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Content

Two parts:

1. The basics of approximate Bayesian computation (ABC)

2. ABC methods used in practice

What is ABC?

A set of methods for approximate Bayesian inference which

can be used whenever sampling from the model is possible.
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Part I

Basic ABC



Bayesian inference
Inference for simulator-based models

Recap
Simulator-based models

Recap of Bayesian inference

I The ingredients for Bayesian parameter inference:
I Observed data yo ∈ Y ⊂ Rn

I A statistical model for the data generating process, py|θ,

parametrized by θ ∈ Θ ⊂ Rd .
I A prior probability density function (pdf) for the parameters θ,

pθ

I The mechanics of Bayesian inference:

pθ|y(θ|yo) ∝ py|θ(yo |θ) × pθ(θ) (1)

posterior ∝ likelihood function× prior (2)

I Often written without subscripts (“function overloading”)

p(θ|yo) ∝ p(yo |θ)× p(θ) (3)
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Bayesian inference
Inference for simulator-based models

Recap
Simulator-based models

Likelihood function

I Likelihood function: L(θ) = p(yo |θ)
I For discrete random variables:

L(θ) = p(yo |θ) = Pr(y = yo |θ) (4)

Probability that data generated from the model, when using
parameter value θ, are equal to yo .

I For continuous random variables:

L(θ) = p(yo |θ) = lim
ε→0

Pr(y ∈ Bε(yo)|θ)

Vol(Bε(yo))
(5)

Proportional to the probability that the generated data are in a
small ball Bε(yo) around yo .

I L(θ) indicates to which extent different values of the model
parameters are consistent with the observed data.
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Bayesian inference
Inference for simulator-based models

Recap
Simulator-based models

Example

p(θ) = 1√
2π·42

exp
(
− θ2

2·42

)
yo = 2 p(y |θ) = 1√

2π
exp

(
− (y−θ)2

2

)
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Bayesian inference
Inference for simulator-based models

Recap
Simulator-based models

Different kinds of statistical models

I The statistical model was defined via the family of pdfs
p(y|θ).

I Statistical models can be specified in other ways as well.
I In this lecture: models which are specified via a mechanism

(rule) for generating data
I Example: Instead of

p(y |θ) =
1√
2π

exp

(
−(y − θ)2

2

)
(6)

we could have specified the model via

y = z + θ z =
√
−2 log(ω) cos(2πν) (7)

where ω and ν are independent random variables uniformly
distributed on (0, 1). Advantage?
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Bayesian inference
Inference for simulator-based models

Recap
Simulator-based models

Simulator-based models

I Sampling from the model is straightforward. For example:

1. Sampling ωi and νi from the uniform random variables ω and
ν,

2. computing the nonlinear transformation
yi = f (ωi , νi , θ) = θ +

√
−2 log(ωi ) cos(2πνi )

produces samples yi ∼ p(y |θ).

I Enables direct modeling of how data are generated.
I Names for models specified via a data generating mechanism:

I Generative models
I Implicit models
I Stochastic simulation models
I Simulator-based models
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Bayesian inference
Inference for simulator-based models

Recap
Simulator-based models

Examples

Simulator-based models are used in:

I Astrophysics:
Simulating the formation of
galaxies, stars, or planets

I Evolutionary biology:
Simulating the evolution of
life

I Health science:
Simulating the spread of an
infectious disease

I . . . Dark matter density simulated by the Illustris collaboration

(Figure from http://www.illustris-project.org)
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Examples (evolutionary biology)

I Simulation of different hypothesized evolutionary scenarios

I Interaction between early modern humans (Homo sapiens)
and their Neanderthal contemporaries in Europe

Immigration of Modern Humans into Europe from the Near East. Light gray: Neanderthal population. Dark: Homo sapiens.

from (Currat and Excoffier, Plos Biology, 2004, 10.1371/journal.pbio.0020421). The numbers in the figures indicate generations.

See also Pinhasi et al, The genetic history of Europeans, Trends in Genetics, 2012
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Examples (health science)

I Simulation of bacterial transmission dynamics in child day
care centers (Numminen et al, Biometrics, 2013)
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Bayesian inference
Inference for simulator-based models

Recap
Simulator-based models

Formal definition of a simulator-based model

I Let (Ω,F ,P) be a probability space.
I A simulator-based model is a collection of (measurable)

functions g(.,θ) parametrized by θ,

ω ∈ Ω 7→ y = g(ω,θ) ∈ Y (8)

I For any fixed θ, yθ = g(.,θ) is a random variable.

Simulation / Sampling
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Bayesian inference
Inference for simulator-based models

Recap
Simulator-based models

Advantages of simulator-based models

I Direct implementation of hypotheses of how the observed
data were generated.

I Neat interface with physical or biological models of data.

