SF2930 GLM Lecture 2

February 20, 2018

1 Introduction

A customer calls If to buy a car insurance for one year. How can we price this
policy? If we know

(1) Ezpected number of claims, and
(2) Expected average claim cost

where a claim is an accident that is compensated, we can get the
Ezpected claim cost = (1) x (2) = ”Risk” (1)
The price of the policy is then obtained by
Price = Risk (+Some extra to pay my salary etc.) (2)

In this lecture we will see how to predict (1) Expected number of claims and
create a tariff, e.g., a pricing formula.

The data we have at hand is shown in[Table 1| which we have aggregated in a
similar way as in the previous lecture. Here the variables are the driver’s age and
car weight. When creating an insurance tariff the grouping is essential trying to
find as homogeniuos groups as possible still having enough data in them. This
is off course also the case when working with trying to keep as many customers
as possible in the renewals. In a tariff analysis a unique combination of the
variables is now referred to as a tariff cell.

In general there is a weight w;, a response variable X; and a key ratio
Y; = X;/w; for each tariff cell. These will vary depending on weather it is the
claims frequency (w — insurance years, X — number of claims) or claim severity
(w — number of claims, X — Claim cost).

2 Multiplicative Model for Claim Frequency

Given the general model form of GLM that we found in the last lecture

g(pi) = Z 555, (3)
§=0



Table 1: Aggregated historic insurance claims data with three groups for Vari-
able 1, Drivar’s age, and two groups for Variable 2, Car weight.

Cell Driver’s Car weight | Insurance | Number of | Claims

age [ke] years claims frequency

Variable 1 Variable 2 w X | Y=X/w

1 | Young (1) | 0— 1000 (1) 500 20 4.00%
2 | Young (1) > 1000 (2) 700 40 5.72%
3 Mid (2) 0 — 1000 (1) 1200 50 4.17%
4 | Mid (2) > 1000 (2) 1600 60 3.75%
5 | Old (3) 0 — 1000 (1) 800 30 3.75%
6 | Old (3) > 1000 (2) 900 35 3.89%

the starting point is to find the correct distribution for our response variable.
With the assumptions

(A1) Policy independance - For different policies the number of claims X7, X, ...

are independent.

(A2) Time independence - For a policy we may divide the time of the in-
surance contract into different time intervals which are assumed to be

independent.

(A3) Homogeneity - Two different policies in the same tariff cell, having the
same exposur, then the number of claims X; and X have the same

probability distribution.

one can argue that this is a Poisson process wich implies a Poisson distribution.
This comes with some advantages, e.g., the sum of two independent Poisson
distributed variables is itself Poisson distributed. In addition the Poisson distri-
bution is part of the exponential family, hence, we can apply the same machinery
for the maximum likelihood estimates.

For the Poisson distribution the log link is the most common choice and it
has the great advantage that it will result in a multiplicative model for the mean

values since
In(p;) = injﬁj
§j=0

gives that

i = eZJ:O zijBi eTiobo . P emian’

where the dummy varaiables x;; ensure that if 5; is not part of the tariff cell
the factor 4P is simply 1 since in that case x5 = 0. Furthermore, again
considering the funcamental structure of GLM before introducing the dummy
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Figure 1: GLM output describing the relative predicted difference in claim
frequency for young, middleaged and old drivers.

variables
pr = Bo
p2 = Bo +83
pz =00 +5
pe =po +5 +83
s = Po +082
e = Po +B2  +ps,

we see that the same factor for, e.g., car weight is applied irrespectively of
the drivar’s age. This is a major strength since it makes the pricing more
understandable and we may look at one variable at the time, see

3 Model Validation

3.1 Is Every Parameter Relevant?

Now that we have found a model we would like to test it. This can be done
througt a hypothesis test, also known as Wald test,

Hy:8;=0, Hy:p;#0 (4)

where Hj is the null hypothesis. We know that the estimate of 5;, Bj is normally
distributed, 3; ~ N (Bj,agj). If we can estimate the standard deviation of 3;
we can form the test statistic
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Figure 2: Confidence interval for the test statistic 3;/0s, using a significance
level of 0.05.

If the observation of this test statistic is far enough from 0 then the deviation
from the null hypothesis is viewed as significant and safe to use in our model.
In other words, we want the confidence interval of 3;

Iy, [B;—1,96 64, 6; + 1,96-&51} , (6)
where 1,96 = Z, /o with a = 0,05, not to overlap with 0, see

Hence, we need to find the standard error, the estimate of o,. This is done
by taking the following steps.

