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WHAT IS REGRESSION? INTRODUCTION

Regression analysis is a statistical technique for investigating and
modeling the relationship between variables. The reason why it is
so widely applied is because it provides the answer to an everyday
question, namely

how a response variable of special interest depends on several
other, explanatory variables.
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WHAT IS REGRESSION? EXAMPLES

Applications of regression techniques are numerous; example
include engineering, medical, biological and social sciences, physical
and chemical sciences, economics, ... Regression is probably is the
most widely used statistical methodology. Examples of applied
problems and questions in which regression might be helpful:

I how the apartment prise depends on size, location, floor,
closeness to subway, ...

I how growing of plants depends on fertilizer, soil quality, ...

I how home insurance premium depends on age of homeowner,
value of the home and its contents, region, ...

In various quantitative settings, the regression techniques models
the relationship between the response variable of special interests
(Y ) and a (set) x1, . . . xk of explanatory or predictor variables.
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REGRESSION MATHEMATICS

I Linking the response variable to the predictors:

Y = f (x1, . . . , xk)︸ ︷︷ ︸
deterministic

+ ε︸︷︷︸
random

,

ε is the error term which is can neither be controlled or
predicted.

I The goal is to learn about the function f (·).
I In full generality, finding f (·) without any conditions is very

difficult: function space is infinite-dimensional!

I Solution: restrict the form of f (·).
I Linear modeling: Y = β0 + β1x1 + · · ·+ βkxk + ε.

I Finding f boils down to determining β0, β1, . . . , βk from the
data.
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REGRESSION AND MODEL BUILDING

I Why modeling? It is stated once by George Box that All
models are wrong, but some are useful.

I Certain degree of variability (uncertainty) is present in almost
all processes. Most of this variability can not be modeled with
deterministic methods of mathematics. Statistics
(mathematics under uncertainty) provides a powerful toll of
modeling phenomena under uncertainty.

I Larger data collected in real-world applications demand
models in order to extract big knowledge of big data!

I In this course we start with simple but highly applicable, linear
regression models. We then turn to more advance subjects.
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REGRESSION AND MODEL BUILDING (CONT.)

In this course we start with highly applicable, simple linear
regression models. It is rather simple modes but the tools
constructed within the simple linear regression will be naturally
extended to the multiple case.

Later in the course we turn to more advance subject such as

I multiple linear regression

I logistic regression

I Generalized linear models containing Poisson and negative
binomial regression
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EXAMPLE

FIGURE: The wash water tank on SAS aircrafts. It is impossible to predict
exactly the amount of wash water needed, therefore the tank is always filled to
100% at Arlanda airport. The project on minimizing the amount of water is
performed with the main goal to lower the weight of the aircraft, and as a
result reduce fuel consumption and cost. Goal: to investigate (to model!) the
relationship between wash water consumption (target variable) and number of
passengers, duration of a flight, time of the flight (night/day), ... (explanatory
variables). Statistical approach: multiple linear regression analysis.
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EXAMPLE: LINEAR REGRESSION FOR ADVERTISING DATA

FIGURE: The Advertising data set. The plots displays sales for a
particular product as a function of advertising budget for TV, radio and
newspaper, for 200 different markes. Each blue line represents the simple
model that can be used to predict sales from each feature variable.
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LINEAR REGRESSION FOR ADVERTISING DATA.

Advertising data, see Ch. 2 in ISL. The goal is using the data, to
design a marketing plan (for the next year) that will result in high
product sales. Specific questions are (see Intro to Ch. 3 in ISL):

I Q1: Is there a (linear) relationship between advertising budget
and sales?

I Q2: How strong is the relationship between advertising budget
and sales?

I Q3: Which media contribute to sales (Which predictors are
associated with response)?

I Q4: How to estimate effect of each variable on sales? How
accurate are these estimates?

I Q5: How can we predict future sales?

I Q6: Is the synergy among the advertising media?
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LINEAR REGRESSION - AN APPROACH FOR MODELING AND PREDICTION

The goals of such regression analysis are usually two-fold:

I to model the relation between output Y and input vector

x = (x1, . . . , xk ), and to specify which of the predictor variables

have effect on the output variable Y , as well as to quantify the

strength of this relation (The regression equation, inference).

