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1 Introduction

Due to the development of technology in various fields it is now a common-
place to find massive complex data with almost unlimited number of features
[8]. In [7, pp 238−239] high-dimensional means data where the number of
features, say d, exceeds the number of samples, say n.

Curse of dimensionality describes here the problems caused by the ex-
ponential increase in volume associated with adding extra dimensions to a
(mathematical) space, or, when the dimensionality increases, the volume of
the space increases so fast that the available data become sparse.

This sparsity is problematic for any method that requires statistical sig-
nificance. In order to obtain a statistically sound and reliable result, the
amount of data needed to support the result often grows exponentially with
the dimensionality.There are phenomena that we do not encounter in settings
such as the three-dimensional physical space of our everyday experience.

This lecture dels with the curse of dimensionality in statistical learning
using some of the statements [1]. The main topic is to examine the effect of
high dimensions on nearest neighbor and nearest neighbor regression. This
will be done by letting d→ +∞, while keeping n fixed.

The phrase ’curse of dimensionality’ was originated by the American
mathematician and engineer Richard E. Bellman, when dealing with opti-
mization (dynamic programming).

2 Preliminaries

2.1 Notations

We are dealing with x = (x1, . . . , xd) ∈ Rd. The distance (or metric) be-
tween x ∈ Rd and y ∈ Rd is

‖ x− y ‖=

√√√√ d∑
i=1

(xi − yi)2. (2.1)

We set

D (x) =‖ x− 0 ‖2=
d∑
i=1

x2i = xTx, (2.2)

which is the squared distance from x to the origin.
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Hyperball
A hyperball spd(x, r) in Rd , r > 0, is

spd(x, r) = {y| ‖ y − x ‖≤ r}. (2.3)

We can visualize this as a sphere centered at x with the radius r.

2.2 Probability

We recall/summarize briefly some tools of probability calculus, see [6].

i) Convergence in probability

A sequence of random vectors X1,X1, . . . ,Xn, . . . , converges in
probability to X ∈ Rd if and only if

lim
n→+∞

P (‖ Xn −X ‖> ε)→ 0 (2.4)

for any ε > 0, as n→ +∞.

If X is a constant a (i.e. not a random variable), we write

Xn
P→ a as n→ +∞. (2.5)

ii) Cramér-Slutzky Theorem part 1)

If Xn
P→ a as n→ +∞ and g (x) is a continuous real valued function

at a ∈ Rd, then

g (Xn)
P→ g (a) , as n→ +∞. (2.6)
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iii) Cramér-Slutzky Theorem, part 2)

Here Xn and Yn are real valued, ∈ R, random variables.

If Xn
P→ a ∈ R, as n → +∞, and and Yn

P→ b ∈ R, b 6= 0, as
n→ +∞, then

Xn

Yn

P→ a

b
, as n→ +∞. (2.7)

iv) Chebysjev
′
s Inequality

X is a real valued, X ∈ R, random variable that has a mean E [X] =
µ and a finite variance , Var [X] = σ2. Then

P (|X− µ| > ε) ≤ 1

ε
σ2. (2.8)

3 When is nearest neighbour meaningful?

Suppose that Xl are n I.I.D. vector valued Xl = (X1l, X2l, . . . , Xdl) random
variables and

Dl
def
= D (Xl) =

d∑
i=1

X2
il, l = 1, 2, . . . , n. (3.1)

We assume that
E [Dl] = d,Var [Dl] = 2d. (3.2)

Example 3.1 X1l, X2l, . . . , Xdl are I.I.D. ∼ N(0, 1). Then, see [6, p. 283],
Dl =

∑d
i=1X

2
il ∼ χ2(d) (chi-squared distribution) and thus E [Dl] = d,

Var [Dl] = 2d.
The formulas in (3.2) hold also, e.g., if every Xl has a multivariate skew

normal distribution.

We set also
Dmin = min

1≤l≤n
Dl, Dmax = min

1≤l≤n
Dl.
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Then we have the following theorem due to [1]. Note that d is the dimension
of Rd.

