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Logistic Regression
Why?

Linear Regression:
Yi = Bo+ Prxix + BaXiz + -+ Buxin + &

. . K — .
Given a set of observations ¥;;_;(x;,y;), where x; = (xj1, xj3, ..., Xj) are n predictors and response

value, y;.
We build our model by estimating the coefficients, g;.

In the case above, we were dealing with quantitative response variable.

Many situations, however, require us to predict a qualitative response.
Examples:
— Patient has or does not have the disease
— Credit Seeker will default or not on the loan
— Stock Market will go up or down

Idea: Instead of modeling the response directly, we would like to model the probability that a response
function belongs to a certain category.
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Logistic Regression
Why Linear Regression will not work

Outcome variable is given by
P =1 = {i

for k=1

1—p; for k=0

where the observations are independent.

Thus, Y is a RV from Bernoulli distribution (special case of Binomial distribution where n = 1) with pmf

fO)=p’A-p)*7?

« Qutcome variable is not continuous

« Cannot calculate probabilities with linear regression because we are bounded to [0,1].

» Furthermore, in linear regression we assume
E(Si) =0
then
EV)=pi-1+(1-p):0=p
E[Y; —EMI? =1 -p)°pi + (0 —p)*(1 —p) =pi(1 —

Since y; can be either 0 or 1, then
1-p"x;, fory; =1

& = { T _
» « Errors are not normal —B x;, fory; =0
» Error variance is a function of the mean (p;),
hence not constant
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Linear Regression for Classification problem
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Logistic Regression
Logit function

The odds of an event is the probability of observing the event divided by the probability not
observing it, i.e. Consider event A, then “
p

1-p(4)

odds of A =

Letp(4) =p

Logarithmic odds of success (often referred to as logit of p) is

logit(p) = In T—>»

Logit of p

logit_p

00 02 04 06 08 10
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Logistic Regression
Logit function

Now, we can write our problem in a linear form using the logit of p

where x; = (1, X1, Xiz, ..., Xin) @nd BT = (Bo, By, -, Bn)

{logit(p) = BT x; where logit(p) € {—oo, 0}

Let 8 = logit(p), then

= logit™1(8) = =
p = logit™(6) 1+e? 1+e?
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Logistic Regression
Definition

Logistic Response Function
elOgit(p) eﬁTx 1

E(Y) =P = 1+ elogit(p) = 1+ e[)’Tx - 1+ e_ﬁTx

Logistic Regression in 3D

//T

Logistic function

=\

e
/”
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Logistic Regression

Variables

The predictor variables x;, x,, ..., x, can be binary, ordinal, categorical, or continuous.
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Estimation of
parameters: Maximum
Likelihood
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Logistic Regression

Estimation of parameters using Maximum Likelihood

Since y~B(1,p), we get

fH=p’A-=p)~”
= @’ (1-p)*')

— yIn(P)+(1-y) In(1-p)
eln(ﬁ)yﬂn(l—p)
elogit(p)y+ln(1—p)

Assume that the observations are independent.

Using the training set we want to estimate B’ = (B, B1, ---» Bn)

Maximum Likelihood function

Ly, y5, - B) = Hfl(yl) = Hpiyi(l — p) Vi
=1 i=1
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Logistic Regression

Estimation of parameters using Maximum Likelihood

Instead of working directly with function L(yy, y5, ..., B), we work with In L(y;, y,, ..., B) because:

* Natural log is an increasing function
« OftenlIn L(y4,y,,..., ) has a much simpler form that is easier to differentiate

InL(y1,y2, ., B) = lnH 1fl(yl)

= Z yi logit(p;) + zn: In(1 —p;)
PR

i=1 =

1+eB xl

'M=

We want to solve the optimization problem
mininimize —InL(y4,y3, ..., B) W.r.t B

Note, the objective function is (see the board)
— Twice continuously differentiable
— (Strictly) Convex

