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1 Introduction

Without customers we would not have any business. We always have our cus-
tomers top of mind and want to make them feel safe and off course stay with
us for as long as possible. So how could we find out which customers will stay
with us and which will leave us? This will be the main topic of this lecture and
introduce generalized linear models (GLMs) to answer this question together
with the concept of the exponential family.

2 From Additive Linear Model to GLM Form

Using a linear additive model we would obtain the mean renewal rate, µij , for
our customer’s policies (the insurance contracts) by

µij = γ0 + γ1i + γ2j , (1)

where γ0 is a base level, i refers to the customer’s group w.r.t. the sales channel
and j refers to the customer’s group w.r.t. price change from last year. γ1i is
thus the parameter for the ith group in Variable 1. There are 3 different sales
channels in our data set, Call center, Face to face and Broker. Furthermore,
we have divided the price change variable into 2 groups smaller and larger than
10%. The response variable for each individual insurance policy is then

yi =

{
1, if the insurance policy was renewed
0, if the insurance policy was not renewed.

We have aggregated the data in Table 1, in which each unique combination
of variable groups i, j correspond to one row, often referred to as a cell. For
each cell there is a corresponding equation on the form of Eq. (1),

µ11 = γ0 + γ11 + γ21,
µ12 = γ0 + γ11 + γ22,
µ21 = γ0 + γ12 + γ21,
µ22 = γ0 + γ12 + γ22,
µ31 = γ0 + γ13 + γ21,
µ31 = γ0 + γ13 + γ22.
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Table 1: Aggregated historic insurance renewal data with three groups for Vari-
able 1, Sales Channel, and two groups for Variable 2, Price change.

Cell Sales Price Number of Number of Renewal
channel change customers renewed rate

Variable 1 Variable 2 w X Y = X/w
1 Call center (1) < 10% (1) 12033 11260 93.6%
2 Call center (1) ≥ 10% (2) 959 763 79.6%
3 Face to face (2) < 10% (1) 2056 1914 93.1%
4 Face to face (2) ≥ 10% (2) 108 91 84.3%
5 Broker (3) < 10% (1) 3178 2901 91.3%
6 Broker (3) ≥ 10% (2) 231 171 74.0%

This model is over parametrized, hence, it has more parameters, γ, than
needed, which gives us the freedom to define a base cell in which only the
base level is non-zero. Choosing (1, 1) as our base cell we set γ11 = γ21 = 0.
Renaming the parameters according to

β0
.
= γ0

β1
.
= γ12

β2
.
= γ23

β3
.
= γ22

with which we get
µ11 = β0
µ12 = β0 +β3
µ21 = β0 +β1
µ22 = β0 +β1 +β3
µ31 = β0 +β2
µ32 = β0 +β2 +β3,

where we see that β1 describes the difference between call center and face to
face, β2 the difference between call center and broker and β3 between less than
10% and more than 10% price change. Renaming the mean renewal rate for cell
i to µi and introducing zeros according to

µ0 = 1 · β0 +0 · β1 +0 · β2 +0 · β3
µ1 = 1 · β0 +0 · β1 +0 · β2 +1 · β3
µ2 = 1 · β0 +1 · β1 +0 · β2 +0 · β3
µ3 = 1 · β0 +1 · β1 +0 · β2 +1 · β3
µ4 = 1 · β0 +0 · β1 +1 · β2 +0 · β3
µ5 = 1 · β0 +0 · β1 +1 · β2 +1 · β3

we can express the system of equations in a more compact way

µi =
∑
j=0

xijβj , (2)
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Table 2: Comparison between ordinary linear regression models and GLM
Model Randomness Structure
Regression model Yi ∼ N(µi, σi) µi =

∑
j=1 xijβj

GLM Yi ∼ P (µi, σi) g(µi) =
∑
j=1 xijβj

where i = 0, 1, ..., 5 and we have introduced the dummy variables

xij =

{
1, if βj is included in µi
0, otherwise.

(3)

.
We have now transformed Eq. (1) to the most basic GLM form in Eq. (2),

through which we also have gained fundamental knowledge on how the param-
eters βi are linked to the different cells of the model and, thus, the core of
GLMs.

