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The Wild Bootstrap

Consider the linear regression model

One natural way to bootstrap this model is to use the residual bootstrap.
We condition on X, 3, and the empirical distribution of the residuals
(perhaps transformed). Thus the bootstrap DGP is

y' = X;8+u’, u ~EDF(4). (2)

Strong assumptions! This assumes that E(y; | X;) = X;3 and that the error
terms are IID, which implies homoskedasticity.

At the opposite extreme is the pairs bootstrap, which draws bootstrap
samples from the joint EDF of [y;, X;|. This assumes that there exists such
a joint EDF', but it makes no assumptions about the properties of the u; or
about the functional form of E(y; | Xj).

The wild bootstrap is in some ways intermediate between the residual
and pairs bootstraps. It assumes that E(y; | X;) = X;3, but it allows for
heteroskedasticity by conditioning on the (possibly transformed) residuals.



If no restrictions are imposed, wild bootstrap DGP is

yi = X; 8+ fli)v], (3)

where f(4;) is a transformation of the i*" residual ;, and v} has mean 0.
Thus E(f(4;)v]) =0 even if E(f(4;)) # 0. Common choices:

wl:  f(4;) = /n/(n— k),

N Uj
w2 f(ul) — (1 _ hi)1/2 )
. U;

Here h; is the i*" diagonal element of the “hat matrix”
Px = X(X'X)" !X The wl, w2, and w3 transformations are analogous
to the ones used in the HC1, HC2, and HC3 covariance matrix estimators.

We would like functions of the bootstrap error terms f(u;)v}, such as
n~1/2 X Tu*, to have properties similar to those of the same functions of the
actual error terms.



Ideally, the bootstrap error terms would have the same moments as the
transformed residuals. For that to be the case, we need

E(vy) =0, E(v}*) =1, E(v;°) =1, E(v*) = 1. (4)

1 1 1

But this is impossible!

Consider the outer product of the vector [1 v v?]" with itself for a random

variable v with expectation zero:

1 v v? 1 0 o2
Elv v | =0 0% pszl. (5)
vt o ! 0% p3 i

Determinant must be nonnegative since the matrix is positive semidefinite:
o g — pz —0° > 0. (6)

But 11 —1%2—-1%= —1. If 0?2 =1 and pu3 = 1, then pg > 2. So there exists
no distribution for the v} that satisfies (4).

This means that there is no “ideal” distribution for the v;. We either need
to relax the requirement that pus = 1 or allow uyg > 2.



Most common choice for v} is Mammen’s two-point distribution:

e { —(v/5—1)/2 with probability (v/5+ 1)/(2v/5), o

(vVb+1)/2  with probability (v/5 —1)/(2v/5).

It was suggested in Mammen (1993). In this case,

E(vy) =0, E(v}*) =1, Ev;°) =1, E(v*) =2. (8)

1 1 (2

Thus (6) is satisfied as an equality. No distribution that has the correct
third moment can have a fourth moment smaller than 2.

Mammen must have obtained his distribution by solving the equations

p1v1 + (1 — p1)ve
pl’U% + (1 — m)v%
plfU% + (1 — pl)US’

0,
1, (9)
1.

The result is p1 = (V5 +1)/(2v5), v1 = —(v/5 —1)/2, and vo = (v/5 + 1)/2,
which leads to (7).



Besides getting the fourth moment wrong, Mammen’s distribution involves
two very different probabilities (0.72361 and 0.27639). Thus, about 72% of
the time, the sign of the bootstrap error term for observation ¢ will be the
opposite of the sign of the residual.

Davidson and Flachaire (2008) proposed the Rademacher distribution:

—1 with probability 1,
e Yo (10)
1 with probability %,

for which
E(v]) =0, E(va) =1, E(vf?’) =0, E(vf‘l) = 1. (11)

This has the desired fourth moment, and each bootstrap error is positive
with probability one-half, which is appealing. But it imposes symmetry.

If the error terms really are symmetric, it is clearly good to impose
symmetry. Even if they are not, getting p4 right may well be more
important than getting p3 wrong. D&F provide evidence, and see below.

Using the Rademacher distribution means conditioning on X, B, and the
absolute values of the (transformed) residuals.



Alternatives to Two-Point Distributions

Two-point distributions seem unnatural, as each observation can only have
two bootstrap error terms associated with it. In the usual case, this means
that there are only 2" possible bootstrap samples.

