

sf2930 Regression analysis

Exercise session 2 - Ch 3: Multiple linear regression

In class:

1. Montgomery et al., 3.27 Show that

$$Var(\hat{\mathbf{y}}) = \sigma^2 \mathbf{H}.$$

2. Montgomery et al., 3.29 For the *simple* linear regression model, show that the elements of the hat matrix **H** are

$$h_{ij} = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{S_{xx}}$$

and

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}.$$

Discuss the behaviour of these quantities as x_i moves farther from \bar{x} .

- 3. Montgomery et al., 3.37. Suppose we fit the model y = X₁β₁ + ε when the true model is actually given by y = X₁β₁ + X₂β₂ + ε. For both models assume that E[ε] = 0 and Var[ε] = σ²I. Find the expected value and variance of the ordinary least-squares estimate, β₁. Under what conditions is this estimate unbiased?
- 4. Montgomery et al., 3.26 Suppose that we have two independent samples say $(y_1, x_1), \ldots, (y_{n_1}, x_{n_1})$ and $(y_{n_1+1}, x_{n_1+1}), \ldots, (y_{n_1+n_2}, x_{n_1+n_2})$. Two models can be fit to these samples,

$$y_i = \beta_0 + \beta_i x_i + \epsilon_i, i = 1, \dots, n_1$$

 $y_i = \beta_0 + \beta_i x_i + \epsilon_i, i = n_1 + 1, \dots, n_1 + n_2.$

- a) Show how these two separate models can be written as a single model.
- b) Using the result in part a), show how the general linear hypothesis can be used to test equality of the slopes β_1 and γ_1 .
- c) Using the result in part a), show how the general linear hypothesis can be used to test equality of the regression lines.
- d) Using the result in part a), show how the general linear hypothesis can be used to test that both slopes are equal to a constant *c*.

- 5. Montgomery et al., 3.1. Consider th National Football League data in Table B.1.
 - (a) Fit a multiple linear regression model relating the number of games won to the teams passing yardage (x_2) , the percentage of rushing plays (x_7) , and the opponents' yards rushing (x_8) .
 - (b) Construct the ANOVA table and test for significance of the regression.
 - (c) Calculate t statistic for the hypotheses H_0 : $\beta_2 = 0$, H_0 : $\beta_7 = 0$ and H_0 : $\beta_8 = 0$. What conclusions can you draw about the roles the variables x_2, x_7 and x_8 play in the model?
 - (d) Calculate R^2 and R^2_{Adj} for this model.
 - (e) Using the partial F test, determine the contribution of x_7 to the model. How is this partial F statistic related to the t test for β_7 in c)?

Recommended exercises:

Book	Theory	Implementation
Montgomery et al.:	3.24, 3.25, 3.30, 3.31, 3.32, 3.33, 3.36, 3.38, 3.39, 8.12	3.2, 3.5, 3.7, 3.21

References

D.C. Montgomery, E.A. Peck, and G.G. Vining. Introduction to Linear Regression Analysis. Wiley Series in Probability and Statistics. Wiley, 2012. ISBN 9780470542811.