‘ There exist standard optimization algorithms to solve this optimization problem

inti‘'um
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Logistic Regression

Estimation of parameters using Maximum Likelihood

LetY € {—1,1}

Then

1
{ P(Y = 11x) = ——- 1
P Y == _1 = 1 —_ P Y = 1 — cee —
( |x) ( |) g

Hence, we can write: )
P(Y|x; B) = 15 ovFx
Then the likelihood function:

L = | [Poilxsp)
i=1

inti‘'um
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Logistic Regression

Estimation of parameters using Maximum Likelihood

L = | [Porlxsp)
i=1

Since we prefer to work with natural log

inti‘'um

-In L(B) = Y=, —In(P(y;|X;; B)

n
_ Z 1 1
B n(1 + e—yiﬂTXi)

i
n
=1

= Z In(1 + e YiB Xi)

l
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Logistic Regression

Estimation of parameters using Maximum Likelihood

We want to minimize
nL(B) = ¥, In(1 + e Yib 1)

We want to find g = (B, f1, ---» Bm) Such that

dInL(B) 0 T
- —In(1+ e Yif x) =
9B Lo )
P gt e—yl'ﬂTxi 1
—Vib Xy = —v). =~V -
6'80 ]n(]_ +e ) Yi 1+ e‘J’iﬁTxi yl(l 1+ e-)’iﬂTxi)
P p e~ ViBTxi 1
“ViB Xy = . x. = —=y;ix;(1 -
35 In(1+e ) = Vx| T yixi(l = ——— o)
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Logistic Regression

Estimation of parameters using Maximum Likelihood

iln(l + e—yiﬂTxi) = —v.|1—

aBO B 1+ e—YiﬂTxl
d T 1

- “ViB Xy = _v.x. |1 =

3B, In(1+e ) ViX; (1 T+ ovifm

#No closed form of solution w.r.t By, B1, ---, Bm-

inti‘'um

) =y;(1 —P(Y;lx; B))

> = yX(1— P(Y|x; B))
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Logistic Regression

Newton Raphson Numerical Method for ML
Consider a function of one variable, f(x). We want to find x* that minimized f(x*).
We do not have an analytical solution for Z—i, then we approximate it using Taylor expansion.

Guess a point x,, then Taylor expansion is

df . d*f
)= flao) + (x—x0) g —+5 = x)
0
We want to want to solve for Z—i = 0. Hence, at some pomt X1, We get
df _ df dzf
CA— —— =0
dx, dxg 0 = %) dx?
Solving for x;, (IetZ—i = f'(x)) A
I iG>
| | P o)
Here we get a point x; thatis closer to x*.
Repeat for ,
. = x _ [ (xn-1)
n n—-1 f”(xn_l)
until |x,, — x,_1| < &, where ¢ is suffieciently small.
y="F(x) >

Figure: https://astarmathsandphysics.com/a-level-maths-notes/fp1/3441-the-
newton-raphson-method-of-finding-roots-of-equations.html
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Logistic Regression
Newton Raphson Numerical Method for ML

For x = (xq,x5,..,X%)

Where

Xn+1 = Xn — H_l(xn)vf(xn)

of of
Vf(xn) = (axnl’ axnz’ )

and
0%f
0xXn10Xn1
H(x,) = :
0%f
0Xn10Xnk

inti‘'um

..,aifk) (referred to as the gradient of f)

0% f
0XnKk0Xn1

: (referred to as the Hessian of f)
0% f
axnkaxnk
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Logistic Regression

Maximum Likelihood Vs. Least Squares Method

Least Squares Method .
min " (i = £ (i, )’
i=1

Maximum Likelihood

L(y1;y2; rﬁ) = Hfl(yl)

=1
When dealing with binary logistic regression, we have information about the distribution of outcome
variable (i.e. Bernoulli).

inti‘'um
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Logistic Regression

Interpretation of Parameters

Consider
« Single feature problem X
» Numerically estimated parameters 8

Then, linear predictor ( or logit(p)), defined as ¢ (x;) is
P(x) = Bo + Prx;
Plx; +1) = Bo + Pr(x; + 1)

0ddsy, 41 n
oddsy,

If we increase x; by one unit
Then

— M1

o+ 1) —@(x;) = ln(

Hence, f; is the estimated increase of logit function with one unit increase in x;.