1. Create the Hessian matrix

loud4 ot %1
0B10B1 0B19B2 "7 0B10Bn
_o% 9% _0%
G = 352'361 8ﬁ2.652 o 6,32.6571. - (7)
foad %0 9%
aﬁnaﬂl aﬁnaBZ T 86116671
2. Insert the maximum likelihood estimates, 51, ey Bn This gives us actual

numbers in the matrix which we call the evaluated matriz, G.

3. Calculate the negative inverse of the evaluated matrix, fé’l, in which
the diagonal element with index (j, j) is Var(5;).

A

4. The standard error is then 65, = 1/ Var(3;).



3.2 How Good Does the Model Fit the Data?

Now that we have a GLM we would like to know how well it fits the data that
we have used to create the model. One way is to do this through a likelihood
ratio test.

3.2.1 Likelihood Ratio Test

This test compares the likelihood of a full model (FM) with the likeelihood of
a reduced model (RM) in the following way

LR=2-In (‘ZEZ%;) =2(InL(FM) —In L(RM)) -
= 2 (((FM) — ((RM)),

where / is the log-likelihood.
In our example, the FM is our fitted GLM and the reduced model may be a
model without any explaining variables

FM: log (pi) = Bo + zinf1 + ziafe + -+ - + Tin B,

RM: log (1) = flo. ®)

Since high log-likelihood value corresponds to a good fit of the data we want
LR to be large enough for us to include the explaining variables in the model.
Given that we have enough data the LR test will be chi-squared distributed

X (# parameters in FM - # parameters in RM) (10)

Which in our example with driver’s age and car weight gives us

(4 =1) =x*(3). (11)

Thus, given that the observation of our LR statistic is larger than some confi-
dence limit, «, we konw that the FM is better than the RM, see
If we instead let the FM be the saturated model (SM) and our GLM be the
reduced model, which we here denote our model (OM) we get the definition of
the deviance
D=2((SM)—-¢OM)). (12)

The saturated model is a GLM where we have allowed one parameter 8 for
every observation. This is a perfect model for fitting the data uset for the
modelling, however, a poor model for predicting the future since this assumes
no error or noice at all. This can be compared with an nth grade polynomial
perfectly to n + 1 data points. Hence, the model has an extremely good fit to
the data but fails to capture the trends. This is often called overfitting. Hence,
we want the deviance to be as low as possible. See course book p. 430—431]3

ID. Montgomery, E. Peck, G. Vining: Introduction to Linear Regression Analysis. Wiley-
Interscience, 5th Edition (2012)
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Figure 3: x?(3) distribution of the LR test statistic.

3.2.2 Example: Deviance for a Car Insurance Model of the Number
of Claims

You have created a GLM, which we call the "small model”, H, to predict the
number of insurance claims using the variables vehicle weight and driver’s age.
With this model, you get the deviande value D;.

Now you want to try a new variable, fuel type, which has 4 groups

e Petrol (Reference),

Diesel (84),

Electricity (f35), and,
e Other (5s).

One group will be the reference group and is included in the reference tariff cell.
Therefor, you add 3 new parameters to the model.

For this new ”large model”, H;, you calculate the deviance D; with which
you may compare the two models by calculating

LR=Ds—D;=2((SM) —((H)) —2(¢(SM) — £(Hy))
=2(((H;) — U(H,)) (13)
~ X2 (#parametersH, — #parametersH,) = x*(3)

If this value is large enough, exceeding « of the x?(3) distribution, the larger
model is favorable.



3.2.3 Akaike Information Criterion

The likelihood test we have used so far will always recommend the larger model
if it significantly improves the likelihood by fitting the model data better. How-
ever, in real life we often want to keep the model as simple as possible. For
example, we only showed that the explaining variable fuel type improves our
prediction power. Though, when we sell a car insurance to a customer, is this
extra prediction power worth the effort of asking the customer an extra ques-
tion?
The Akaike Information Criterion (AIC) can help us answering this questio.
AIC is defined as
AIC = 2k — 2log (c) (14)

where k is the number of parameters in the model (including the intercept fp)
and £ is the maximum likelihood (ML) estimate of the GLM. This implies that
few parameters and/or high ML value gives low AIC value.

Returning to our example in we find the k; = 7 and ky = 4, for
the large- and small models, respectively. Thus, if AICy, > AICy,, we might
consider excluding fuel type after all. In addition this can also be an indication
that the larger model has overfitted the data, which naturally is undesirable in
any prediction model.

3.2.4 Bayesian Information Criterion

If the larger model passes the AIC, AICy, < AICy, in our example, we may use
the Bayesian Information Criterion (BIC) which, in general, punishes additional
parameters even more than AIC. BIC is defined by

BIC =logn -k — 2log (L) (15)

where n is the number of observations. Tuhs, if BICy, < BICy, we can feel
safe about adding fuel type as variable.
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