SF2930: Regression Analysis Lecture 13: Logistic Regression

Ekaterina Kruglov Group Data Analyst

February 16, 2018

Linear Regression:

 $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_n x_{in} + \varepsilon_i$

Given a set of observations $\sum_{j=1}^{K} (x_j, y_j)$, where $x_j = (x_{j1}, x_{j2}, ..., x_{jn})$ are *n* predictors and response value, y_i .

We build our model by estimating the coefficients, β_i .

In the case above, we were dealing with quantitative response variable.

Many situations, however, require us to predict a qualitative response.

- Examples:
- Patient has or does not have the disease
- Credit Seeker will default or not on the loan
- Stock Market will go up or down

Idea: Instead of modeling the response directly, we would like to model the probability that a response function belongs to a certain category.

Why Linear Regression will not work

Outcome variable is given by

$$P(Y_i = k) = \begin{cases} p_i, & \text{for } k=1\\ 1 - p_i, & \text{for } k=0 \end{cases}$$

where the observations are independent.

Thus, *Y* is a RV from Bernoulli distribution (special case of Binomial distribution where n = 1) with pmf $f(y) = p^{y}(1-p)^{1-y}$

 $E(\varepsilon_i) = 0$

- Outcome variable is not continuous
- Cannot calculate probabilities with linear regression because we are bounded to [0,1].
- · Furthermore, in linear regression we assume

then

$$E(Y_i) = p_i \cdot 1 + (1 - p_i) \cdot 0 = p_i$$

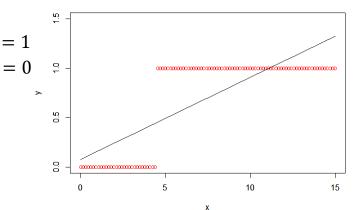
$$E[Y_i - E(Y_i)]^2 = (1 - p_i)^2 p_i + (0 - p_i)^2 (1 - p_i) = p_i (1 - p_i)$$

Linear Regression for Classification problem

Since y_i can be either 0 or 1, then

$$\varepsilon_i = \begin{cases} 1 - \boldsymbol{\beta}^T \boldsymbol{x}_i, & \text{for } \boldsymbol{y}_i \\ -\boldsymbol{\beta}^T \boldsymbol{x}_i, & \text{for } \boldsymbol{y}_i \end{cases}$$

- Errors are not normal
- Error variance is a function of the mean (p_i) , hence not constant



Logit function

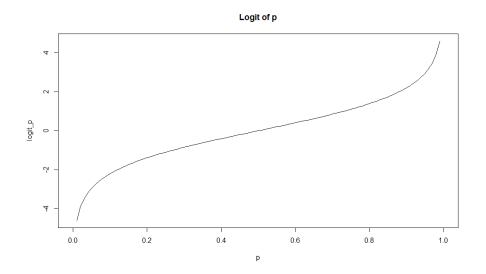
The **odds of an event** is the probability of observing the event divided by the probability not observing it, i.e. Consider event A, then

odds of
$$A = \frac{p(A)}{1 - p(A)}$$

Let p(A) = p

Logarithmic odds of success (often referred to as *logit of p*) is

$$logit(p) = \ln\left(\frac{p}{1-p}\right)$$



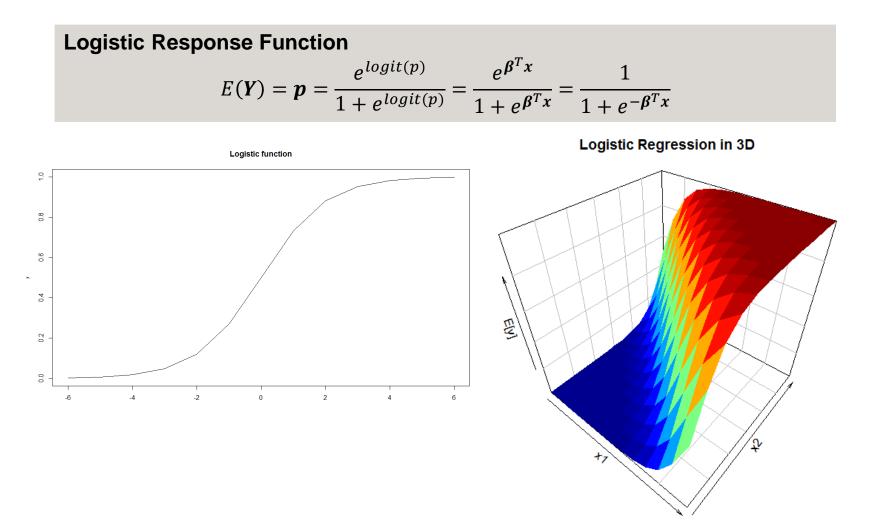
Logit function

Now, we can write our problem in a linear form using the logit of p

 $\int logit(p) = \boldsymbol{\beta}^T \boldsymbol{x}_i \text{ where } logit(p) \in \{-\infty, \infty\}$ where $\boldsymbol{x}_j = (1, x_{i1}, x_{i2}, \dots, x_{in}) \text{ and } \boldsymbol{\beta}^T = (\beta_0, \beta_1, \dots, \beta_n)$

Let $\theta = logit(p)$, then

$$p = logit^{-1}(\theta) = \frac{e^{\theta}}{1 + e^{\theta}} = \frac{1}{1 + e^{-\theta}}$$



Variables

The predictor variables $x_1, x_2, ..., x_p$ can be binary, ordinal, categorical, or continuous.

