EXAMINATION IN SF2942 PORTFOLIO THEORY AND RISK MANAGE-
MENT

Date: 2015-10-29, 08:00-13:00

Sugested solutions

Problem 1
The price P of a coupon bond with yearly coupon C, face value F and discounted
using the zero rates (r1,...,rr) are given by
T

P = Z Ce ™k 4 pe 7T, (%)
k=1

(a) Using Equation (x) we get

Py = 5.00e %% 4+ 100e %M = 103.96

Py = 7.00(e” %0 4 e700182) 4 200 - e 00182 = 206.61

P3 = 5.50 (6—0.01~1 +6_0'018'2 T 6—0.0243 +€_0'028'4 =+ 6—0.031~5) + 150 - 6_0'0315
153.96

where P; is the price of bond 3.

(b) In this case we have to add 0.02 to the risk-free zero rates in order to get
the correct discount rates. Hence the price of the bond is given by

P

75000 (e—(0.01+0.02)‘1 | —(0.018+0.02)-2

4 ¢~ (0.02440.02):3 | 67(0.028+O‘02)~4) 15000000 - ¢ (0:028+0.02)-4

4396 453.

In general the yield-to-maturity (which is the internal rate of return for a
bond) 7 solves the equation

T
P = Z Ce "ok 4 pe=roT,
k=1

With d = e~ this equation can be written
T
P=C) d"+Fd".
k=1

With our bond we get
4396453 = 75000 (d + d* + d* + d*) + 5000 000d".



Solving this equation numerically we get the solution
d =0.9533
in (0, 1), so the yield-to-maturity is

ro = —Ind = 0.0478.

(¢) The present value of the liability is given by
Pr, = 10000000 - e~%9243 = 9305309

and the duration is
D=3

(since the ony cash flow is at time 3). We have to use Bond 2, and since
we should only use one more bond and we must have a long position in
both bonds, the second bond must have a duration that is larger than 3.
The duration of a general stream of cash flows is given by

1 T
P=p Y

where P is the value of the stream of cash flows. Using this formula on
the three coupon bonds we get the durations

D, = 1.00
Dy = 1.97
D3 = 4.66.

Since we need one bond with duration smaller than D; = 3 and one bond
with duration lager than Dy = 3 in order to have a immunization portfolio
with long positions, and we must use Bond 2, we also have to use Bond 3
in our portfolio. Let x and y denote the amount of Bond 2 and Bond 3
that we buy. The immunization conditions can now be written

P, = haPy+h3Ps
PrDr, = haDePy+ h3D3Ps
<~
9305309 = hg-206.61 4+ hz-153.96
27915927 = hy-406.29 + h3 - 716.94,

where hy and hg are the number of Bond 2 and Bond 3 we buy respectively.
The solution is
ho = 27735 and hg = 23220



Problem 2
(a) See the book.
(b) We can create any payoff A on the form
A=ho+ hSr
for (hg,h1) € R2. In general the optimal hedge is given by

_ Cov(L,St)

hl = Var(ST) and ho =F [L} — hFE [ST] .

Here
L = NPr.

We get

Cov(N Pr, St)
Var(ST)
E[NPrSr| — E[NPr| E[S7]
Var(St)
E[N]E[PrSr| — E[N] E[Pr] E[Sr]
Var(STt)

EN|(E[PrSt] — E[Pr] E[Sr])
Var(ST)

FE [N] COV(PT, ST)

Var(St)

E [N] COH’(PT, ST)O'(PT)O'(ST)
Var(St)

E[N]Corr(Pr, St)o(Pr)

o(Sr) '

We have

E[N] = A
Corr(Pr,Sr) = p,

and need to calulate the standard deviations. We get
Var(Sr) = E[S%] - E[S7)°
E [SgQQIn(ST/SU)] _ (SOE [eln(sT/so)D2

{If X ~ N(p,0%) then E [eX] = eu+02/2}

52 <e2uT+402T/2 . 62uT+2<72T/2)
0

2 2
S <e2a T _ o T) 7

3



SO

o(St) = SoetT\/e20°T _ ¢o?T

In general, if X ~ U(a,b) then E [X] = (a+b)/2 and Var(X) = (b—a)?/12.
It follows that

m+66T+m766T

E[PT/PO]: D) =m = E[PT]:Pom
and
(m+ €T — (m — e&T))Q (2657“)2 20T
Var(Pr/Py) = G =13 = 3
We get,
26T
w&&ozafg
and
9T
o(Pr)=Py—.
(Pr) v 75
This yields
EJT 2
By = A-p- PO% _ ApPped—n=c%/2)T
SperT/e20%T _ go®T Sor/3 (ea2T _ 1)
and
ho = FEI[NPr]—hE|[S7]

— EN|E[Py] — hE[Sr]
)\ppoe((sf,ufaQ/Z)T

= A Pom - Soe(ﬂ+02/2)T
Sor/3 (eng - 1)
5T
— APy 2P
3(e*T —1)
Problem 3

(a) The minimum variance portfolio solves the problem

min %wTEw
st. wll1=1.

The Lagrangian is

1
L= §wTZw + A1 —w'1),



and the first order conditions are

VL = Yw—-A1=0
wlfl = 1.
The solution is given by
w= A",

We insert this in the constraint to get

1=A1%"11,
and it follows that )
=— .3y 11
WMVE = 9e-11
Now
12.21  4.3956 0
Y= 4.3956 17.5824 0
0 0 25.00
We get
16.61
Y11= 2198 | and 172711 = 63.58,
25.00
SO
0.261
WMVP — 0.346
0.393

The efficient frontier is the curve in the o-p-plane starting at the minimum-
variance point and then all the points on the minimum-variance set which
has an expected return higher than the expected return on the minimum-
variance portfolio.