Theorem 3.2 If (3.2) holds, then for any ε > 0

lim
d→+∞

P (Dmax ≤ (1 + ε)Dmin) = 1. (3.3)

Proof: Set

ζl =
Dl

E [Dl]
=
Dl

d

Then

E [ζl] = 1, Var [ζl] =
1

d2
Var [Dl] =

2

d
,

where we used (3.2). Then Chebysjev
′
s inequality (2.8) tells that for every l

P (|ζl − 1| > ε) ≤ 1

ε
Var [ζl] =

2

ε · d
. (3.4)

Hence we have that for every l, ζl
P→ 1, as d→ +∞.

Convergence in probability implies convergence in distribution.
Since ζl are independent, there is joint convergence in distribu-
tion,

(ζ1, . . . , ζn)
d→ (1, 1, . . . , 1)︸ ︷︷ ︸

n components=1

.

Convergence in distribution to a constant implies convergence in
probability to the same constant vector, and therefore, in the
sense of (2.5),

(ζ1, . . . , ζn)
P→ (1, 1, . . . , 1)︸ ︷︷ ︸

n components=1

. (3.5)

Here we understand

Xd = (ζ1(d), . . . , ζn(d)) ,

so d and n switch roles vis-a- vis Cramér-Slutzky Theorem part
1) above.
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Since max and min are continuous functions, the Cramér-Slutzky Theorem
(2.6) entails by (3.5) that

max (ζ1, ζ2 . . . , ζn)
P→ 1 as d→ +∞ (3.6)

and
min (ζ1, ζ2 . . . , ζn)

P→ 1, as d→ +∞ (3.7)

Note that in this situation the function g is a map g (ζ1, ζ2 . . . , ζn) from Rn 7→
R and Xd = (ζ1, ζ2 . . . , ζn), so d and n switch roles vis-a- vis Cramér-Slutzky
Theorem part 1) above. Then

Dmax

Dmin

=
1
d
Dmax

1
d
Dmin

=
1
d

max1≤l≤nDl

1
d

min1≤l≤nDl

=
max1≤l≤n

Dl

d

min1≤l≤n
Dl

d

=
max1≤l≤n ζl
min1≤l≤n ζl

P→ 1, as d→ +∞.

by the Cramér-Slutzky Theorem (2.7), where one again notes the interchange
of roles of d and n. We have now shown that

Dmax

Dmin

P→ 1 ,as d→ +∞ (3.8)

Therefore

P (Dmax ≤ (1 + ε)Dmin) = P
(
Dmax

Dmin

≤ (1 + ε)

)
= P

(
Dmax

Dmin

− 1 ≤ ε)

)

= P
(∣∣∣∣Dmax

Dmin

− 1

∣∣∣∣ ≤ ε)

)
,

since Dmax > Dmin so that Dmax

Dmin
> 1 and

∣∣∣Dmax

Dmin
− 1
∣∣∣ = Dmax

Dmin
− 1.

We have

P
(∣∣∣∣Dmax

Dmin

− 1

∣∣∣∣ ≤ ε)

)
= 1− P

(∣∣∣∣Dmax

Dmin

− 1

∣∣∣∣ > ε)

)
and therefore

lim
d→+∞

P (Dmax ≤ (1 + ε)Dmin) = lim
d→+∞

P
(∣∣∣∣Dmax

Dmin

− 1

∣∣∣∣ ≤ ε)

)
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= 1− lim
d→+∞

P
(∣∣∣∣Dmax

Dmin

− 1

∣∣∣∣ > ε)

)
= 1− 0 = 1,

since we have established (3.8) in the preceding. This is (3.3), as claimed

Hence: nearest neighbour is unstable in high dimensions.

4 General Comments: Ultrametricity

In [4] and [3] the search dimensionality or the intrinsic dimension ρ of a
metric space (like Rd equipped with ‖ x− y ‖ as its metric) is defined as

INTRINSIC DIMENSION

ρ
def
=

(E [D])2

2Var [D]
. (4.1)

Here the statistical distribution of the distances is signeld out as a key
quantity. A large ρ implies exponential increase in nearest neighbour search-
ing, which is typical for high dimensional spaces. For excample, with (3.2)
we have

ρ =
d

2
.