Since the standard normal distribution has mean 0 and variance 1, it may
seem natural to use it for v*. But us3 = 0 and pug4 = 3. So its fourth moment
is worse than for Mammen, and it has the same, sometimes undesirable,
symmetry property as Rademacher.

Mammen (1993) also suggested the continuous distribution:
vf = ui/V2 + S (w] 1), (12)

where u; and w; are independent standard normals. [There is a serious typo
in the article, which makes it look as if u; = w;.] For this distribution,

E(vy) =0, E(vi?) =1, E(v;°) =1, E(v*) =6. (13)

1 1 (2

This gets the third moment right, but the fourth moment is extremely large.

Mammen also suggests another, similar, distribution that is more
complicated than (12) and has a slightly smaller fourth moment.



Estimating Covariance Matrices

Bootstrap methods are sometimes used to estimate standard errors and
covariance matrices. If B* is the estimate for the 7t bootstrap sample, and
B* denotes the average of the ,6* then the usual estimator is

Var ( =Y (8; (B —B")". (14)

g=1

Evidently, ) ) ) )
B; -8 = X'X) "' X (XB+uj) - B

= (X'X)"' X Tuj + (8~ BY).

If the OLS estimator is unbiased, then E(B ) = B. Thus we can ignore
B — B* if B is large enough.

(15)

The first term in the last line of (15) times itself transposed is
(X'X) "' X uwiu ' X(X X)) (16)

This looks like a sandwich covariance matrix, but with u;”u,jT instead of a
diagonal matrix.



Because E(v})? = 1, diagonal elements of u*u*' have expectation f2(;).

;Y
For Rademacher, these diagonal elements are precisely f2(;).

Off-diagonal elements must have expectation zero because E(v;vy) = 0.
For Rademacher, each off-diagonal element is the product of the same two
transformed residuals multiplied by +1 or —1.

Thus, as B becomes large, the matrix X'u u*TX should converge to the
matrix X TQX where £2 is an n X n dlagonal matrix with the squares of
the f(u;) on the diagonal.

When the transformation f(-) is wl, w2, or w3, the bootstrap covariance
matrix estimator (14) converges to HC1, HC2, or HC3 as B — oc.

Conclusion: Using the wild bootstrap to estimate covariance matrices is
just an expensive way to approximate various HCCMEs, with unnecessary
simulation randomness.

e Pointless for making inferences about linear regression models.

e Might be useful for obtaining covariance matrices for nonlinear
functions of those coefficients.

e Might be useful for nonlinear regression models.

Similar arguments apply to using the pairs bootstrap.



Bootstrap Testing

Consider the heteroskedasticity-robust ¢ statistic

B — B?

\/[(XTX)—l_XszX(XTX)—l}” |

(B — BY) = (17)

To calculate wild bootstrap P value, estimate (1) under the null hypothesis
to obtain 3 and w. Then generate B bootstrap samples, using the DGP

yi = X8+ f(u)v}. (18)

As in (3), there are several choices for the transformation f(-).

For each bootstrap sample, calculate T(B;;), the bootstrap analog of (17):

Bi; — By

VIXTX) XTI X (XTX) Y, |

(B — BY) =

(19)

Bl’; is the OLS estimate for the 7 bootstrap sample. XTQ;‘X is computed
in the same way as X '§2X, but uses residuals from bootstrap regression.



It is easier, especially if performing several tests, to use unrestricted
estimates rather than restricted ones in the bootstrap DGP.

e If so, use (3) instead of (18) to generate the bootstrap data.

e Compute bootstrap statistics T(Bl BAZ) instead of T(BZ — Bt). That
is, replace 3} by Bl in (19). This is essential, since bootstrap test
statistics must test a hypothesis that is true for the bootstrap data.

It is almost always better to use restricted estimates in the bootstrap DGP,
because the DGP is estimated more efficiently when true restrictions are
imposed; see Davidson and MacKinnon (1999).

However, using restricted estimates is a lot more work.

e With unrestricted estimates, we simply generate B bootstrap samples
and use them for all tests and confidence intervals.

e With restricted estimates, we have to generate B bootstrap samples for
each restriction we wish to test.

e With restricted estimates, each confidence interval requires (mq + mq)B
bootstrap samples, where m; and ms depend on how many iterations it
takes to locate each end of the interval.