3 GLM and Logistic Regression

Having found the correct form we still have some issues to deal with since what
we are predicting can only take on values between 0 and 1. Weather or not a
customer will renew its policy can be seen as the outcome of a Bernoulli trial
according to

Pr(yi = 1) = πi,

Pr(yi = 0) = 1− πi,
(4)

where we have changed to the common notation of πi instead of µi for this
particular response variable. The expected value is then found to be

E [yi] = 1 · πi + 0 · (1− πi) = πi.

In general, linear regression models assume that data come from a Normal
distribution with the mean related to predictors. It is easy to see that this is
not applicable to Eq. (4) since the error cannot be normally distributed with
only the two possible outcomes. On the contrary, GLMs assume that data come
from some distribution, member of the exponential family, with a function, g,
of the mean related to predictors according to

g(µi) =
∑
j=0

xijβj , (5)

which is the most general form of GLMs. These main differencies are shown in
Table 2.

The function, g, is called the link function and is the key to solving the
problem with restricting πi to the interval [0, 1]. This is done by using the logit
link function according to

g(πi) = ln

(
πi

1− πi

)
=
∑
j=0

xijβj , (6)
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Table 3: Some of the possible link functions, the relations to the mean, µi, and
four common distributions of the response variables that they are compatible
with. ? indicates that it often used as default and X that it is compatible.

Link g(µi) µi = N
or
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identity µi
∑
xijβj ? X X

log ln(µi) e
∑
xijβj X ? X

inverse 1/µi (
∑
xijβj)

−1 X ?
sqrt

√
µi (

∑
xijβj)

2 X
logit ln(µi/(1− µi)) (1 + e−

∑
xijβj )−1 ?

where ln is the natural logarithm, with which

logit(πi) = ln

(
πi

1− πi

)
∈ R,

and the quantity πi/ (1− πi) ∈ R+ is called odds.
For GLM in general there are several possible link functions and the choice is

strongly related to the distribution of the response variable. In Table 3 common
link functions and compatible distributions are shown. It may seem like the
there are no restrictions on the distribution of the response variable, however, as
previously mentioned, a key assumption is that it is a member of the exponential
family which we turn to next.

4 Exponential Family

By assuming that the variables Y1, ..., Yn are independent, which in general is
required in GLM theory, the probability distribution is given by the general
form1

fYi (yi; θi, φ) = exp

{
yiθi − b (θi)

φ/wi
+ c (yi, φ, wi)

}
, (7)

where

• Yi is the key ratio in cell i,

• θi is called the natural location parameter which is allowed to change with
i and is related to the mean µi,

• φ is called the dispersion parameter, or scale parameter, and is the same
for all cells,

• wi is the weight of the cell, in our case the number of cusotmers,

1Strictly speaking we focus on Exponential Dispersion Models in this section, which is
somewhat less general than the complete exponential family.
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• b (θi) is called the cumulant function which has useful properties as we
will see, and

• c (yi, φ, wi) does not depend on θi and is of little interest, but is required
in order for the total probability to equal one.

The cumulant function, b(θi), is assumed to be twice continuously differen-
tiable with invertible first derivative. For every choice of such a function we get
a function we find a family of probability distributions, e.g. the ones listed in
Table 3. Having set the function b(θi) the distribution is completely specified
by the parameters θi and φ. Other technical restriction are that φ > 0, wi ≥ 0
and that the parameter space must be open, e.g., 0 < θi < 1 which we will come
back to later.

The importance of the cumulant function is seen in

µi = E [yi] =
db(θi)

dθi
, (8)

and2

Var(µi) =
Var(yi)

φ/wi
=
dµi
dθi

=
d2b(θi)

dθ2i
, (9)

for members in the exponential family. These properties stems from the cumulant-
generating function, Ψ(t), which is the logarithm of the so called moment-
generating function which is given by

M(t) = E
[
etY
]
,

where we have droped the i notation on Yi for convenience. Let us derive the
two cumulants in Eq. (8) and Eq. (9).