Estimation of parameters: Maximum Likelihood

Logistic Regression Estimation of parameters using Maximum Likelihood

Since $y \sim B(1, p)$, we get

$$f(y) = p^{y}(1-p)^{1-y}$$

= $e^{\ln(p^{y}(1-p)^{1-y})}$
= $e^{y\ln(p)+(1-y)\ln(1-p)}$
= $e^{\ln(\frac{p}{1-p})y+\ln(1-p)}$
= $e^{\log it(p)y+\ln(1-p)}$

Assume that the observations are independent.

Using the training set we want to estimate $\beta' = (\beta_0, \beta_1, ..., \beta_n)$

Maximum Likelihood function

$$L(y_1, y_2, \dots, \boldsymbol{\beta}) = \prod_{i=1}^n f_i(y_i) = \prod_{i=1}^n p_i^{y_i} (1-p_i)^{1-y_i}$$

Estimation of parameters using Maximum Likelihood

Instead of working directly with function $L(y_1, y_2, ..., \beta)$, we work with $\ln L(y_1, y_2, ..., \beta)$ because:

- Natural log is an increasing function
- Often $\ln L(y_1, y_2, ..., \beta)$ has a much simpler form that is easier to differentiate

$$\ln L(y_1, y_2, ..., \boldsymbol{\beta}) = \ln \prod_{i=1}^n f_i(y_i)$$

= $\sum_{i=1}^n y_i \log it(p_i) + \sum_{i=1}^n \ln(1-p_i)$
= $\sum_{i=1}^n y_i \boldsymbol{\beta}^T \boldsymbol{x}_i - \sum_{i=1}^n \ln(1+e^{\boldsymbol{\beta}^T \boldsymbol{x}_i})$

We want to solve the optimization problem

minimize
$$-\ln L(y_1, y_2, ..., \beta)$$
 w.r.t β

Note, the objective function is (see the board)

- Twice continuously differentiable
- (Strictly) Convex

There exist standard optimization algorithms to solve this optimization problem

Logistic Regression Estimation of parameters using Maximum Likelihood

Let $Y \in \{-1,1\}$

Then

$$P(Y = 1|x) = \frac{1}{1 + e^{-\beta^T x}}$$
$$P(Y = -1|x) = 1 - P(Y = 1|x) = \dots = \frac{1}{e^{\beta^T x} + 1}$$

Hence, we can write:

$$P(Y|\mathbf{x};\boldsymbol{\beta}) = \frac{1}{1 + e^{-y\boldsymbol{\beta}^T \mathbf{x}}}$$

Then the likelihood function:

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} P(y_i | \boldsymbol{x}_i; \boldsymbol{\beta})$$

Estimation of parameters using Maximum Likelihood

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} P(y_i | \boldsymbol{X}_i; \boldsymbol{\beta})$$

Since we prefer to work with natural log

$$-\ln L(\boldsymbol{\beta}) = \sum_{i=1}^{n} -\ln(P(y_i|X_i;\boldsymbol{\beta}))$$
$$= \sum_{i=1}^{n} -\ln(\frac{1}{1+e^{-y_i\boldsymbol{\beta}^T X_i}})$$
$$= \sum_{i=1}^{n} \ln(1+e^{-y_i\boldsymbol{\beta}^T X_i})$$

Estimation of parameters using Maximum Likelihood

We want to minimize

$$-\ln L(\boldsymbol{\beta}) = \sum_{i=1}^{n} \ln(1 + e^{-y_i \boldsymbol{\beta}^T \boldsymbol{x}_i})$$

We want to find $\beta = (\beta_0, \beta_1, ..., \beta_m)$ such that

$$\frac{\partial \ln L(\boldsymbol{\beta})}{\partial \beta_i} = \sum_{i=1}^n \frac{\partial}{\partial \beta_i} \ln(1 + e^{-y_i \boldsymbol{\beta}^T x_i}) = 0$$
$$\frac{\partial}{\partial \beta_0} \ln(1 + e^{-y_i \boldsymbol{\beta}^T x_i}) = -y_i \left(\frac{e^{-y_i \boldsymbol{\beta}^T x_i}}{1 + e^{-y_i \boldsymbol{\beta}^T x_i}}\right) = -y_i (1 - \frac{1}{1 + e^{-y_i \boldsymbol{\beta}^T x_i}})$$
$$\frac{\partial}{\partial \beta_k} \ln(1 + e^{-y_i \boldsymbol{\beta}^T x_i}) = -y_i \boldsymbol{x}_i \left(\frac{e^{-y_i \boldsymbol{\beta}^T x_i}}{1 + e^{-y_i \boldsymbol{\beta}^T x_i}}\right) = -y_i \boldsymbol{x}_i (1 - \frac{1}{1 + e^{-y_i \boldsymbol{\beta}^T x_i}})$$

Estimation of parameters using Maximum Likelihood

$$\frac{\partial}{\partial \beta_0} \ln(1 + e^{-y_i \boldsymbol{\beta}^T \boldsymbol{x}_i}) = -y_i \left(1 - \frac{1}{1 + e^{-y_i \boldsymbol{\beta}^T \boldsymbol{x}_i}} \right) = y_i (1 - P(Y_i | \boldsymbol{x}; \boldsymbol{\beta}))$$
$$\frac{\partial}{\partial \beta_k} \ln(1 + e^{-y_i \boldsymbol{\beta}^T \boldsymbol{x}_i}) = -y_i \boldsymbol{x}_i \left(1 - \frac{1}{1 + e^{-y_i \boldsymbol{\beta}^T \boldsymbol{x}_i}} \right) = y_i \boldsymbol{X}_i (1 - P(Y_i | \boldsymbol{x}; \boldsymbol{\beta}))$$

No closed form of solution w.r.t $\beta_0, \beta_1, \dots, \beta_m$.