To find the estimated increase in probability, we take the antilog, i.e.

. odds,. -
OR — —X1+1 — eﬁl
odds,,
For d units:
OR = —Oddsxi+d = edﬁl
oddsy,

inti‘'um
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Model Assessment
Methods

inti‘'um



Full model (Red) abd Reduced model (RM)

Logistic Regression
Likelihood Ratio Test

Compares “full” model (FM) with a “reduced” model (RM) of interest

_ 1 LEM)
LR =2 Inpnrs

Likelihood Ratio Test as a test for significance of regression in logistic regression:
FM: Model that we want to assess

RM: Model with constant probability of success (p = %)

n
InL(RM) = lnl_[pYi(l — p)lVi

= Zlill(% Inp + (1 -y;)In(1 —p))

=y (%) + (n—y) In(=2)

=yln(@y)—yln(m)+ (n—y)In(n —y) —(n — y) In(n)
=yln(y) + (n —y)In(n - y) —nin(n)

InL(FM) = In HpiYi(l —p)tVi
i=1
Likelihood Ratio Test .

IR =2 [Z yelnp; + Y (ni =y In(1 = p) = [yIn(y) + (. = ) InG — ) = nIn(w)]
i=1 i=1

Understanding the results: _ _ o _ o
Large values indicate that at least one of the variables in the logistic regression model is important

inti‘'um
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Logistic Regression

Goodness of Fit: Deviance

This test compares the full model to a saturated model.

FM: The model we have developed

SM: Model where each observation is allowed to have its own parameter (i.e. there are as
many predictors as there are data points, which is basically overfitting).

Deviance:
L(saturated model)

D =21In LCFM)

Understanding the results:
Small values, imply that the model fits well the data
Large values, imply that the model is inadequate

inti‘'um
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Logistic Regression

Goodness of Fit: Pearson chi-square

The test compares the observed and expected probabilities of success and failure at each group
of observations.

» Expected number of successes: n;f;

» Expected number of failures: n;(1 — 7;)

The Pearson chi-square statistic is :
r 2 r ~ N2
, _ N\ (0bs. freq; — exp. freq)? _ y i = nifty)
A exp. freq; = n;ft;
1=

i=1

Where

« n; is the number of observations in the i*"* group.

- f; is the average estimated success probability in the it* group.
« y; is the number of observed successes in the i group.

Understanding the results:
Small values, imply that the model fits well the data
Large values, imply that the model is inadequate

inti‘'um
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Logistic Regression

Goodness of Fit: Hosmer-Lemeshow test

* No replicates on the regressor variables
Observations are classified into g groups based on estimated probability of success

_ TT;
-3 s

iEgroup j

For each group j with N; observations

« Observed number of successes 0;

« Observed number of failures N; — 0;
 Expected number of successes N;;

* Expected number of failures N;(1 — ;)

Hosmer — Lemeshow statistic g ,
= (0; - N;))
= N]ﬂ,’] (1 — T[])

Understanding the results:
Large value of HL imply that the model is not adequate fit to the data.

inti‘'um
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Logistic Regression

Model Assessment

True False
- True True Positive False Positive
9 (TP) (FP)
(&)
g False  False Negative  True Negative
& (FN) (TN)
True Positive Rate:
TPR = —
(TP+FN)
False Positive Rate:
FPR= ———
(TN + FP)
Accuracy:
ACC = TP+TN
~ (TP+TN+FP+FN)

inti‘'um
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Logistic Regression

Model Assessment

Reciever Operating Characteristic (ROC curve)
A plot for various thtresholds of false positive rate (FPR) as a function of true positive trate (TPR)

ROC curve

1.0

— Negatives Positives

08

0.6

True positive rate

04

02

0 01 02 03 04 05 06 0.7 08 09 1

0.0

0.0 02 04 06 08 10

False positive rate

Area under the ROC curve

A measure of accuracy of how well our model separates the classes
<0,6 Fail

0,60-0,70 Weak separation

0,70-0,80 Fair separation

0,80 < Good separation
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Logistic Regression

Nominal and Ordinal Logistic Regression

One can use logistic regression for classification of response variable into more than two classes.