In a high dimensional metric space, the difference between random distances
is small compared to a random distance (as will be illustrated in section 5).
Roughly equal distances is tantamount to equilateral triangles being formed
between triplets of points. Thus high dimensional spaces become naturally
trivially ultrametric, as triplets of points form equilateral triangles.

Thus high dimensional spaces in (the sparse) limit become naturally ul-
trametric.
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ULTRAMETRIC SPACE

Let x,y and z be elements in X . d(x, y) is a function from X × X to
non-negative real numbers. d(x, y) is the distance between x and y, and
must satisfy

• d(x, y) = d(y, x) for all x, y ∈ X × X .

• d(x, y) ≥ 0 for all x, y ∈ X × X .

• d(x, y) = 0 if and only if x = y.

• d(x, y) satisfies the ultrametric inequality

d(x, z) ≤ max{d(x, y), d(y, z)}. (4.2)

Then we say that (4.2) is the ultrametric property and that X
equipped with such d(x, y) is an ultrametric space.
An interpretation of (4.2): If the distance between x and z is big, and
the distance between x and y is small, then the distance between y and
z has to be big.

5 A Piece of Thinking in the Spirit of Sergey

Brink

Let us consider the feature space U = {0, 1}d, i.e. the binary hypercube
consisting of binary d-tuples x, x = (x1, . . . , xd), xi ∈ {0, 1}. The cardinality
of U is = 2d. Any x is also called a vertex of U = {0, 1}d.

There is a metric on U , it is called the Hamming metric, and denoted
by dH (x,y). The Hamming metric is defined as the number of positions i,
where x and y are differing, or

dH (x,y) =
d∑
i=1

(xi +2 yi) =
d∑
i=1

|xi − yi|,

where 1 +2 1 = 0, 0 +2 0 = 0, 1 +2 0 = 1, 0 +2 1 = 1. The alternative |xi− yi|
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applies ordinary real arithmetic and its absolute value. It is easy to prove
that dH is in fact a metric using the representation

∑d
i=1 |xi − yi|.

An ultrametric is a special case of a metric. For a metric the triangle
inequality, dH (x, z) ≤ dH (x,y) + dH (y, z) holds instead of (4.2) (note that
(4.2) implies the triangle inequality).

A special property of dH (x,y) is that the maximum value is equal to d.
In fact

dH (x, x̄) = d, (5.3)

where x̄ has the bits in x negated, i.e., x̄ = (x̄1, . . . , x̄d), where for every i,
x̄i = 0, if xi = 1 and x̄i = 1, if xi = 0.

Now we make a study of queries and their nearest neighbours in very
large metric spaces in the spirit of [3] and [4].

A query is for our purposes simply a preassigned q ∈ U . Then we draw N
independent samples D = {x1, . . . ,xN} from the uniform distribution P (x)
on {0, 1}d, or for each l

P (xl) =
1

2d
.

This is equivalent to that the components xi are independent Bernoulli vari-
ables ∼ Be(1/2).

Let us define for l = 1, . . . , N the independent random variables, the
distances to the query,

Dl
def
= dH (xl,q) . (5.4)

It follows by definition of dH (xl,q) as a sum of zeros and ones that each Dl is
a binomial random variable, Dl ∼ Bin

(
d
2
, d
4

)
and the Dl are independent. In

all of this the query q is fixed. In addition, by the properties of the binomial
distribution

E [Dl] =
d

2
,Var [Dl] =

d

4
.

We set again
Dmin = min

1≤l≤n
Dl, Dmax = min

1≤l≤n
Dl.

Then we standardize as before

ζl =
Dl

E [Dl]
=

2Dl

d

and

Var [ζl] =
4

d2
Var [Dl] =

4

d2
· d

4
=

1

d
.
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The condition (3.2) of theorem 3.2 is thus not true here. But a glance at the
proof of theorem 3.2 shows, that (3.2) was needed in the step (3.4), when the
Chebysjev inequality was applied. However, here we get

P (|ζl − 1| > ε) ≤ 1

ε
Var [ζl] =

1

ε · d
. (5.5)

Hence we have again that for every l, ζl
P→ 1, as d → +∞.

Theorem 5.1 x1, . . . ,xN are I.I.D samples from the probability mass func-
tion

P (xl) =
1

2d
.