Newton Raphson Numerical Method for ML

Consider a function of one variable, f(x). We want to find x^* that minimized $f(x^*)$.

We do not have an analytical solution for $\frac{df}{dx}$, then we approximate it using Taylor expansion.

Guess a point x_0 , then Taylor expansion is

$$f(x) \approx f(x_0) + (x - x_0) \frac{df}{dx_0} + \frac{1}{2} (x - x_0)^2 \frac{d^2 f}{dx_0^2}$$

We want to want to solve for $\frac{df}{dx} = 0$. Hence, at some point x_1 , we get

$$\frac{df}{dx_1} = \frac{df}{dx_0} + (x_1 - x_0)\frac{d^2f}{dx_0^2} = 0$$

Solving for x_1 , (let $\frac{df}{dx} = f'(x)$)

$$x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

Here we get a point x_1 that is closer to x^* . Repeat for

$$x_n = x_{n-1} - \frac{f'(x_{n-1})}{f''(x_{n-1})}$$

until $|x_n - x_{n-1}| < \varepsilon$, where ε is sufficiently small.

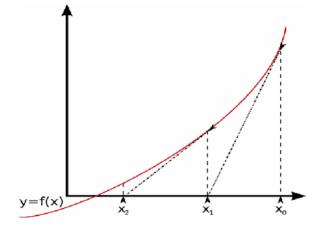


Figure: https://astarmathsandphysics.com/a-level-maths-notes/fp1/3441-thenewton-raphson-method-of-finding-roots-of-equations.html

Newton Raphson Numerical Method for ML

For $x = (x_1, x_2, ..., x_k)$

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - H^{-1}(\boldsymbol{x}_n) \nabla f(\boldsymbol{x}_n)$$

Where

$$\nabla f(\mathbf{x}_n) = (\frac{\partial f}{\partial x_{n1}}, \frac{\partial f}{\partial x_{n2}}, \dots, \frac{\partial f}{\partial x_{nk}})$$
 (referred to as the gradient of f)

and

$$H(\boldsymbol{x}_{n}) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{n1} \partial x_{n1}} & \cdots & \frac{\partial^{2} f}{\partial x_{nk} \partial x_{n1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n1} \partial x_{nk}} & \cdots & \frac{\partial^{2} f}{\partial x_{nk} \partial x_{nk}} \end{pmatrix}$$
(referred to as the Hessian of f)

Maximum Likelihood Vs. Least Squares Method

Least Squares Method

$$\min\sum_{i=1}^n (y_i - f(x_i,\beta))^2$$

Maximum Likelihood

$$L(y_1, y_2, \dots, \boldsymbol{\beta}) = \prod_{i=1}^n f_i(y_i)$$

When dealing with binary logistic regression, we have information about the distribution of outcome variable (i.e. Bernoulli).

Interpretation of Parameters

Consider

- Single feature problem
- Numerically estimated parameters $\hat{\beta}$

Then, linear predictor (or logit(p)), defined as $\hat{\varphi}(x_i)$ is

If we increase x_i by one unit

$$\hat{\varphi}(x_i + 1) = \hat{\beta}_0 + \hat{\beta}_1(x_i + 1)$$

 $\hat{\varphi}(x_i) = \hat{\beta}_0 + \hat{\beta}_1 x_i$

Then

$$\hat{\varphi}(x_i+1) - \hat{\varphi}(x_i) = \ln\left(\frac{odds_{x_i+1}}{odds_{x_i}}\right) = \hat{\beta}_1$$

Hence, $\hat{\beta}_1$ is the estimated increase of logit function with one unit increase in x_i .

To find the estimated increase in probability, we take the antilog, i.e.

$$\widehat{O}_R = \frac{odds_{x_i+1}}{odds_{x_i}} = e^{\widehat{\beta}_1}$$

For d units:

$$\hat{O}_R = \frac{odds_{x_i+d}}{odds_{x_i}} = e^{d\hat{\beta}_1}$$

Model Assessment Methods

Likelihood Ratio Test

Compares "full" model (FM) with a "reduced" model (RM) of interest $LR = 2 \ln \frac{L(FM)}{L(RM)}$

Likelihood Ratio Test as a test for significance of regression in logistic regression:

FM: Model that we want to assess

RM: Model with constant probability of success $(p = \frac{y}{n})$

$$\ln L(RM) = \ln \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i}$$

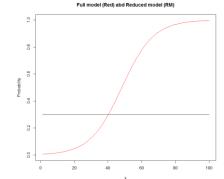
= $\sum_{i=1}^{n} (y_i \ln p + (1-y_i) \ln(1-p))$
= $y \ln (\frac{y}{n}) + (n-y) \ln(\frac{n-y}{n})$
= $y \ln(y) - y \ln(n) + (n-y) \ln(n-y) - (n-y) \ln(n)$
= $y \ln(y) + (n-y) \ln(n-y) - n \ln(n)$
 $\ln L(FM) = \ln \prod_{i=1}^{n} p_i^{y_i} (1-p_i)^{1-y_i}$

Likelihood Ratio Test

$$LR = 2 \left\{ \sum_{i=1}^{n} y_i \ln p_i + \sum_{i=1}^{n} (n_i - y_i) \ln(1 - p_i) - [y \ln(y) + (n - y) \ln(n - y) - n \ln(n)] \right\}$$

Understanding the results:

Large values indicate that at least one of the variables in the logistic regression model is important



Goodness of Fit: Deviance

This test compares the full model to a saturated model.