Nominal example:

» Based on symptoms classifiy a patient in ER to one of the below categories
— Stroke
— Drug overdose
— Epileptic seizure

Each class has a unique set of variables and corresponding coefficients.

inti‘'um
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The Role of Logistic
Regression in Strat
Development proc
Intrum
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Intrum: Who we are?

Key facts about us

* Industry-leading provider of Credit
Management Services with presence in 24
markets in Europe

« Offering credit management- and financial
services including; payment services,
collection services and purchased debt

* We have more than 8,000 dedicated and
empathic employees

* Inthe YTD ending September 2017, pro-forma
income amounted to SEK 9.1 billion (EUR
0.94bn)

» Headquartered in Stockholm, Sweden and our

share is listed on the Nasdaq Stockholm
exchange

inti‘'um
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Strong position across entire footprint

. Market leader
@ Top five
Other

Market leader in most of the 24 European
countries where Intrum is present

We have around 80,000 clients, most of them

are found in sectors such as telecom, energy,
banking and retail.

inti‘'um
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---éThe purpose explalns the many wms that
gour busmess creates | |

Individualéget Conﬁpaniéscan? ~ __.whichinturnis Emﬁloyeésget

"'5"r'id'of'thei'r'debts'5'""""5"'g'row;i'n'vest;'""'5'“'""'5"'p'ositive'forz't'h'e“"5"'"""5'"th'e"chance'togrow""'5'“'

- and feel better. - employ and | ~ whole economy:. - while doing good.
: 5 5 o fleurish...
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Logistic Regression: Application

Statistical Modelling for strategy development

Debtors

Statistical Model to
score the cases

Example

Send
Letter/ Who?
Call

|n| Payer

=lje =ije =Eje =iije =i =l =i)e =i)e
=ilje =lje =ijs ==ilje ==ilje =M)e =iije =ii)e
=il =ije =ilje ==ijo =)o ==l =iiije ==i)e

==ije =lje =ilje =H)e =ilje =le i), =M)e

v Non Payer
intrum f
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Logistic Regression: Application

Data Selection and Data Analysis

Definition: Data Selection Data Check
Depends on the Requirements Can past represent
Question the future
4 N\ 4 N\ 4 N\
Data Quality
H - - | Full outcome | (missing values,
Starting point period correct mapping,
etc)
. J . J . J
4 N ( N\ 4 N\
Irregularities
n | Industry/client n (crisis,
Target specific? seasonality, tax
return, etc)
. J . J . /
4 ) ( N\
'Exclude
. Enough payers irrelevant
— Outcome Period — — :
and non payers (clients we no
longer work with)
. J . J . J

Most important step! The model performance directly depends on the data.
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Logistic Regression: Application

Example

Data set:
1000 observations, 8 variables

Target {Did not pay = 0, Paid = 1}

Age of Debt {continuous}

Time to First payment {continuous}

Number of legal cases {continuous}

Has contact information {binary}

Amount paid in the last 24 months {continuous}

Debt size {continuous}

Define new variable Response
data$Response=as.factor(data$Target)

inti‘'um

Variable Code

Target

TSD
Time_to_pay
N_legal

Has ci
Sum_pay_24m

Debt_size
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Logistic Regression: Application