When for a fixed q Dl = dH (xl,q) for all l, then for any ε > 0

lim
d→+∞

P (Dmax ≤ (1 + ε)Dmin) = 1. (5.6)

Proof: We checked above that ζl
P→ 1, as d → +∞. But then from this

fact the rest of the proof required here follows ad verbatim as the proof of
theorem 3.2.
The conditions discussed above can be reconciled by saying that we require
that the intrinsic dimension in (4.1) is

ρ ∝ d.

Let now D denote a generic Dl or D
d
= Dl. We want to compute the prob-

ability that D lies in the annulus defined by certain two hyperballs in the
space {0, 1}d equipped with the Hamming metric.

A hyperball in {0, 1}d is (c.f. (2.3)

spdH(q, r) = {x ∈ U |dH (x,q) ≤ r} (5.7)

If d < r , then spdH(q, r) = {0, 1}d, i.e. the binary hypercube can be seen as
a ball, too, with any vertex q as center. So we consider for a positive integer
k the following set difference, or annulus of two shperes,

spdH

(
q,
d

2
+ k

)
\ spdH

(
q,
d

2
− k
)

= {x ∈ U |d
2
− k < dH (x,q) ≤ d

2
+ k}.

If U is a ball with q chosen as north pole and q̄ as south pole, then in
view of (5.3) the vertices x with dH (x,q) = d

2
represent the equator.
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We want now to compute P
(
D ∈ spdH

(
q, d

2
+ k
)
\ spdH

(
q, d

2
− k
))

or

P
(
d

2
− k < D ≤ d

2
+ k

)
.

One rewrites this probability as

= P

−k√
d
4

<
D − d

2√
d
4

≤ k√
d
4

 .

By first courses, see, e.g., [5, p. 162−163] we know that a random variable ∼
Bin(Np,Np(1−p) can be approximated by a normal distribution with mean
Np and variance Np(1−p). If we now take advantage of this approximation,
we obtain that

Z =
D − d

2√
d
4

∼ N(0, 1),

since E [D] = d
2

and Var [D] = d
4
. and the binomially distributed D is

approximately N(d
2
, d
4
). If Φ(x) denotes the cumulative distribution function

of the standard normal distribution,

P

−k√
d
4

< Z ≤ k√
d
4

 = Φ

 k√
d
4

− Φ

−k√
d
4



= 2Φ

 k√
d
4

− 1.

In summary,

P
(
d

2
− k < D ≤ d

2
+ k

)
≈ 2Φ

 k√
d
4

− 1. (5.8)

This is the probality that D differs from the mean distance d
2

to q by at most
±k bits. We set

pk,d
def
= 2Φ

 k√
d
4

− 1.
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By Matlab or any other computing software we can find the numerical values
of pkd at will. Then we have, e.g.,

p30,1000 = 0.9422, p40,1000 = 0.9886, p50,1000 = 0.9984,

and
p200,10000 = 0.9999, p180,10000 = 0.9997, p160,10000 = 0.9986.

Hence we see, e.g., that the 99% of the sample distances Dl to any query
q are for k = 160 and d = 10000 located around the equator of {0, 1}d
or at distances 5000 ± 160 bits from the query. This expresses part of the
findings/ideas in [3]. In the binary hypercube with Hamming metric, the
intrinsic dimension (4.1) becomes

ρ =
d

2
, (5.9)

which is well illustrated by the computations above. In words, in high dimen-
sional spaces a large ρ reflects that the difference between random distances
D is small, which is quantitatively found by the numbers pk,d.

Or, take now x and y both in the annulus of high probability

{x ∈ U |d
2
− k < dH (x,q) ≤ d

2
+ k}.

Then it follows that

dH (x,q)− dH (y,q) ≤ d

2
+ k − (

d

2
− k) = 2k

and

dH (x,q)− dH (y,q) ≥ d

2
− k − (

d

2
+ k) = −2k.

Hence
|dH (x,q)− dH (y,q) | ≤ 4k.