Bootstrap P Values

Many authors talk about bootstrap critical values. In practice, there is no
reason ever to compute one. Bootstrap P values yield exactly the same test
results and normally provide far more information.

Provided B is chosen so that a(B + 1) is an integer, we can estimate the
level « critical value for a test in the upper tail as number (1 — a)(B + 1) in

the (ascending) sorted list of the 77 (Blj B).

Example: If B = 999 and a = 0.05 for a one-tailed test, the critical value
we want is number 950 in the sorted list.

Upper-tail bootstrap P value:

5 (7) = % S I > 7). (20)

Use this for hetero-robust F' tests or any other test that rejects only in the
upper tail. Choose B such that a(B 4+ 1) is an integer.

Notice that p*(7) < 0.05 whenever 7 is greater than number (1 — «)(B + 1)
in the sorted list of the 7.



Equal-tail bootstrap P value:
| B | B
p*(#) = 2min (E ZI(T; <7 3 > 17> %)). (21)

Use this whenever we want to reject in both tails, and the distribution of 7
is not symmetric around zero. Choose B such that a(B + 1)/2 is an integer.

Symmetric bootstrap P value:

B

() = 5 S 10771 > 7)) (22)

g=1

Use this it the distribution of 7, and hence also of 77, is (approximately)
symmetric around zero. It should yield slightly better finite-sample
properties when that is the case. Choose B such that a(B + 1) is an integer.



Simultaneous Equations and the Wild Bootstrap

Just about the simplest simultaneous equations model is

Y1 = By2 + Zv +uy (23)
Yo = W + us. (24)

Here (23) is the structural equation of interest, and (24) is an unrestricted
reduced form equation.

Davidson and MacKinnon (2010) discusses several wild bootstrap
procedures for testing the hypothesis that G = f.

The best of these methods is wild restricted efficient (or WRE) bootstrap.
Bootstrap DGP:

Y1 = Boys; + Ziy + f1(tn)v] (25)
Ys; = Wim + fa(tzi)vy;, (26)
where 4 and the residuals %1; come from an OLS regression of y; — Boy-

on Z, ™ comes from an OLS regression of y» on W and w4, and
’l?l,g = Yo — W,



The WRE bootstrap DGP has three important features:

e Reduced-form equation (26) is estimated efficiently, by including
structural residuals as an additional variable.

e The same random variable v; multiplies the transformed residuals for
both equations. Thus correlation between structural and reduced-form
residuals is retained by bootstrap error terms.

e Structural equation (25) uses restricted (OLS) estimates instead of
unrestricted (2SLS) ones, which are not necessarily too small.

Bootstrap tests of hypotheses about 5 based on the WRE bootstrap
perform remarkably well, whenever the sample size is not too small (400
seems to be sufficient) and the instruments are not very weak.

What mostly causes asymptotic tests to perform poorly is simultaneity
combined with weak instruments, not heteroskedasticity. The main reason
to use the WRE bootstrap is to compensate for the weak instruments.

It is also asymptotically valid to use a nonrobust test statistic together with
the wild bootstrap, or a robust test statistic together with a bootstrap
method that does not take account of heteroskedasticity.



Cluster-Robust Covariance Matrices

Y1 ] - X1 T Uy T
Yo X Uo
y=| . | = B+ | . | =EXBtu
L Y, - L X, | Uy, _

There are m clusters, indexed by 7, stacked into a vector y and a matrix
X. If u; denotes the vector of OLS residuals for the 7 cluster, a
cluster-robust covariance matrix estimator has the form

Var(8) = (XX) (3 Xy, X ) (XX (21)

j=1
e Sandwich form similar to HCCME, but with more complicated filling.

e Robust to heteroskedasticity and within-cluster correlation.

Cameron, Gelbach, and Miller (2008) propose the wild bootstrap DGP:

yi = X B+ fla)v], (28)

where j indexes clusters, ¢ indexes observations, and the v come from the
Rademacher distribution.



Problem! For any two-point distribution, number of distinct bootstrap
samples is just 2"*; see Webb (2012).

Here are some values of 2™:
2° =32; 20 = 64; 27 = 128; 28 = 256; 27 = 512; 210 = 1024.

When m = 5, each set of bootstrap samples will contain each of the 32
possible ones, repeated various numbers of times.