Example

Original Data set

> summary(data_orig)

case_id Target TSD sum_pay_24m Time_to_pay debt_size N_legal has_ci
Min. :1.058e+11 Min. :0.000 Mir. : 0.0 Min. : 0.0 Mir. : 0.0 Mir. : 18.94 Mir. :0. 000 Min. :0. 000
1st Qu.:1.751e+l1l 1st qu.:0.000 1st Qu.: ©9.0 1st Qu.: 0.0 1st Qu.: 18.0 1st Qu.: 224.34 1st qQu. :0.000 1st Qu.:1.000
Median :7.004e+11 Median :0.000 Median : 113.5 Median : 1.1 Median : 47.0 Median : 432.17 Median :0.000 Median :1.000
Mean :6.094e+11 Mean :0.404 Mean p 207.2 Mean : 396.9 Mearn : 225.4 Mean : B24.28 Mearn :0.439 Mean :0.948
Ird qu. :9.680e+11 Ird Qu.:1.000 Ird qu.: 269.0 Ird qu.: 342.9 Ird qu.: 315.5 Ird qu.: 975.99 Ird qQu. :1.000 Ird qu. :1.000
Max. :9.957e+11 Max. 1.000 Max. :1123.0 Max. :30919.0 Max. :2054.0 Max. :8630. 29 Max. 4.000 Max. 1.000
Note:

With logistic regression, we do not need to normalize the data because if the variable has very large
values, then the numerical method will make corresponding coefficient very small.
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Logistic Regression: Application

Variables

TSD

800 1000

TSD
600

400

200

inti‘'um
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_— °
T T
0
Target
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Logistic Regression: Application

Training and Test Populations

In this example:

Randomly divided the population into training set (75% of all observations) and test set (25% of all
observations)

Example of alternative/additional Approach: Cross Validation

Given n observations,

Select K (usually 5 or 10)

Randomly split the observations into K sets

Fit the model using K-1 sets and test on the remaining set. Perfrom K times and for each
calculate MSE; fori =1, ..., K.

Calculate the average of MSE; to obtain one estimate

H Wb

inti‘'um
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Logistic Regression: Application
Models

> logitl_orig=gIm{Response~. -Target-case_id, data = train_orig, family=binomial) > logit2=gIim(Response~.-Target-case_id-has_ci-sum_pay_24m, data = train_orig, family=binomial)

= summary(logitl_orig) > summary(logit2)
call: call:
gim(formula = Response ~ . - Target - case_id, family = binomial, gim(formula = Response ~ . - Target - case_id - has_ci - sum_pay_24m,

data = train_orig) family = binomial, data = train_orig)
Deviance Residuals:

Min 10 Median 30 Max
-2.1643 -0.8796 -0.2284 0.8811 L7757

Deviance Residuals:
Min 10 Median Els] Max
-1.6858 -0.8762 -0.2323 0. 8902 2.7781

coefficients:

Estimate 5td. Error z value Pri>|z|) coefficients:

(Intercept) 0.8245173 0.3816693 2.160 0.0308 * Estimate Std. Error z value pri-lz|)

TSD _0.0023079 0.0005780 -3.087 6.70e-05 #®% (Intercept) 1.2519989 0.1508715 B.298 < Ze-16 #®%
sum_pay_24m 0.0001340 0.0001061 1.263 0.2064 TSD -0.0023820 0.0005808 -4.101 4.12e-05 *#*
time_to_pay -0.0007566 0.0003724 -2.032 0.0422 = time_to_pay -0.0007543 0.0003733 -2.021  0.0433 *

debt_size _0.0012168 0.0002077 -5.850 4.67e-00 %w* debt_size -0.0011901 0.0002064 -5.767 8.08e-09 ##*

N_Tegal -1.1436786 0.2276813 -5.023 5.08e-07 w#¥%* N_Tegal -1.1063475 0.2261395 -4.892 9,97e-07 w#w%%

has_ci 0.4194412 0.3746572 1.120 0.2629 -—-

- signif. codes: 0 *¥*%' 0,001 ‘*%° 0.01 ‘%' 0.05 ‘.’ 0.1 * ' 1
signif. codes: © ‘¥¥=' 0,001 ‘**’ 0.01 ‘%’ 0.05 ‘.” 0.1 ¢ ' 1