This seems to support the notion of a tendency to ultrametrical samples
in high dimensions, that the difference between random distances is small
compared to a random distance.
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Appendix A: Facts about the Analytic Geom-

etry of the Hypercube in Rd

The hypercube Ω in Rd is the subset

Ω
def
= [0, 1]d.

The distance in (2.1), ‖ x− y ‖, is used for x ∈ Ω and y ∈ Ω.

Assume that S = {x1, . . . ,xN} are N I.I.D. samples of U([0, 1]d) =
the uniform distribution on [0, 1]d. Thus

Xl ∼ U([0, 1]d).

This assumption holds everywhere in Appendix A.

This means that

X = (X1, . . . , Xd), Xi ∼ U(0, 1), i = 1, 2, . . . , d. (A.1)

Thus for any (Borel) subset A ⊆ Ω

P(X ∈ A) =

∫ ∫
. . .

∫
A

dx1 . . . dxd = vol(A)

(volume of A) and
vol(Ω) = P(X ∈ Ω) = 1.

A.1 The probability of a Subcube in Ω

Take 0 < s < 1 and s = b− a (=length of any side of the subcube).

Ωs = {x ∈ Ω|a ≤ xi ≤ b, i = 1, . . . , d}

is a subcube (draw a picture in two dimensions). Then

P (X ∈ Ωs) = P (a ≤ X1 ≤ b, a ≤ X2 ≤ b, . . . , a ≤ Xd ≤ b)
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and by I.I.D. this is

= P (a ≤ X1 ≤ b) · P (a ≤ X2 ≤ b) · · · P (a ≤ Xd ≤ b) .

When U
d
= Xl for all l (I.I.D.) and by U ∼ U(0, 1), the above becomes by

(A.1)
= (P (a ≤ U ≤ b))d = (b− a)d = sd.

For example, d = 100, s = 0.95, sd ≈ 0.0059 = 0.59% (little more tha a half
percent).

Fact 1.: The subcube Ωs is in high dimensions very sparsely popu-
lated.

A.2 The largest hyperball that fits entirely in Ω

The largest hyperball that fits entirely in Ω should be

spd(q, 1/2).

We compute the probability that one data point lies in spd(q, 1/2), or,

P(X ∈ spd(q, 1/2)) =

∫ ∫
. . .

∫
spd(q,1/2)

dx1 . . . dxd = Kd ·
(

1

2

)d
, (A.2)

where
Kd = vol

(
spd(q, 1)

)
.

The evaluation of the integral in (A.2) is a useful exercise in multivariate
calculus. One solution is recapitulated in, e.g., [2, chapter 2.2-2.4]. There or
elsewhere, [9, p. 74], one can find that

Kd =
πd/2

Γ
(
d
2

+ 1
) =

πd/2

d
2
Γ(d/2)

,

where Γ(z) is the Euler Gamma function. Stirling
′
s formula [9, p. 288]

says
Γ(x) ≈

√
2πe−xxx−1/2
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so that
Γ(d/2) ≈

√
2π · e−d/2 · (d/2)d/2−1/2.

Thus

P
(
X ∈ spd(q, 1/2)

)
≈ 1√

2π
e

d
2
ln(π)−( d

2
−1) ln( d

2
)e−d(ln( 2)− 1

2
). (A.3)

Here ln( 2)− 1
2

= 0.19, hence e−d(ln( 2)− 1
2
) → 0, as d→ +∞. We

see by plotting, or checking that d
dx
f(x) < 0 for all large enough

x, that

f(x) =
x

2
ln(π)− (

x

2
− 1) ln(

x

2
)→ −∞, as x → +∞.

Hence e
d
2
ln(π)−( d

2
−1) ln( d

2
) → 0, as d→ +∞

Thus
P
(
X ∈ spd(q, 1/2)

)
→ 0,

as d→ +∞.

Remark 5.1 By the above

vol (Ω) = 1 for all d.

But the diameter of Ω is
‖ 1− 0 ‖=

√
d,

where 1 is the (cube corner) vector of ones in Rd and 0 is the origin in Rd.

Fact 2.: The volume of spd(q, 1/2) in high dimensions shrinks sharply
as d grows and it is increasingly impopular that any point will be found
in this hyper ball at all. Yet this hyperball is anchored on the sides of a
hypercube with increasing diameter.