I Modeling by replicating the mechanisms of nature which
produced the observed/measured data. (“Analysis by
synthesis”)

I Possibility to perform experiments in silico.
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Bayesian inference
Inference for simulator-based models

Recap
Simulator-based models

Disadvantages of simulator-based models

I Generally elude analytical treatment.

I Can be easily made more complicated than necessary.

I Statistical inference is difficult . . . but possible!

— This lecture is about inference for simulator-based models —
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Family of pdfs induced by the simulator

I For any fixed θ, the output of the simulator yθ = g(.,θ) is a
random variable.

I Generally, it is impossible to write down the pdf of yθ
analytically in closed form.

I No closed-form formulae available for p(y|θ).

I Simulator defines the model pdfs p(y|θ) implicitly.
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Implicit definition of the model pdfs

A

A

Michael Gutmann ABC 16 / 47



Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Implicit definition of the likelihood function

I The implicit definition of the model pdfs implies an implicit
definition of the likelihood function. For discrete random
variables:
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Implicit definition of the likelihood function

I For continuous random variables: L(θ) = limε→0 Lε(θ)
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Implicit definition of the likelihood function

I To compute the likelihood function, we need to compute the
probability that the simulator generates data close to yo ,
Pr (y = yo |θ) or Pr (y ∈ Bε(yo)|θ)

I No analytical expression available.

I But we can empirically test whether simulated data equals yo

or is in Bε(yo).

I This property will be exploited to perform inference for
simulator-based models.
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Exact inference for discrete random variables

I For discrete random variables, we can perform exact Bayesian
inference without knowing the likelihood function.

I Idea: the posterior is obtained by conditioning p(θ, y) on the
event y = yo :

p(θ|yo) =
p(θ, yo)

p(yo)
=

p(θ, y = yo)

p(y = yo)
(9)

I Given tuples (θi , yi ) where
I θi ∼ pθ (iid from the prior)
I yi = g(ωi ,θi ) (obtained by running the simulator)

retain only those where yi = yo .

I The θi from the retained tuples are samples from the
posterior p(θ|yo).
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Example

I Posterior inference of the success probability θ in a Bernoulli
trial.

I Data: yo = 1

I Prior: pθ = 1 on (0, 1)
I Data generating process:

I Given θi ∼ pθ

I ωi ∼ U(0, 1)

I yi =

{
1 if ωi < θi

0 otherwise

I Retain those θi for which yi = yo .
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Example

I The method produces samples from the posterior.

I Monte Carlo error when summarizing the samples as an
empirical distribution or computing expectations via sample
averages.

I Histogram for N simulated tuples (θi , yi )

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Success probability

p
d
f

 

 
Estimated posterior pdf

True posterior pdf

Prior pdf

N = 1000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Success probability

p
d
f

 

 
Estimated posterior pdf

True posterior pdf

Prior pdf

N = 10, 000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Success probability

p
d
f

 

 
Estimated posterior pdf

True posterior pdf

Prior pdf

N = 100, 000

Michael Gutmann ABC 22 / 47



Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

The good and the bad

I The method produces samples from p(θ|yo).

I This is good.

I But only applicable to discrete random variables.

I And even for discrete random variables:
Computationally not feasible in higher dimensions

I Reason: The probability of the event yθ = yo becomes smaller
and smaller as the dimension of the data increases.

I Out of N simulated tuples only a small fraction will be
accepted.

I The small number of accepted samples do not represent the
posterior well.

I Large Monte Carlo errors

I This is bad.
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Approximations to make inference feasible

I Settle for approximate yet computationally feasible inference.
I Introduce two types of approximations:

1. Instead of working with the whole data, work with lower
dimensional summary statistics tθ and to ,

tθ = T (yθ) to = T (yo). (10)

2. Instead of checking tθ = to , check whether ∆θ = d(to , tθ) is
less than ε. (d may or may not be a metric)

I In other words:
1. Replace Pr (y ∈ Bε′(yo) | θ) with Pr (∆θ ≤ ε| θ)
2. Do not take the limit ε→ 0

I Defines an approximate likelihood function L̃ε(θ),

L̃ε(θ) ∝ Pr (∆θ ≤ ε | θ) (11)
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Example

I Inference of the mean θ of a
Gaussian of variance one.

I Pr(y = yo |θ) = 0.

I Discrepancy ∆θ:

∆θ = (µ̂o − µ̂θ)2,

µ̂o =
1

n

n∑
i=1

yo
i ,

µ̂θ =
1

n

n∑
i=1

yi ,

yi ∼ N (θ, 1)
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Example

Probability that ∆θ is below some threshold ε approximates the

likelihood function.
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Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Example

I Here, T (y) = 1
n

∑n
i=1 yi is a sufficient statistics for inference

of the mean θ

I The only approximation is ε > 0.