(Dispersion parameter for binomial family taken to be 1)
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1011.90 on 749 degrees of freedom

Null deviance: 1011.90 on 749 degrees of freedom Residual deviance: 770.69 on 745 degrees of freedom
Residual deviance: 767.84 on 743 degrees of freedom AIC: TED.69
AIC: 781.84

) . ) ) Number of Fisher Scoring iterations: 6
Number of Fisher Scoring iterations: €

Notes:
Estimate = 8
AIC: Akaike Information Criterion (type of model assessment) Lower AIC means better model.
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Logistic Regression: Application

Calculating the scores

predict_model2 <- predict(logit2,train_orig)
probs_model2 = c(exp(predict_model2)/(1+exp(predict_model2)))
score <-ceiling{probs_model2*100)

Predict(model, data) — gives us the logit values i.e. BT x;
To calculate the score, we plug the values of predict into

probablhty = m

Then the score:
score = ceil(probability - 100)

inti‘'um
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Train

90%
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Train: Population Distribution (%N), Expected
Target Rate (Reference) and Observed Target Rate
(SR)
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/ / —SR
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(HIS’[IC Regression: Application
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Test
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R: 0.817
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False positive rate
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Logistic Regression: Application

Model 3: Binning

Instead of working with variables directly, we create dummy binary variables based on the combination of
optimal binnings (smbinning function) and business reasoning.

Example: Binning of TSD
result=smbinning(train_orig, "Target","TSD", p = 0.05)

Optimal Binnings:

Cutpoint CntRec CntGood CntBad CntCumRec CntCumGood CntCumBad

1 2= 0 06

2 <= 184 373

3 == 594 213

4 = 594 68

5 Missing 0

5] Total 750

Business Decision
Bin1: (0, 184)
Bin 2 : [184,594)
Bin 3 : (594,

inti‘'um

26
231
44
2

0
303

70
142
169

66

0
447

96
469
682
750
750

MA

26
257
301
303
303

MA

70
212
381
447
447

MA

PCTRecC

B e R e T e Y Y e

L1280
L4973
. 2840
. 0907
. 0000
. 0000

Number of cases
1580 200 250 300 350
| | | | ]

100
I

50
1

0.2708 0.
0.6193 0.
0.2066 0.
0.0294 0.
NaM
0.4040 0.

Bin1

GoodRate BadRate

7292
3807
7934
9706

MaM
5960

Lo I e Y i

Bin2

Odds Lnodds

MaM

TSD: Binnings

L3714 -0.9904
.6268 0.4866
. 2604 -1.3457
.0303 -3.4965

MaM

. 6779 -0.3888

Bin3

WoE
-0.6016
0.8754
-0.9569
-3.1077
MaN
0.0000

Iv

0.0426
0.3893
0.2228
0.4383

NaN

1.0930

Bin4
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Logistic Regression: Application
Model 3: Binning

TSD1 1 If TSD € [0,184] then 1 else O

TSD2 2 If TSD € (184,594] then 1 else O

TSD3 3 If TSD € (594, ) then 1 else O

dsi 1 If debt_size € (0,311.9] then 1 else O

ds2 2 If debt_size € (311.9,525.96] then1 else 0
ds3 3 If debt_size € (525.96,744.12] then 1 else O
ds4 4 If debt_size € (744.12,1998.53] then 1 else O
ds5 5 If debt_size € (1998.53,) then 1 else 0
Time_to_payl 1 If time_to_pay € [0,27] then 1 else O
Time_to_pay2 2 If time_to_pay € (27,118] then 1 else O
Time_to_pay3 3 If time_to_pay € (118, ) then 1 else O
N_legall 1 If N _legal =0thenlelseO