- FM: The model we have developed
- SM: Model where each observation is allowed to have its own parameter (i.e. there are as many predictors as there are data points, which is basically overfitting).

Deviance:

 $D = 2 \ln \frac{L(saturated model)}{L(FM)}$

Understanding the results:

Small values, imply that the model fits well the data Large values, imply that the model is inadequate

Goodness of Fit: Pearson chi-square

The test compares the observed and expected probabilities of success and failure at each group of observations.

- Expected number of successes: $n_i \hat{\pi}_i$
- Expected number of failures: $n_i(1 \hat{\pi}_i)$

The Pearson chi-square statistic is :

$$\chi^{2} = \sum_{i=1}^{r} \frac{(obs.freq_{i} - exp.freq_{i})^{2}}{exp.freq_{i}} = \sum_{i=1}^{r} \frac{(y_{i} - n_{i}\hat{\pi}_{i})^{2}}{n_{i}\hat{\pi}_{i}}$$

Where

- n_i is the number of observations in the i^{th} group.
- $\hat{\pi}_i$ is the average estimated success probability in the *i*th group.
- y_i is the number of observed successes in the i^{th} group.

Understanding the results:

Small values, imply that the model fits well the data Large values, imply that the model is inadequate

Goodness of Fit: Hosmer-Lemeshow test

· No replicates on the regressor variables

Observations are classified into g groups based on estimated probability of success

$$\bar{\pi}_j = \sum_{i \in group \ j} \frac{\hat{\pi}_i}{N}$$

For each group j with N_j observations

- Observed number of successes O_i
- Observed number of failures $N_i O_i$
- Expected number of successes $N_j \bar{\pi}_j$
- Expected number of failures $N_j(1 \bar{\pi}_j)$

Hosmer – Lemeshow statistic

$$HL = \sum_{j=1}^{g} \frac{(O_j - N_j \bar{\pi}_j)^2}{N_j \bar{\pi}_j (1 - \bar{\pi}_j)}$$

Understanding the results:

Large value of HL imply that the model is not adequate fit to the data.

Logistic Regression Model Assessment

		Observed			
		True	False		
Predicted	True	True Positive (TP)	False Positive (FP)		
	False	False Negative (FN)	True Negative (TN)		

True Positive Rate:

False Positive Rate:

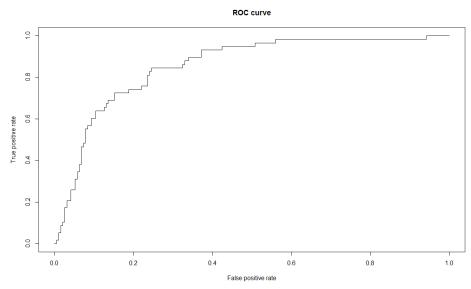
Accuracy:

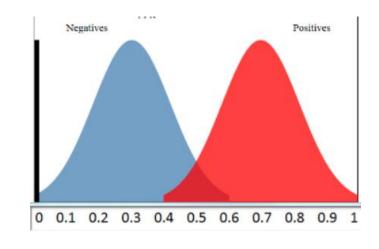
$$TPR = \frac{TP}{(TP+FN)}$$
$$FPR = \frac{FP}{(TN+FP)}$$
$$ACC = \frac{TP+TN}{(TP+TN+FP+FN)}$$

Model Assessment

Reciever Operating Characteristic (ROC curve)

A plot for various thtresholds of false positive rate (FPR) as a function of true positive trate (TPR)





Area under the ROC curve

A measure of accuracy of how well our model separates the classes

- < 0,6 Fail
- 0,60-0,70 Weak separation
- 0,70-0,80 Fair separation
- 0,80 < Good separation

Nominal and Ordinal Logistic Regression

One can use logistic regression for classification of response variable into more than two classes.

Nominal example:

- Based on symptoms classifiy a patient in ER to one of the below categories
 - Stroke
 - Drug overdose
 - Epileptic seizure

Each class has a unique set of variables and corresponding coefficients.

The Role of Logistic Regression in Strategy Development process at Intrum

Intrum: Who we are?

Key facts about us

- Industry-leading provider of Credit Management Services with presence in 24 markets in Europe
- Offering credit management- and financial services including; payment services, collection services and purchased debt
- We have more than 8,000 dedicated and empathic employees
- In the YTD ending September 2017, pro-forma income amounted to SEK 9.1 billion (EUR 0.94bn)
- Headquartered in Stockholm, Sweden and our share is listed on the Nasdaq Stockholm exchange