I Using the regression equation, to predict the expected response

value of Y for an arbitrary (new) configuration of x1, . . . , xk .

I The dependence of Y on x = (x1, . . . , xk ) is assumed to be linear,

i.e. the model formula is

Y = β0 + β1x1 + · · · βkxk + ε,

where β0, . . . , βk are unknown coefficients or parameters, and ε is

the random error, which accounts for measurement error and effect

of other variables not explicitly considered in the model.
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GOALS IN REGRESSION ANALYSIS

I A ”good” fit. Estimating a (hyper)-plane over x1, . . . ,xk to
explain the response such that the errors are ”small”. The
standard tool is Least Squares estimates, LS.

I Good parameter estimates are useful to describe the change
of the response when varying some some predictor variable(s).

I Good prediction is useful to predict a new response as a
function of new predictor variables.

I Uncertainties and significance with the three goals above.

I Development of a good model: In an interactive process,
with the help of methods for the above goals, we may change
parts of the model to come up with a better mode.
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WHY CALL REGRESSION?
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HOW REGRESSION GOT ITS NAME?

I In the late 1800’s, a scientist Sir Francis Galton was working with

large observational studies on humans, in part with the data on the

heights of fathers and first sons.

I In terms of simple regression model x was the height of the father

and Y was the height of the first, fully grown, son. Goal: to predict

Y in terms of x .

I Galton concluded: For father’s whose heights were taller than the

average, the LS line predicts the son to be shorter than the father.

Likewise, for father’s whose heights were shorter than the average,

the line predicts the son to be taller than the father.

There is a regression towards the mean effect!
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SIMPLE LINEAR REGRESSION

We begin with a mathematically most simple way of describing the
relation between the variables: the linear relationship between a
continuous response variable Y in dependence on

I a single explanatory variable x (simple linear regression model)

I several explanatory variables x1, . . . , xk (multiple regression
model)

Later in the course we will consider

I modeling of the nonlinear relationship between a binary
response Y and a set of explanatory variables x1, . . . , xk
(logistic regression).

I additional models when Y is discrete.
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SIMPLE LINEAR REGRESSION
The simple linear regression model is Y = β0 + β1x + ε, where the
intercept β0 and the slope β1 are unknown constants, and ε is a
random error component.

Model, interpretation of variables and parameters:

I Y is a continuous dependent variable, assumed to be random
and called for response or outcome.

I x is independent variable assumed to be non-random, i.e. we
focus on a fixed x-case. (Random X -case will be considered
later in the course).

I For the random error ε, assume that E (ε) = 0 and V (ε) = σ2

(σ2 is unknown)

I β0 and β1 are called regression coefficients, assumed
non-random.

I E (Y ) = β0 + β1x and V (Y ) = σ2, because β0, β1 and x are
non-random.
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BRING THE data INTO CONSIDERATION

Given is a set of paired data points (yi , xi ) obtained for i = 1, . . . , n
observational units; each yi is the observed value of a r.v. Yi , i.e. a
generic observation i is modeled as

Yi = β0 + β1xi + εi .

Besides linearity of the model, we assume that
I The linear regression equation is correct: E (εi ) = 0 for all i .

I All x ’s are exact, i.e we can observe xi ’s perfectly.

I The variance of the errors is constant (homoscedasticity), i.e.
V (εi ) = σ2 for all i .

I εi are pairwise uncorrelated, i.e Cov(εi , εj ) = 0 for all i 6= j .

I Since the only random element in the model is εi , Yi ’s have also
E (Yi ) = β0 + β1xi and common variance σ2.

I For purpose of making tests of significance, we assume that εi
are iid N(0, σ2). Then Yi are iid and Yi ∈ N(β0 + β1xi , σ2).
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A LINEAR FIT
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FIGURE: Drawing the linear regression line for Advertising+ data (see
Ex 1 in Ch 3 of ISL). The plot displays the regression of sales+ onto
TV+. The linear fit is obtained by minimizing the sum of squared errors.
Each gray vertical line represents an error and the fit make a compromise
by averaging the squares of errors.
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LEAST SQUARES FIT

I Example with Advertising+ above.