I In general, the summary statistics will not be sufficient.

Michael Gutmann ABC 27 / 47



Bayesian inference
Inference for simulator-based models

Likelihood function
Exact inference
Approximate inference

Rejection ABC algorithm

I The two approximations made yield the rejection algorithm for
approximate Bayesian computation (ABC):

1. Sample θi ∼ pθ

2. Simulate a data set yi by running the simulator with θi
(yi = g(ωi ,θi ))

3. Compute the discrepancy ∆i = d(T (yo),T (yi ))
4. Retain θi if ∆i ≤ ε

I This is the basic ABC algorithm.

I It produces samples θ ∼ p̃ε(θ|yo),

p̃ε(θ|yo) ∝ pθ(θ)L̃ε(θ) (12)

L̃ε(θ) ∝ Pr
(
d(T (yo),T (y))︸ ︷︷ ︸

∆θ

≤ ε | θ
)

(13)
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Part II

ABC methods used in practice



Standard algorithms
Recent developments

Critique of rejection ABC
Regression ABC
Sequential Monte Carlo ABC

Brief recap

I Simulator-based models: Models which are specified by a data
generating mechanism.

I By construction, we can sample from simulator-based models.
Likelihood function can generally not be written down.

I Rejection ABC: Trial and error scheme to find parameter
values which produce simulated data resembling the observed
data.

I Simulated data resemble the observed data if some
discrepancy measure is small.
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Standard algorithms
Recent developments

Critique of rejection ABC
Regression ABC
Sequential Monte Carlo ABC

Critique of the rejection ABC algorithm

I The rejection ABC algorithm works.

I But it is computationally not efficient.

I The probability of the event ∆θ ≤ ε is usually small when
θ ∼ pθ. In particular for small ε.
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Standard algorithms
Recent developments

Critique of rejection ABC
Regression ABC
Sequential Monte Carlo ABC

Critique of the rejection ABC algorithm

I In the Gaussian example, the probability for ∆θ ≤ ε can be
computed in closed form ∆θ = (µ̂o − µ̂θ)2

Pr(∆θ ≤ ε) = Φ
(√

n(µ̂o − θ) +
√

nε
)
−Φ

(√
n(µ̂o − θ)−

√
nε
)

Φ(x) =
∫ x
−∞

1√
2π

exp
(
− 1

2
u2
)
du

I For nε small: L̃ε(θ) ∝ Pr(∆θ ≤ ε) ∝
√
εL(θ)

I For small ε good approximation of
the likelihood function.

I But for small ε, Pr(∆θ ≤ ε) ≈ 0:
Very few samples will be accepted
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Standard algorithms
Recent developments

Critique of rejection ABC
Regression ABC
Sequential Monte Carlo ABC

Two widely used algorithms

I Two widely used algorithms which improve upon rejection
ABC:

1. Regression ABC (Beaumont et al, Genetics, 2002)

2. Sequential Monte Carlo ABC (Sisson et al, PNAS, 2007)

I Both use rejection ABC as a building block.

I Sequential Monte Carlo (SMC) ABC is also known as
Population Monte Carlo (PMC) ABC.
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Standard algorithms
Recent developments

Critique of rejection ABC
Regression ABC
Sequential Monte Carlo ABC

Two widely used algorithms

I Regression ABC consists in running rejection ABC with a
relatively large ε and then adjusting the obtained samples so
that they are closer to samples from the true posterior.

I Sequential Monte Carlo ABC consists in sampling θ from an
adaptively constructed proposal distribution φ(θ) rather than
from the prior in order to avoid simulating many data sets
which are not accepted.
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Standard algorithms
Recent developments

Critique of rejection ABC
Regression ABC
Sequential Monte Carlo ABC

Basic idea of regression ABC

I The summary statistics tθ = T (yθ) and θ have a joint
distribution.

I Let ti be the summary statistics for simulated data
yi = g(ωi ,θi ).

I We can learn a regression model between the summary
statistics (covariates) and the parameters (response variables)

θi = f (ti ) + ξi (14)

where ξi is the error term (zero mean random variable).

I The training data for the regression are typically tuples (θi , ti )
produced by rejection-ABC with some sufficiently large ε.
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Standard algorithms
Recent developments

Critique of rejection ABC
Regression ABC
Sequential Monte Carlo ABC

Basic idea of regression ABC

I Fitting the regression model to the training data (θi , ti ) yields
an estimated regression function f̂ and the residuals ξ̂i ,

ξ̂i = θi − f̂ (ti ) (15)

I Regression ABC consists in replacing θi with θ∗i ,

θ∗i = f̂ (to) + ξ̂i = f̂ (to) + θi − f̂ (ti ) (16)

I Corresponds to an adjustment of θi .