A.3 Expected Number of Points in spd(q, 1/2)

X1, . . . ,XN are N I.I.D. random variables ∼ U([0, 1]d). Consider a trial:
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check if Xl is in spd(q, 1/2) (a success) or not (failure). These trials are
independent and have only two possible outcomes.

p
def
= P(Xl ∈ spd(q, 1/2)) =

πd/2

d
2
Γ(d/2)

·
(

1

2

)d
, (A.4)

does not depend on l. Let Y = the number of successes in X1, . . . ,XN . Then
we find that Y ∼ Bin (N, p), see [5, pp. 113-117]. Thus

E [Y ] = Np.

Therefore, in order that expected number successes or number of points in
spd(q, 1/2) to be at least one, we need in view of (A.4)

E [Y ] ≥ 1⇔ N ≥ 1

p
=

Γ
(
d
2

)
πd/2

·
(
d

2

)
2d.

For d = 10, N ≈ 401.5.

Fact 3.: If, e.g., d = 20, then you may expect one of 40631627 points
to be inside spd(q, 1/2).

A.4 What is the probability that the nearest neighbour lies in
the hyperball spd(q, r) ?

Nearest Neighbour
S = {x1, . . . ,xN} is a set of points xl ∈ Ω. The nearest neighbour,

denoted by nn(q) ∈ S, to q /∈ S is

nn(q) = {xl ∈ S| ‖ xl − q ‖≤‖ xj − q ‖, l 6= j}. (A.5)

Then we can define the minimum distance between q and S,

nndist(q)
def
=‖ nn(q)− q ‖ . (A.6)
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We want to know the probability that the nearest neighbour to q ∈ Ω in a
data set S lies in the hyperball spd(q, r) of radius r or

P(q, r) = P(nn(q) ∈ spd(q, r))

By our definitions, see (A.5) and (A.6),

P(q, r) = P(nndist(q) ≤ r).

Next ensues a calculation using the rules of any first course in probability.
One starts with

P(q, r) = 1− P(nndist(q) > r).

But nndist(q) > r if and only if it holds for all l that ‖ xl − q ‖> r. Thus

P(nndist(q) > r) = P(‖ x1 − q ‖> r, ‖ x2 − q ‖> r, . . . ‖ xN − q ‖> r)

= P(‖ x1−q ‖> r)·P(‖ x2−q ‖> r) · · · P(‖ xN−q ‖> r) = (P (‖ x1 − q ‖> r))N ,

since the N samples are I.I.D.. Then

(P (‖ x1 − q ‖> r))N = (1− P(‖ x1 − q ‖≤ r))N .

But

P(‖ x1 − q ‖≤ r) = P ({x ∈ Ω| ‖ x1 − q ‖≤ r}) = vol
(
spd(q, r) ∩ Ω

)
.

Hence

Fact4.:
P (q, r) = 1−

(
1− vol

(
spd(q, r) ∩ Ω

))N
.

With r = 1/2, spd(q, 1/2) ∩ Ω) = spd(q, 1/2). We may be interested in
three issues i) − iii) for r = 1/2: The first two are immediate consequences
of Fact 4.

i) When the data set becomes large but d is fixed,

P(q, 1/2)→ 1, as N → +∞.
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ii) When the dimension becomes high for fixed a data size, and for r = 1/2

P(q, 1/2)→ 0, as d→ +∞.

This follows by Appendix A.2 .

iii) What will happen, if both d grows and the data set becomes large at the
same time ? Let us assume that N = eλd−1/2, or data volume grows
exponentially in high dimension. In view of (A.3) we take that

vol
(
spd(q, 1/2)

)
≈ e−d(ln( 2)− 1

2
) (A.7)

where we approximate with the factor as function of d that turns slowest
to 0. We set

λ = ln( 2)− 1

2
, lnN + 1/2 = dλ.

Then

P (q, 1/2) = 1−
(

1− e−1/2

N

)N
.

As N → +∞ we get

P (q, 1/2)→ 1− e−e−1/2

.

This is now approximately the probability that the nearest neighbour
to q in an N I.I.D. sample lies in spd(q, 1/2).