Strong position across entire footprint

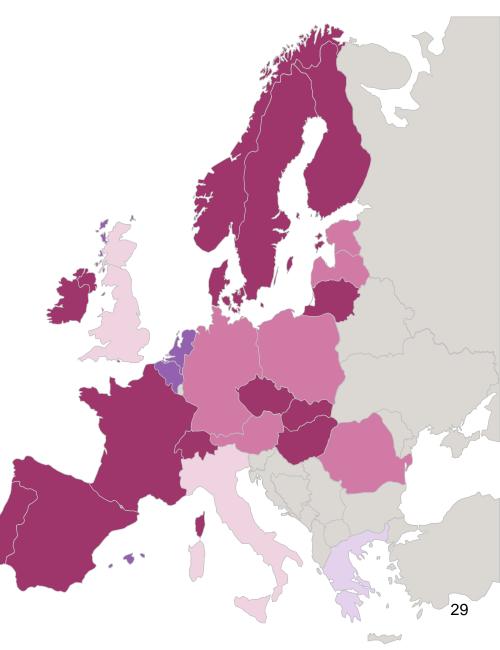
Market leader

Top five

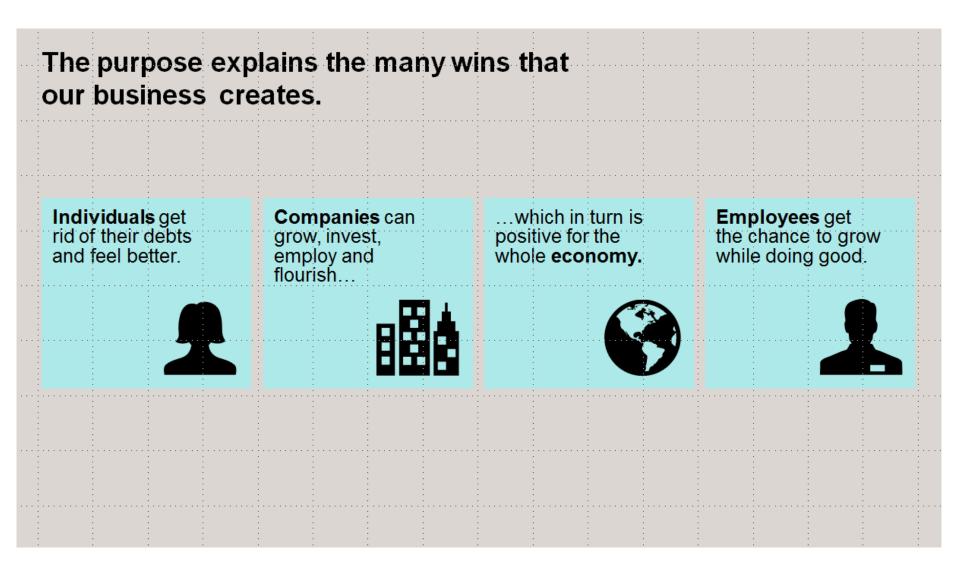
intrum

Market leader in most of the 24 European countries where Intrum is present

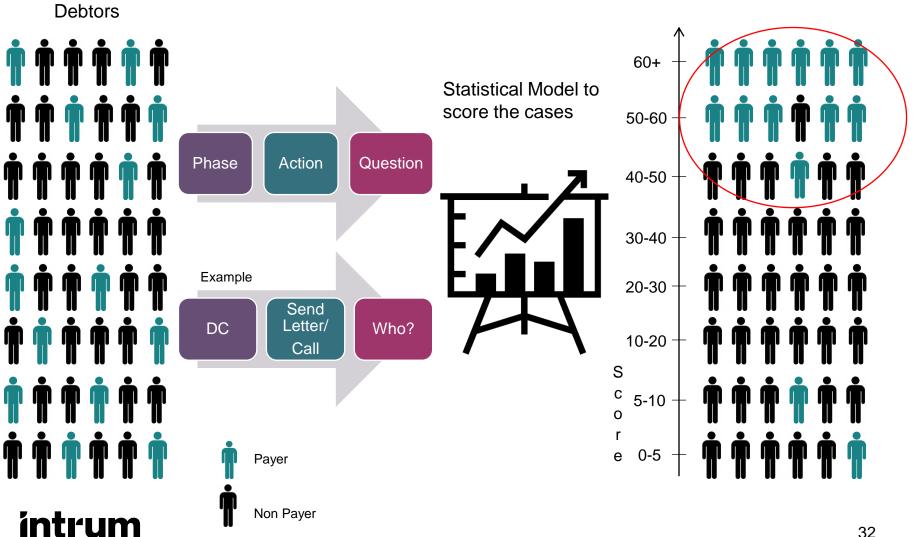
We have around 80,000 clients, most of them are found in sectors such as telecom, energy, banking and retail.



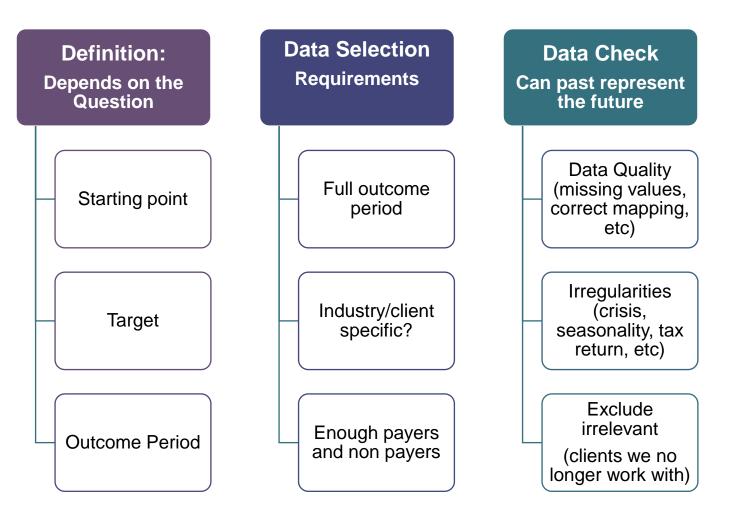
Leading the way to a sound economy



Statistical Modelling for strategy development



Data Selection and Data Analysis



Most important step! The model performance directly depends on the data.

