the steps of both procedures and specify the difference be-
tween these two approaches.

(b) Explain how to find a bootstrap estimate of the standard deviation of the
estimate of the mean response at a particular point x0. Explain how to ob-
tain approximate confidence intervals for regression coefficients through
bootstrapping.
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