Webb (2012) suggests a six-point distribution. Here are some values of 6™:
6° = 7,776; 65 = 46,656; 6" = 279,936; 6% = 1,679, 616.

This would evidently solve the problem, at least for m > 7. Webb’s
distribution has six mass points:

1.5, —1, —v0.5, V0.5, 1, V1.5,

each of which has probability 1/6. It is easy to see that:

1

E(vy) =0, E(v?) =1, E(v;®) =0, E(v*) =17/6. (29)



Simulation Experiments

Past simulation experiments in Davidson and Flachaire (2008), MacKinnon
(2011), and other papers collectively suggest that:

e Rademacher distribution outperforms Mammen’s two-point
distribution, even when the error terms are not symmetric.

e We should always generate bootstrap samples using parameter
estimates and residuals under the null.

e All methods work well when the h; are similar in magnitude, that is,
when there are no observations with high leverage.

e All methods improve rapidly as n — oo when the largest h; converge
rapidly as the sample size increases.

e Some methods can work quite poorly even for quite large samples if
there remain high-leverage observations in those samples.

e Some methods can be considerably more powerful than others. Use
H1? Hausman and Palmer (2012) suggests that wild bootstrap
methods may less powerful than a technique they propose.



New experiments are based on the ones in MacKinnon (2011), with two
changes. The error terms are now skewed (rescaled, recentered x?(5)) rather
than standard normal, and there are more choices for the v;.

The DGP is
5
y; = 1 + Zﬁkth +u;,  u; =08, € ~11D(0,1), (30)
=2

where all regressors are drawn randomly from the standard lognormal
distribution, parameters are 5, = 1 for k£ < 4, 55 = 0, and

o; = 2(7) (61 + Zﬁkth)W- (31)
k=2

Here z(7) is a scaling factor chosen so that the average variance of u; is
equal to 1.

In the experiments, 0 < v < 2. Note that v = 0 implies homoskedasticity,
and v >> 1 implies rather extreme heteroskedasticity.



Features of the DGP:
e Chosen to make heteroskedasticity-robust inference difficult.

e Lognormal regressors imply that many samples will contain a few
observations on the X;; that are quite extreme.

e The most extreme observation in each sample will tend to become more
so as the sample size increases.

e Largest value of h; tends to be large and to decline very slowly as
n — oo.
Alternative approach:

e Choose a fixed or random X matrix for a small sample size and form
larger samples by repeating it as many times as necessary.

e Only as many distinct values of h; as number of observations in the
original sample. All of those values must be proportional to 1/n.

e Since hi"®* declines like 1/n, heteroskedasticity-robust inference
improves rapidly as n increases.

My approach is probably too pessimistic, but approach that constructs X
by repetition, which was used by MacKinnon and White (1985), Davidson
and Flachaire (2008), and many other papers, is much too optimistic.
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The Score Wild Bootstrap

For any Type 2 maximum likelihood estimator,

g(0) ='G(9) =0,

where g(8) is the score vector and the n x k matrix G(6) contains the
contributions to the scores. Hu and Kalbfleisch (2000) and Klein and Santos
(2011) suggested bootstrapping the rows of G(é) The former proposed

the estimating function bootstrap, which resamples the rows like the pairs

bootstrap. The latter proposed the score wild bootstrap.

In many cases, the score wild bootstrap can be implemented very easily via
an artificial regression. In general, such a regression has the form

r(0) = R(0)b+ Z(0)c + residuals, (32)

where 0 is a k-vector, (0) is a column vector of length n (or maybe 2n),
and R(6) is a matrix with as many rows as r(0) and k columns. The n x r
matrix Z(0) depends on the same data and parameters as r(0) and R(0).

Crucial properties: Score vector is r' () R(0), and %RT(B)R(H) converges
to the information matrix J(0). See Davidson and MacKinnon (2001).



When evaluated at any root-n consistent estimator 6, (32) becomes

7 = Rb+ Zc + residuals, (33)

/

where ¥ = r(0) and so on. The obvious test statistic is the reduction in the
SSR associated with Z, which is

¢ Myt — 7 Mg g0 (34)
As usual, this can be written as
7+ MypZ(Z'MyZ)~ ' Z' Mg, (35)
and 1t is asymptotically distributed as x2(r). In the case of LM tests, we
evaluate everything at 8. Now r is orthogonal to R, so the first term in
(34) is just #'7, and the test statistic (34) reduces to
" Pip g7 (36)

which is just the ESS from regression (33).