We recall that the cumulative distribution function of the standard
Gumbel distribution (with mean equal to the Euler’s constant γ),
see [6, ch. 7.5, p. 200], is

F (x) = e−e
−x

.

Hence we have found that in high dimensions d and for large data sets
N with N = eλd−1/2

P(nn(q) ∈ spd(q, 1/2)) ≈ 1− F (1/2) = P(X > 1/2),

when X has the standard Gumbel distribution. Gumbel distribution is
an extreme value distribution [6, ch. 7.5].
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Appendix B: k-Nearest Neighbour Regression

We consider the data generating model with unknown f

Y = f(x) + ε,

where E [ε] = 0, E [ε2] = σ2
ε . The function f̂k(x) estimating f(x) depends on

the training data S = {(xi, yi)}Ni=1 as a k-nearest neighbour regression.
This means for any x ∈ X

f̂k(x) =
1

k

∑
i:xi∈nnk(x)

yi. (B.1)

Here
nnk(x) = the set of kth nearest neighbours to x.

i.e.,
= {x(i) ∈ S |‖ x(1) − x ‖≤‖ x(2) − x ‖≤ . . . ‖ x(k) − x ‖}.

For example with k = 1
f̂1(x) = yl,

if xl = nn1(x). Assume that a training set feature vectors xl are sampled as
I.I.D. of

Xl ∼ U([0, 1]d)

as in Appendix A above, and that at the sampled points

Yl = f(xl) + εl

where f is unknown. We want to find the expected prediction error EPE(x)

for f̂k(x), when we choose a new point x and receive corresponding Y . We
give this in the form of the bias -variance trade-off.

The general bias -variance trade-off is

EPE(x) = E
[(
Y − f̂(x)

)2]
= Bias

[
f̂(x)

]2
+ Var

[
f̂(x)

]
+ σ2, (B.2)

where
Bias

[
f̂(x)

]
= E

[
f̂(x)

]
− f(x) (B.3)

and
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Var
[
f̂(x)

]
= E

[(
f̂(x)− E[f̂(x)]

)2]
. (B.4)

We need to evaluate all of these terms with f̂k(x). First,

E
[
f̂k(x)

]
=

1

k

∑
∑

i:xi∈nnk(x)

E [Yi]

=
1

k

∑
nnk(x)

E [f(xl) + εl]

=
1

k

∑
nnk(x)

E [f(xl)] +
1

k

∑
nnk(x)

E [εl]︸ ︷︷ ︸
=0

=
1

k

∑
nnk(x)

E
[
f
(
x(l)

)]
=

1

k

∑
nnk(x)

f
(
x(l)

)
=

1

k

k∑
l=1

f
(
x(l)

)
.

Next,

Var
[
f̂k(x)

]
=

1

k2

∑
i:xi∈nnk

Var [Yi]

=
1

k2

∑
nnk(x)

σ2
ε =

1

k2
kσ2

ε

=
1

k
σ2
ε .

EPE(x) = E
[(
Y − f̂k(x)

)2]
=

1

k
σ2
ε +

(
f(x)− 1

k

k∑
l=1

f
(
x(l)

))2

+ σ2
ε .

Some comments:

1. In small dimension d, the closest neighbours will have their function
values f

(
x(l)

)
close to f(x), whence their average 1

k

∑k
l=1 f(x(l)) should

be close to f(x).
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2. But in large dimension, Fact 2. above tells that the samples xl ∼
U([0, 1]d) will be close to the boundaries of the hypercube [0, 1]d. Hence
for most x ∈ [0, 1]d, the sum 1

k

∑k
l=1 f(x(l)) will be an extrapolation

from neighbouring samples rather than an interpolation between them.
Hence (

f(x)− 1

k

k∑
l=1

f(x(l))

)2

can be very large for large d and with large k.

3. It has been shown that for any distribution P

maxx∈[0,1]d |E [Y |X = x]− f̂k(x)| → 0,

as N , the number of samples in the training set, goes to +∞. In high
dimensions the convergence rate is slow.

maxx∈[0,1]d | E [Y |X = X]− f̂k(x) |→ 0

The k-nearest neighbor regression is a universal estimator.
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