N_legal2 2 If N _legal > 0then1else O

Sum_pay 24ml 1 If sum_pay_24m € [0,150] then 1 else O
Sum_pay_24m2 2 If sum_pay_24m € (150, o) then 1 else 0

inti‘'um 12



Logistic Regression: Application

Model 3: Binning

> logit_bin2=gIm{train_orig.Target~.-train_orig.case_id-hsil-hsi2, data = train_bin, family=binomial)

= summary{logit_bin2)

call:

glm(formula = train_orig.Target ~ . - train_orig.case_id - hsil -

hsiz, family = binomial, data = train_bin)
Deviance Residuals:

Min 10 Median 30 Max
-1.9333 -0.7467 -0.2662 0.7373 2. 8062

coefficients: (5 not defined because of singularities)

Estimate std. Error z wvalue Pri=|zl)
(Intercept) -4.9898 0.7930 -6.292 0.000000000313 ***
I[=! 1.1769 0.2859 4.116 0.000038485009 **#*
Te2 NA NA NA NA <—
spl -0.5376 0.1975 -2.722 0.006483 ** i i —
e e = 2 ® " These are reference bins with § = 0
ds1 2.3489 0.5211  4.508 0.000006557526 *** Each other bin is Compared by SR to
ds2 1.6098 0.5325  3.023 0.002500 ** )
ds3 1.2013 0.5677  2.116 0.034346 * the reference bhin
ds4 0.7127 0.5353 1.371 0.183043
dss NA NA NA NA
TSD1 2.2454 0.6282  3.575 0.000351 =%
TSD2 1.4920 0.6431  2.320 0.020335 *
TsD3 NA NA NA NA
ttpl 0.9198 0.3012  3.054 0.002261 **
ttp2 0.6453 0.3028 2.131 0.033115 * ; ; ;
bt o o o - Each binary variables gets its own g.
signif. codes: 0 ‘##%’ 0,001 ‘#*' 0.0L ‘** 0.05 *.” 0.1 ¢ ' 1 Example' TSD

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1011.90 on 749 degrees of freedom
Residual deviance: 720.93 on 739 degrees of freedom
AIC: 742,93

Number of Fisher Scoring iterations: 6
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Logistic Regression: Application

Difference in score

Target TSD sum pay 24m jtime to pay [|debt size N legal has ci
0 39.51 72742.71 3 1

Score when no binning: Score when binning:
o ‘ coefficients: (5 not.
coefficiénts: cstimate. : Estimate
(Intercept) 1.2519989 - (Intercept) - -4.9898
TsD T -20.0023820 Tcl 1.1769.
time_to_pay -0.0007543. 1c2 NA’
debt_size  -0.0011901 spl -0. 5376.
N_legal -1.1063475. sp2 NA
ds1 : 2.3489
. 100 . .ds2. .. .1 ... 1.6098
Score = cell (1+e—(1.252—0.0024—*0—0.0007*7—0.0012*274—3—1.1063*3)) =48 ds3 1.2013
ds4 0.7127.
ds5s NA
TSD1 2.2454-
TSD2 1.4920.
J¥sos o NA
ttpl 0.9198.
ttp2 0.6453
ttp3 NA.

inti‘'um
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ModeTl 3: Binning
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Logistic Regression: Application

Variable Selection

In this example, | manually selected the cases (not the best way)

In order to pick the best combination of variables one should consider different techniques. For

example,

+ Backward: start with all the available variables, and step by step take away the variable that is
contributing the least., until there are no more variables. Each time measure the model performance.
Select the model with best performance.

» Forward: Opposite to backward, start with no variables and at each step, add a variable that
contributes the most. Repeat until all the variables are in the model.

» Hybrid: Combination of forward and backward. Start with no variables. At each step select the most
contributing variable to the model, then check if there exist a variable that does not contribute,
remove if exists.
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Logistic Regression: Application
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Thank you!

Contact Information:
Ekaterina Kruglov: e.kruglov@se.intrum.com
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