Artificial Regression Wild and Pairs Bootstraps

We hold R and Z fixed and draw wild bootstrap samples by multiplying 7;,
the i* element of #, by v}. In the case of the Rademacher distribution, this
just means randomly changing the sign of 7; with probability one-half.

Note that R;TR;, R;TZ ;,and Z ;TZ © are identical in all bootstrap
samples. Only r;-‘TR;'f and r;-kTZ ; vary. This should make computation of
the wild artificial regression bootstrap extremely inexpensive.

We can also resample from the rows of [# R Z] to obtain the pairs artificial
regression bootstrap.

In either case, we run the two artificial regressions

r: = R:b+ residual, and (37)
r; = R:b+ Z7c + residual, (38)

and the bootstrap statistic is

'r;-‘TMR;« T — 'r;-kTM[R; Z;]'r;. (39)

This all seems very simple, elegant, and inexpensive.



Problem: It does not actually work!
Example: Nonnested binary response models.

Suppose we have two competing binary response models:

H1 . E(yt | Qt) = Fl(Xlt/Bl) and (40)
Hy: E(y: | ) = F2(X2:02), (41)

One way to nest H; and Hs in an artificial compound model is:
Hc': E(yt | Qt) = (1 — CB)Fl (Xlt,Bl) + OéFQ(XQt,BQ). (42)
To test Hy against Hc, we first replace 32 by its ML estimate Bg and then

construct an artificial regression to test the null hypothesis that o = 0. This
artificial regression is

Vi 2 (g — Fre) = VY2 fre X + oV V2 (Fye — Fry) + residual,  (43)

where

Vi(B) = F(X:8)(1 — F(X.:8)). (44)
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e Asymptotic test can overreject or underreject, often severely, depending
on number of regressors in each model and how well H; fits.

e Overrejection when H; fits poorly is expected. Underrejection when H;
fits well is a mystery.

e Parametric bootstrap works extremely well. Note that graphs stop at
n = 1600 to save computer time.

e Wild artificial regression bootstrap tests can work better or worse than
asymptotic tests.

e Pairs artificial regression bootstrap tests mimic asymptotic tests.

e Mammen wild bootstrap rejects less frequently than Rademacher wild
bootstrap, whether asymptotic test is overrejecting or underrejecting.

e If we use the Rademacher distribution, we are assuming that the 7, are
symmetrically distributed, which is surely not true. This seems to be a
case where we might want to preserve the third moment.

Tentative conclusion: The score wild bootstrap, the artificial regression wild
bootstrap, and the estimating function bootstrap are completely useless.



Explanation:

These are all just computationally expensive ways to compute
approximations to asymptotic quantities! If the resulting bootstrap tests
happen to perform better than asymptotic tests, it is just coincidence.

Consider the wild artificial regression bootstrap based on the Rademacher
distribution. It conditions on 6, on all of the regressors in (33), and on the
absolute values of the elements of 7.

The only random elements of the bootstrap DGP are the signs of the
elements of the r;. Thus the bootstrap expectations of RTfr;f and ZTT;-‘ are
indeed zero.

The distribution of the bootstrap statistic (39), conditional on the
regressors R and Z is that of any chi-squared test with exogenous
regressors. It fails to be exactly chi-squared only because the 7, and hence
the 7, are not Gaussian.

The distribution of the bootstrap test statistic is valid asymptotically, but it
tells us nothing about the finite-sample properties of the true DGP!



Summary

The wild bootstrap can be a very valuable addition to the econometrician’s
toolkit.

Whenever error terms are independent but not identically distributed,
resampling residuals is not valid.

Instead, the wild bootstrap conditions on the observed (rescaled) residuals.
In the case of Rademacher, it conditions on their absolute values.

With samples of moderate size, we can make very accurate inferences by
combining an HCCME with a suitably chosen wild bootstrap DGP.

There is limited evidence in favour of combining H1, which is equivalent to
HO when we bootstrap, with w3 based on restricted estimates.

The wild bootstrap can also be useful with clustered data and for
simultaneous equations models.

Bootstrap methods based on contributions to the scores, whether pairs or
wild, are fundamentally misguided.
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