We know that the minimum variance portfolio is on the efficient frontier —
it is the efficient portfolio with the smallest expected return. The return
on the minimum variance portfolio is here given by

HMVP = wﬁvpu = 1.089.

To find another efficient portfolio we solve the problem

min %wTEw
s.t. wTu:pLO

wll=1

with some po > pmvp. The Lagrangian is

L= %wTZw + A\ (,uo — wTu) + )\2(1 — le),



and the first order conditions are

VL = EUJ*)\lM*)\Q]_:O
IUTM = Ho
wll = 1

The optimal portfolio is
w = /\1271u + )\22711,
and the multipliers are determined by

‘uTxfl'u #Tzfll A B 1o
17"y 1Ty 11 X | 1|

Choosing g = 1.10 we get the multipliers
A1 = 0.2657 and Ay = —0.2736

and the solution

1221 43956 0 1.08
w = 0.2657 | 4.3956 17.5824 0 1.06
0 0 25.00 1.12
1221 43956 0 1
+(—0.2736) | 4.3956 17.5824 0 1
0 0 25.00 1
0.199
= | 0.201
0.600

This portfolio and the minimum variance portfolio are two examples of
efficient portfolios in this market.

Problem 4



(a) The price 7 of the payoff X is given by
m = DByEg|[X]
= By /OO max(z — K,0)Be %dx
= {max(z — K,0)=(z — K)I(z > K)}
= BOB/ z— K)e P2z

= ByS </ xe’ﬁwdx—K/ eﬁ"”dx>
K K

= {Integration by parts in the first integral}

R Ty

= B()ﬁ |:€_BK + (1 - K) . 16_6K:|

g 5 g
BO 7,3K
= —e
B
(b) In general the coeflicient of absolute risk aversion is given by
u//(x)
Alz) = —
W= e
With u(z) = 2v/z we have
’ 1 " 1 _1/(2xﬁ) 1
= — = ——— and finally A(x) = ————F—= = —.
u'(z) N u(x) SvE and finally A(z) NG o

(c) We want to find the function h : R — R that solves the problem

{ max F [u(h(X))]
st.  BoEg [h(X)] = Vb.

The solution is given by
h ) = ul —1 <>\q(x)) ,
@ =) (M
where ) is the Lagrange multiplier. With u(z) = v/ we have

u(z) = % and (u')"(z) = ;12

With the given density functions we get

h(z) = % (17(96))2 _ Bif'

q(z)




To find the value of A we use the budget constraint:

o0
Vo = BO/ h(z)q(z)dz
— 00
o] ﬁQl‘Q Bz
= By | 2 Be P¥dx
3 [e’e]
= Bof z2e Py
A2
: > 2 _—pBx 2
= < Integration by parts shows that xe Prdr = 5
0
2By
- e
Hence
2\ = %
Vo'
and we get the optimal derivative position
Voﬁ21‘2
h(x) = .
(@) =35,
Problem 5

(a) We need to check that p satisfies the following three properties:

o Translation invariance:
p(X 4 cRy) = p(X) — ¢ for every ¢ € R.

o Monotonicity:
Xo < X1 = p(Xy) < p(X2).

o Convexity:
X, + (1= N)Xa) < Mp(X1) + (1 — A)p(Xa)
for every A € [0, 1].
Now we insert the entropic risk measure.

o Translation invariance.

T
X+ R — 71 El 7(X+CR0)/T
P(X + cho) Ro {e }
— ilnE |:€7X/7'67CR0/T:|
0
T _
= R—OlnE [e X] —c
= pX)-c



o Monotonicity. Take Xo < X;. Then

e—Xl/T S e—XQ/T

since z — e~ */7 is a decreasing function. It follows that
FE [ele/T} <F [e*XQ/T} .

Since the logarithmic function is increasing the inequality is preserved
when we apply it:

InFE {e_Xl/T} <InF [e_XQ/T} .

Finally, the inequality is preserved when we multiply it with the
strictly positive constant 7/Rg:

RLOIHE [ein/T} < RLOIHE [eiXQ/T}
=4
p(X1) < p(X2).

o Convexity. Take A € [0,1]. The function z + e~%/7 is convex, and
hence

e~ (AX1+(1-N)X2)/7 _ e—(xé+(1—x)¥) <xe X174 (1- )\)e—XQ/T.

It follows that

E [e—(xx1+(1—x)xz)/7} <\E {e—xl/f} F(1-NE [e—X2/7:| :

and, arguing as above,

RLO InE |:€_()‘X1+(1_)\)X2)/7—:| < )\R;O nE {e—X1/T} +(1_)‘)RLO InE |:e—X2/T]

=
PX1 + (1= N)Xa) < Ap(X1) + (1 — N)p(Xa).

We can conlcude that the entropic risk measure is a convex measure of
risk.

(b) We have, using the notation from the book,
X =WV — RV,

where V; is the payoff from the project in one year, V; = 1000000 and
Ry = 1.05. The discounted loss L is defined by
X Vi

L:—izv—i
Ry " Ry



and we know that

VaR,(X) = F; (1~ p).

—8523810 with probability 0.20

—904762 with probability 0.75

1000000 with probability 0.04
1952381 with probability 0.01

We have
L =
and
~8523810
L 904762
F(p) = 1000000
1952381

It follows that

(i)

if
if
if
if

p <0.20
0.20 < p <0.95
p<0.95<0.99
p > 0.99

VaRg.05(X) = F; *(0.95) = —904 762.

(i)

VaRg.005(X) = F; 1(0.995) = 1952 381.
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