Example

Data set:

1000 observations, 8 variables

Variable	Variable Code		
Target {Did not pay = 0, Paid = 1}	Target		
Age of Debt {continuous}	TSD		
Time to First payment {continuous}	Time_to_pay		
Number of legal cases {continuous}	N_legal		
Has contact information {binary}	Has_ci		
Amount paid in the last 24 months {continuous}	Sum_pay_24m		
Debt size {continuous}	Debt_size		

Define new variable Response

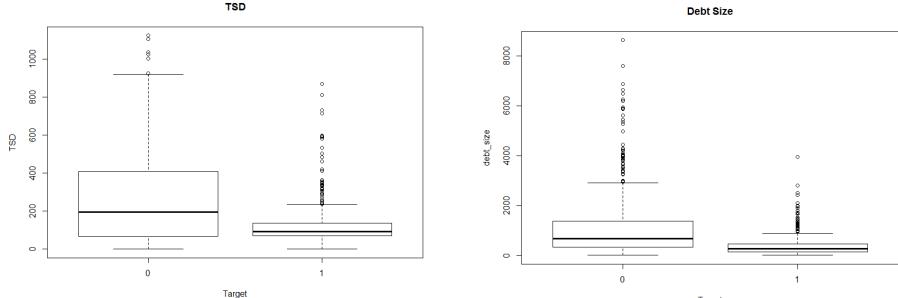
data\$Response=as.factor(data\$Target)

Original Data set

<pre>> summary(data_orig)</pre>)						
case_id	Target	TSD	sum_pay_24m	time_to_pay	debt_size	N_legal	has_ci
Min. :1.058e+11	Min. :0.000	мin. : 0.0	Min. : 0.0	Min. : 0.0	мin. : 18.94	Min. :0.000	Min. :0.000
1st Qu.:1.751e+11	1st Qu.:0.000	1st Qu.: 69.0	1st Qu.: 0.0	1st Qu.: 18.0	1st Qu.: 224.34	1st Qu.:0.000	1st Qu.:1.000
Median :7.004e+11	Median :0.000	Median : 113.5	Median : 1.1	Median : 47.0	Median : 432.17	Median :0.000	Median :1.000
Mean :6.094e+11	Mean :0.404	Mean : 207.2	Mean : 396.9	Mean : 225.4	Mean : 824.28	Mean :0.439	Mean :0.948
3rd Qu.:9.680e+11	3rd Qu.:1.000	3rd Qu.: 269.0	3rd Qu.: 342.9	3rd Qu.: 315.5	3rd Qu.: 975.99	3rd Qu.:1.000	3rd Qu.:1.000
Max. :9.957e+11	Max. :1.000	Max. :1123.0	Max. :30919.0	Max. :2054.0	Max. :8630.29	Max. :4.000	Max. :1.000

Note:

With logistic regression, we do not need to normalize the data because if the variable has very large values, then the numerical method will make corresponding coefficient very small.



Target

Training and Test Populations

In this example:

Randomly divided the population into training set (75% of all observations) and test set (25% of all observations)

Example of alternative/additional Approach: Cross Validation

Given n observations,

- 1. Select K (usually 5 or 10)
- 2. Randomly split the observations into K sets
- 3. Fit the model using K-1 sets and test on the remaining set. Perfrom K times and for each calculate MSE_i for i = 1, ..., K.
- 4. Calculate the average of MSE_i to obtain one estimate

> logit1_orig=glm(Response~.-Target-case_id, data = train_orig, family=binomial) > logit2=glm(Response~.-Target-case_id-has_ci-sum_pay_24m, data = train_orig, family=binomial)
> summary(logit1_orig)
> summary(logit2)

```
Call:
glm(formula = Response ~ . - Target - case_id, family = binomial,
   data = train_orig)
Deviance Residuals:
  Min 1Q Median
                             3Q
                                     Max
-2.1643 -0.8796 -0.2284 0.8811 2.7757
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.8245173 0.3816693 2.160 0.0308 *
          -0.0023079 0.0005789 -3.987 6.70e-05 ***
TSD
sum_pay_24m 0.0001340 0.0001061 1.263 0.2064
time_to_pay -0.0007566 0.0003724 -2.032 0.0422 *
debt_size -0.0012168 0.0002077 -5.859 4.67e-09 ***
N_legal
           -1.1436786 0.2276813 -5.023 5.08e-07 ***
            0.4194412 0.3746572 1.120 0.2629
has_ci
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1011.90 on 749 degrees of freedom
Residual deviance: 767.84 on 743 degrees of freedom
AIC: 781.84
```

Number of Fisher Scoring iterations: 6

```
Call:
glm(formula = Response ~ . - Target - case_id - has_ci - sum_pay_24m,
   familv = binomial. data = train orig)
Deviance Residuals:
   Min
         1Q Median
                              3Q
                                      Мах
-1.6858 -0.8762 -0.2323 0.8902 2.7781
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.2519989 0.1508715 8.298 < 2e-16 ***
           -0.0023820 0.0005808 -4.101 4.12e-05 ***
TSD
time_to_pay -0.0007543 0.0003733 -2.021 0.0433 *
debt_size -0.0011901 0.0002064 -5.767 8.08e-09 ***
           -1.1063475 0.2261395 -4.892 9.97e-07 ***
N_legal
____
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1011.90 on 749 degrees of freedom
Residual deviance: 770.69 on 745 degrees of freedom
AIC: 780.69
Number of Fisher Scoring iterations: 6
```

Notes:

Estimate = β AIC: Akaike Information Criterion (type of model assessment) Lower AIC means better model.