Using the expression for the probability distribution in Eq. (7) we find

E
[
etY
]

=

∫
etY fYi

(yi; θi, φ) dy

=

∫
exp

(
y(θ + tφ/w)− b(θ)

φ/w
+ c(y, φ, w)

)
dy

= exp

(
b(θ + tφ/w)− b(θ)

φ/w

)
×
∫

exp

(
y(θ + tφ/w)− b(θ + tφ/w)

φ/w
+ c(y, φ, w)

)
dy,

(10)

where we have multiplied with

1 = exp

(
b(θ + tφ/w)

φ/w

)
exp

(
−b(θ + tφ/w)

φ/w

)
,

in the third step. Now, in the integral, we identify that it is simply the probabil-
ity distribution function in Eq. (7) with θ → θ+ tφ/w. Thus, in a neighborhood

2This relation for the variance holds for all but the Normal distribution.
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of 0, for |t| < δ for some δ > 0, θ + tφ/w will be in the parameter space since
we required the parameter space to be open. This implies that we are summing
over the entire probability density function which is simply 1. Hence, we find
the moment generating function

M(t) = exp

(
b(θ + tφ/w)− b(θ)

φ/w

)
,

and the cumulant generating function

Ψ(t) = ln (M(t)) =
b(θ + tφ/w)− b(θ)

φ/w
.

The cumulants are then found by differentiating w.r.t. t and evaluating at 0

Ψ′(0) = b′(θ) = E [Y ] = µ,

and
Ψ′′(0) = b′′(θ)φ/w = Var(y),

and for all but the normal distribution we have that

Var(µ) =
Var(y)

φ/w
=
dµi
dθi

=
d2b(θi)

dθ2i
.

As an example we consider the normal distribution to make sure that it is
part of the exponential family and find that θi = µi, φ = σ2 and b(θi) = θ2i /2
which yields

fYi(yi) = exp

{
yiµi − µ2

i /2

σ2/wi
+ c (yi, φ, wi)

}
(11)

where

c (yi, φ, wi) = −1

2

(
wiy

2
i

σ2
+ log

(
2πσ2/wi

))
.

5 Maximum Likelihood Estimation of βj

With an expression for fYi
we can form the likelihood, L (θ, φ, y) according to

L (θ, φ, y) =
∏
i

fYi
(yi, θi, φi) =

∏
i

exp

{
yiθi − b (θi)

φ/wi
+ c (yi, φ, wi)

}
. (12)

We want to maximize this expression w.r.t. every parameter βj . However,
since the logarithm is a monotonically increasing function we may consider the
logarithm of the likelihood instead, called the log-likelihood function, ` (θ, φ, y),

` (θ, φ, y) = log (L (θ, φ, y)) =
∑
i

(
yiθi − b (θi)

φ/wi
+ c (yi, φ, wi)

)
=

1

φ

∑
i

wi (yiθi − b (θi)) +
∑
i

c (yi, φ, wi) .

(13)
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Introducing the short hand notation ηi = g(µi) for the link function and differ-
entiating w.r.t. the parameters βj we find that

∂`

∂βj
=
∑
i

∂`

∂θi

∂θi
∂βj

=
1

φ

∑
i

(wiyi − wib′ (θi))
∂θi
∂βj

=
1

φ

∑
i

(wiyi − wib′ (θi))
∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

.

(14)

Using the relations found for the exponential family, µi = b′(θi) and ∂µi/∂θi =
b′′(θi) we obtain

∂θi
∂µi

=
1

b′′(θi)
=

1

v(µi)
,

∂µi
∂ηi

=

[
∂ηi
∂µi

]−1
=

1

g′(µi)
,

∂ηi
∂βj

= xij ,

which inserted into Eq. (14) and setting it equal to 0 gives us

∂`

∂βj
=

1

φ

∑
i

wi
yi − µi

v(µi)g′(µi)
xij = 0. (15)

with which we get the estimates of the parameters βj of the model.
Going back to our customers, now that we finally have the maximum like-

lihood estimates of our model which we plug into Eq. (6), we obtain the prob-
ability of each cell by using the mean expression for the logit link in Table 3
according to

πi =
1

1 + exp
(∑

j=0 xijβj

) .
This is the starting point of analyzing which customers we must focus more on
and what we can do for them.
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