I If the relation between t and θ is learned correctly, the θ∗i
correspond to samples from an approximation with ε = 0.
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Standard algorithms
Recent developments

Critique of rejection ABC
Regression ABC
Sequential Monte Carlo ABC

Basic idea of sequential Monte Carlo ABC

I We may modify the rejection ABC algorithm and use φ(θ)
instead of the prior pθ.

1. Sample θi ∼ φ(θ)
2. Simulate a data set yi by running the simulator with θi

(yi = g(ωi ,θi ))
3. Compute the discrepancy ∆i = d(T (yo),T (yi ))
4. Retain θi if ∆i ≤ ε

I The retained samples follow a distribution proportional to
φ(θ)L̃ε(θ)
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Standard algorithms
Recent developments

Critique of rejection ABC
Regression ABC
Sequential Monte Carlo ABC

Basic idea of sequential Monte Carlo ABC

I Parameters θi weighted with wi ,

wi =
pθ(θi )

φ(θi )
, (17)

follow a distribution proportional to pθ(θ)L̃ε(θ).
I Can be used to iteratively morph the prior into a posterior:

I Use a sequence of shrinking thresholds εt
I Run rejection ABC with ε0.
I Define φt at iteration t based on the weighted samples from

the previous iteration (e.g Gaussian mixture with means equal
to the θi from the previous iteration).

I More efficient than rejection ABC: φt(θ) is close to the
approximate posterior in the final iterations.
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Standard algorithms
Recent developments

Bayesian optimization for ABC
Application

Another approach

I Evaluating ∆θ is computationally costly. We are only
interested in small ∆θ (thresholding!)

I We could increase the computational efficiency by evaluating
∆θ predominantly where it tends to be small.

I Use a combination of probabilistic modeling of ∆θ and
optimization to figure out where to evaluate ∆θ.
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Standard algorithms
Recent developments

Bayesian optimization for ABC
Application

Learning a model of the discrepancy

I The approximate likelihood function L̃ε(θ) is determined by
the distribution of the discrepancy ∆θ

L̃ε(θ) ∝ Pr (∆θ ≤ ε | θ)

I If we new the distribution of ∆θ we could compute L̃ε(θ).

I In recent work, we proposed to learn a model of ∆θ and to
approximate L̃ε(θ) by L̂ε(θ),

L̃ε(θ) ∝ P̂r (∆θ ≤ ε | θ) , (18)

where P̂r is the probability under the model of ∆θ.
(Gutmann and Corander, Journal of Machine Learning Research, in press, 2015)

I Model is learned more accurately in regions where ∆θ tends
to be small, using techniques from Bayesian optimization.
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Bayesian optimization
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Application to epidemiology of infectious diseases

I Inference about bacterial transmission dynamics in child day
care centers (Numminen et al, Biometrics, 2013)
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Standard algorithms
Recent developments

Bayesian optimization for ABC
Application

Application to epidemiology of infectious diseases

Data: Colonization states of sampled attendees of 29 child day
care centers (DCCs) in Oslo greater area.
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Example data from a DCC. Each square indicates an attendee colonized with a strain
of the bacterium Streptococcus pneumoniae.
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Standard algorithms
Recent developments

Bayesian optimization for ABC
Application

Application to epidemiology of infectious diseases

I Simulator-based model: latent continuous-time Markov chain
for the transmission dynamics in a DCC and an observation
model (Numminen et, Biometrics, 2013).

I The model has three parameters:
I β: rate of infections within a DCC
I Λ: rate of infections outside a DCC
I θ: possibility to be infected with multiple strains

I Likelihood is intractable (data at a single time point are
available only).
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Standard algorithms
Recent developments

Bayesian optimization for ABC
Application

Application to epidemiology of infectious diseases

I Comparison of the model-based approach with a
sequential/population Monte Carlo ABC approach.

I Roughly equal results using 1000 times fewer simulations.

I The minimizer of the
regression function under
the model does not
involve choosing a
threshold ε.

Posterior means: solid lines with markers,

credibility intervals: shaded areas or dashed lines.
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Standard algorithms
Recent developments

Bayesian optimization for ABC
Application

Application to epidemiology of infectious diseases

I Comparison of the model-based approach with a
sequential/population Monte Carlo ABC approach.
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Summary

I The topic was Bayesian inference for models specified via a
simulator (implicit / generative models).

I Introduced approximate Bayesian computation (ABC).

I Principle of ABC: Find parameter values which yield simulated
data resembling the observed data.

I Covered three classical algorithms:

1. Rejection ABC
2. Regression ABC
3. Sequential Monte Carlo ABC

I Introduced recent work which uses Bayesian optimization to
increase the efficiency of the inference.

I Not covered: How to choose the summary statistics / the
discrepancy measure between simulated and observed data.
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