Calculating the scores

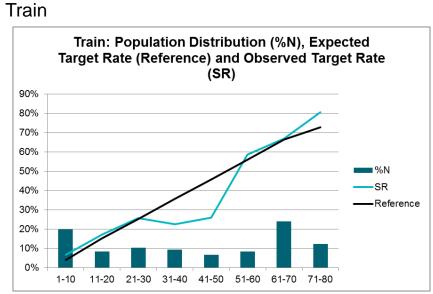
predict_model2 <- predict(logit2,train_orig)
probs_model2 = c(exp(predict_model2)/(1+exp(predict_model2)))
score <-ceiling(probs_model2*100)</pre>

Predict(model, data) – gives us the logit values i.e. $\boldsymbol{\beta}^T \boldsymbol{x}_i$ To calculate the score, we plug the values of predict into

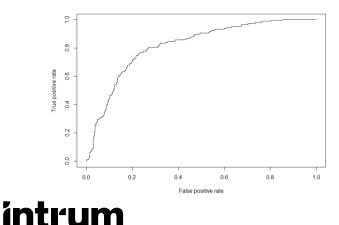
probability =
$$\frac{1}{1 + e^{-\beta^T x_i}}$$

Then the score:

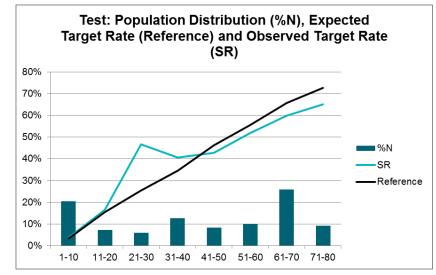
score = ceil(probability · 100)



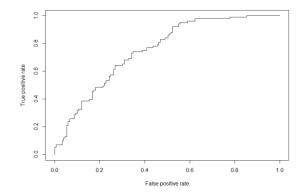
AUR: 0.817



Test



AUR: 0.75



Model 3: Binning

Instead of working with variables directly, we create dummy binary variables based on the combination of optimal binnings (smbinning function) and business reasoning.

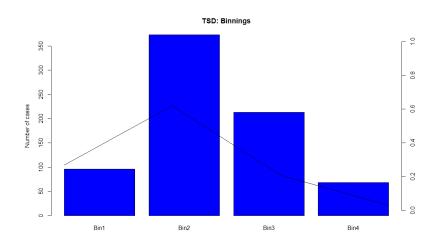
Example: Binning of TSD result=smbinning(train_orig, "Target", "TSD", p = 0.05)

Optimal Binnings:

-														
	Cutpoint	CntRec	CntGood	CntBad	CntCumRec	CntCumGood	CntCumBad	PctRec	GoodRate	BadRate	Odds	LnOdds	WOE	IV
1	<= 0	96	26	70	96	26	70	0.1280	0.2708	0.7292	0.3714	-0.9904	-0.6016	0.0426
2	<= 184	373	231	142	469	257	212	0.4973	0.6193	0.3807	1.6268	0.4866	0.8754	0.3893
3	<= 594	213	44	169	682	301	381	0.2840	0.2066	0.7934	0.2604	-1.3457	-0.9569	0.2228
4	> 594	68	2	66	750	303	447	0.0907	0.0294	0.9706	0.0303	-3.4965	-3.1077	0.4383
5	Missing	0	0	0	750	303	447	0.0000	NaN	NaN	NaN	NaN	NaN	NaN
6	Total	750	303	447	NA	NA	NA	1.0000	0.4040	0.5960	0.6779	-0.3888	0.0000	1.0930

Business Decision

Bin 1 : (0, 184) Bin 2 : [184,594) Bin 3 : (594,∞]



Logistic Regression: Application Model 3: Binning

Dummy Variables	Bin	
TSD1	1	If $TSD \in [0,184]$ then 1 else 0
TSD2	2	If $TSD \in (184,594]$ then 1 else 0
TSD3	3	If $TSD \in (594, \infty)$ then 1 else 0
ds1	1	If $debt_size \in (0,311.9]$ then 1 else 0
ds2	2	If $debt_size \in (311.9, 525.96]$ then 1 else 0
ds3	3	If $debt_size \in (525.96,744.12]$ then 1 else 0
ds4	4	If $debt_size \in (744.12, 1998.53]$ then 1 else 0
ds5	5	If $debt_size \in (1998.53, \infty)$ then 1 else 0
Time_to_pay1	1	If $time_to_pay \in [0, 27]$ then 1 else 0
Time_to_pay2	2	If $time_to_pay \in (27, 118]$ then 1 else 0
Time_to_pay3	3	If $time_to_pay \in (118, \infty)$ then 1 else 0
N_legal1	1	If $N _legal = 0$ then 1 else 0
N_legal2	2	If $N _legal > 0$ then 1 else 0
Sum_pay_24m1	1	If $sum_pay_24m \in [0, 150]$ then 1 else 0
Sum_pay_24m2	2	If $sum_pay_24m \in (150, \infty)$ then 1 else 0

Logistic Regression: Application Model 3: Binning

> logit_bin > summary(lo		orig.Target~.	-train	_orig.case_i	d-hsi1-hsi	2, da	ata = train_bin, family	/=binomial)	
		g.Target ~ . mial, data =			id - <mark>h</mark> sil ·	-			
Deviance Res Min -1.9333 -0.	1Q Medi		Ma: 2.806						
Coefficients (Intercept) lc1 lc2 sp1 sp2 ds1 ds2 ds3 ds4 ds5 TSD1 TSD2 TSD3	Estimate St	0.2859 4. NA 0.1975 -2. NA 0.5211 4. 0.5325 3. 0.5677 2. 0.5353 1. NA 0.6282 3.	alue 292 0.0 116 0.0 NA 722 NA	ngularities) Pr(> z) 0000000313 000038485009 NA 0.006483 NA 000006557526 0.002500 0.034346 0.183043 NA 0.000351 0.020335 NA	***	Ea	ese are reference ch other bin is co e reference bin		•
ttp1 ttp2 ttp3 Signif. code	0.9198 0.6453 NA es: 0 '***'		.054 .131 NA 0.01 '*	0.002261 0.033115 NA ' 0.05 '.' 0	*Z		Each binary varia Example: TSD	ables gets	its own
(Dispersion	parameter f	or binomial f	Family 1	taken to be :	1)			β	β _i
		90 on 749 .93 on 739					Bin 1 : (0, 184)		2,24
	ichon Coonin	a itonations					Bin 2 : [184,594)	-0,0023	1,49

Number of Fisher Scoring iterations: 6

intrum

wn β .