I Q: How to fit a straight line that fits the data well?

I Our strategy is to fit the line in such a way such that the
squared errors are minimal. This is called Least Squares (LS)
fitting.

I Residuals vs. errors. The residual ei = yi − ŷi is the the
difference between the observed and the fitted y -value for the
ith observation. Residuals are numerical realizations of
random errors ε i .

I Illustration of residuals: see white board.

LS fitting strategy: to fit the regression line for which the sum of
squared residuals is minimized, i. e. ∑n

i=1 e
2
i → min.
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LEAST SQUARES FIT (CONT.)
More precisely, given a set of observations (yi , xi ), i = 1, . . . , n the
goal is to obtain estimators of β0 and β1, (say β̂0 and β̂1) which
minimize the LS objective function

S(β0, β1) =
n

∑
i=1

(yi − (β0 + β1xi ))
2.

Solution strategy: taking partial derivatives on S(β0, β1) with
respect to β0 and β1, and setting them to zero.

∂S(β0, β1)

∂β0
|β̂0,β̂1

= 0,
∂S(β0, β1)

∂β1
|β̂0,β̂1

= 0.

This results in a system of linear equations, called for normal
equations. These can be solved simultaneously to yield computing
formulas for the LS estimates, β̂0 and β̂1 in terms of the observed
data (yi , xi ), i = 1, . . . , n.
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LEAST SQUARES SOLUTION
The LS estimates of β0 and β1 are computed as

β̂0 = ȳ − β̂1x̄ , β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2

=
Sxy
Sxx

.

The fitted model: ŷ = β̂0 + β̂1x
Residuals: ei = yi − ŷi = observed− predicted.

SSRes =
n

∑
i=1

e2i =
n

∑
i=1

(yi − ŷi )
2.

A convenient working formula: SSRes = SST − β̂1Sxy , where

SST = ∑n
i=1(yi − ȳ)2. See mathematics on the board.

We also obtain the estimate of the variance of the error term
(residual mean square – measure of residuals variability):

σ̂2 = s2 =
1

n− 2

n

∑
i=1

(yi − ŷ)2 =
1

n− 2

n

∑
i=1

e2i =
SSRes
n− 2

= MSRes.
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PROPERTIES OF LS ESTIMATORS

The LS estimators of β0 and β1 have several important properties:

I β̂0 and β̂1 are linear combinations of the observations yi :

β̂1 =
Sxy
Sxx

=
n

∑
i=1

ciyi , ci =
xi − x̄

Sxx
, i = 1, . . . , n.

I Assuming that the model is correct i.e. E (Yi ) = β0 + β1xi ,
β̂0 and β̂1 are unbiased:

E (β̂0) = β0, E (β̂1) = β1

I The variances of β̂0 and β̂1 are found as (see math and
interpretation of V (β̂1) on the board)

V (β̂0) = σ2

(
1

n
+

x̄2

Sxx

)
, V (β̂1) =

σ2

Sxx
.
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OPTIMALITY OF LS ESTIMATORS

Gauss-Markov theorem states the result on the mathematical
optimality of the LS: assuming that the following conditions are
met,

I E (ε i ) = 0, (i.e. the relation is a straight line),

I V (ε i ) = σ for i = 1, . . . , n,

I Cov(ε i , εj ) = 0 for i 6= j = 1, . . . , n, (the errors are
uncorrelated),

the LS estimators are unbiased and have minimum variance when
compared with all other unbiased estimators that are linear
combinations of yi .

I By Gauss-Markov thm, LS estimators are Best Linear
Unbiased Estimators, (BLUE), where best means minimum
variance.

I Later on in the course: Gauss-Markov theorem for the more general

multiple regression, of which simple linear regression is a special case.
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BENEFITS OF LS APPROACH

Mathematically ...

I The fitted line goes through the center of gravity (x̄ , ȳ) of the
data.

I The LS technique is simple in the sense that the solutions, β̂0

and β̂1, are obtained in closed form as functions of (xi , yi ).

I β̂0 and β̂1 are unbiased estimators

I Large sample properties of the LS estimates have some deeper
mathematical advantages (approximate normality of
coefficient estimators), and exact properties assuming
Gaussian errors. Will be presented later in the course.
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