	β	β_i	SR
Bin 1 : (0, 184)		2,24	55%
Bin 2 : [184,594)	-0,0023	1,49	21%
Bin 3 : (594,∞]		0	3%

Difference in score

Target		TSD	sum_pay_24m	time_to_pay	debt_size	N_legal	has_ci
	0	0	39.51	7	2742.71	3	1

Score when no binning:

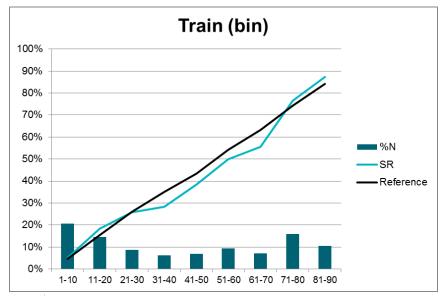
Coefficients: Estimate (Intercept) 1.2519989 TSD -0.0023820 time_to_pay -0.0007543 debt_size -0.0011901 N_legal -1.1063475

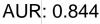
Score = ceil $\left(\frac{100}{1+e^{-(1.252-0.0024*0-0.0007*7-0.0012*2743-1.1063*3)}}\right) = 48$

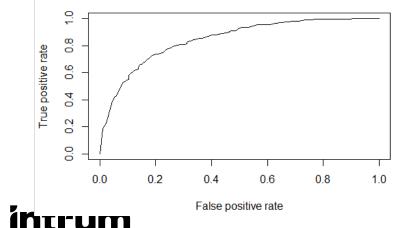
Score when binning:

lc1 1.1769 lc2 NA sp1 -0.5376 sp2 NA ds1 2.3489 ds2 1.6098 ds3 1.2013 ds4 0.7127 ds5 NA TSD1 2.2454 TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453 ttp3 NA	(Interce	Estimate ot) -4.9898	
sp1 -0.5376 sp2 NA ds1 2.3489 ds2 1.6098 ds3 1.2013 ds4 0.7127 ds5 NA TSD1 2.2454 TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453			
sp2 NA ds1 2.3489 ds2 1.6098 ds3 1.2013 ds4 0.7127 ds5 NA TSD1 2.2454 TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453	1c2	NA	
ds1 2.3489 ds2 1.6098 ds3 1.2013 ds4 0.7127 ds5 NA TSD1 2.2454 TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453	sp1	-0.5376	
ds2 1.6098 ds3 1.2013 ds4 0.7127 ds5 NA TSD1 2.2454 TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453	sp2	NA	
ds3 1.2013 ds4 0.7127 ds5 NA TSD1 2.2454 TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453	ds1	2.3489	
ds4 0.7127 ds5 NA TSD1 2.2454 TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453	ds2	1.6098	
ds 5 NA TSD1 2.2454 TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453	ds 3	1.2013	
TSD1 2.2454 TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453	ds4	0.7127	
TSD2 1.4920 TSD3 NA ttp1 0.9198 ttp2 0.6453	ds 5	NA	
TSD3 NA ttp1 0.9198 ttp2 0.6453	TSD1	2.2454	
ttp1 0.9198 ttp2 0.6453	TSD2	1.4920	
ttp2 0.6453	TSD3	NA	
•	ttp1	0.9198	
ttp3 NA	ttp2	0.6453	
	ttp3	NA	

Logistic Regression: Application Model 3: Binning

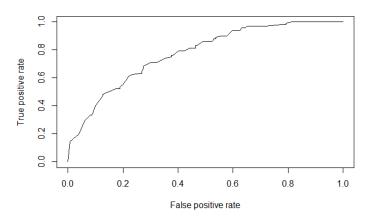






Test (bin) 90% 80% 70% 60% 50% 40% 30% 20% 1.10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90

AUR : 0.776



Variable Selection

In this example, I manually selected the cases (not the best way)

In order to pick the best combination of variables one should consider different techniques. For example,

- **Backward**: start with all the available variables, and step by step take away the variable that is contributing the least., until there are no more variables. Each time measure the model performance. Select the model with best performance.
- Forward: Opposite to backward, start with no variables and at each step, add a variable that contributes the most. Repeat until all the variables are in the model.
- **Hybrid**: Combination of forward and backward. Start with no variables. At each step select the most contributing variable to the model, then check if there exist a variable that does not contribute, remove if exists.

References

These lecture notes are based on

Timo Koski Lecture Notes from previous years Introduction to Linear Regression Analysis by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

Newton Method:

http://www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf

Good explanation of ROC and AUR:

http://www.dataschool.io/roc-curves-and-auc-explained/

Cross Validation and Vartiable Selection Methods overview:

Introduction to Statistical Learning with Applications in R (2013) Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani

Thank you!

Contact Information: Ekaterina Kruglov: <u>e.kruglov@se.intrum.com</u>

