
EXAMINATION IN SF2942 PORTFOLIO THEORY AND RISKMANAGEMENT,
2012-10-19.

Examiner : Henrik Hult, tel. 790 6911, e-mail: hult@kth.se

Allowed technical aids : calculator.

Any notation introduced must be explained and defined. Arguments and computa-
tions must be detailed so that they are easy to follow.

Good luck!
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Problem 1

• Translation invariance: ρ(X + cR0) = ρ(X)− c, c ∈ (0,∞). Adding a capital
c at time 0 and investing it in the risk-free asset reduces the risk by c.

• Monotonicity: X1 ≤ X2 implies ρ(X1) ≥ ρ(X2). If X2 is worth more than X1

no matter the outcome, then X2 has smaller risk.

• Convexity: ρ(λX1 + (1 − λ)X2) ≤ λρ(X1) + (1 − λ)ρ(X2), λ ∈ [0, 1]. Take
for example, ρ(X1) = ρ(X2). Then spreading the risk between the two assets
reduces the risk. The risk measure rewards diversification.

• Positive homogeneity: ρ(λX) = λρ(X), λ ≥ 0. Doubling the position doubles
the risk.

• Subadditivity:ρ(X1 +X2) ≤ ρ(X1) + ρ(X2). Think of X1 and X2 as portfolios
of two business lines of a company. Then, breaking up the company in two
pieces increases the risk.

Problem 2

Let C be the m × n cash-flow matrix of where each row contains the cash-flow
payments of the bonds. m is the number of bonds and n the number of cash-flow
times. If p is the price vector, then the vector of discount factors d is a solution to
Cd = p. The typical situation is that m is smaller than n leading to infinitely many
solutions. The bootstrapping procedure is used to find a reasonable solution. The
bootstrapping procedure works as follows. Start by obtaining the discount factors
for the maturities of the zero coupon bonds. In the example it corresponds to bond
A. The cash flow times are t1 = 8/12, t2 = 20/12, t3 = 32/12, t4 = 44/12. Then



cont. examination in SF2942 2012-10-19 2

1035573 = 1.0425 · 106d1 which gives d1 = 0.9934 and r1 = −(1/t1) log(d1) = 0.010.
With d1 determined we can obtain d2 from bond B. We get

pB = 0.04 · 106d1 + 1.04 · 106d2,

which leads to d2 = 0.9769 and r2 = 0.014. Now, only one bond remains, but two
unknown discount factors. Then, one assumes d3 is given by linear interpolation
between d2 and d4 so

d3 = d2 +
d4 − d2
t4 − t2

(t3 − t2).

This is inserted into the equation for bond C given by

pC = 0.0325 · 106(d1 + d2 + d3) + 1.0325 · 106d4.

Solving for d4 gives d4 = 0.9361, r4 = 0.18, and then d3 = 0.9565 and r3 = 0.0167.

Problem 3

Because the interest rate is known the futures price F0 equals the forward price G0.
Indeed, using the “futures strategy” a zero initial capital can generate the payment
er1+···+rT (ST−F0) at time T . Similarly, a long position in er1+···+rT forward contracts
generate er1+···+rT (ST −G0). Therefore we must have G0 = F0.
The price of the call option is then given as C0(F0) using Black’s formula, with G0

replaced by F0. The delta hedge of a call option is then to take a long position
of size ∆ = ∂

∂F0
C0(F0) in the futures contract. The ∆ is computed as (where

B0 = e−(r1+···+rT ))

∆C =
∂

∂F0

C0(F0)

= B0Φ(d1) +B0(F0
∂

∂F0
Φ(d1)−K

∂

∂F0
Φ(d2)).

The second term vanishes because ∂
∂F0

d1 = ∂
∂F0

d2 and d22 = d21 − 2 log(F0/K) leads
to

F0
∂

∂F0

Φ(d1)−K
∂

∂F0

Φ(d2) = (F0ϕ(d1)−Kϕ(d2))
∂

∂F0

d1

= (F0 −Kelog(F0/K))
1

√
2π

e−d2
1
/2 ∂

∂F0

d1 = 0.

Here ϕ denotes the standard normal density. Thus, the delta hedge of a call option
is given by ∆C = B0Φ(d1).
By the put-call-parity

C0 − P0 = B0(F0 −K),

which implies that the delta hedge of a put option is

∆P =
∂

∂F0

P0(F0) = ∆C − B0 = B0(Φ(d1)− 1).
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Since there is no cost in entering the futures contract there premium from the
option P0 is put in to the bank account. As time passes the position in the futures
contracts are updated accordingly and the resettlement payments are put into the
bank account.

Problem 4

As the given set of digital options have overlapping ranges the “horse race” setting
does not apply directly. However, an alternative set of digital options with disjoint
ranges can be constructed from the given digitals. The construction is summarized
in Table 1. For example, an option with range 1.2 − 1.5 is constructed by a long
position in option E and a short position in option D. The price of this option is
49.26 − 34.05 = 15.21. The corresponding forward price for a contract paying 1 if
the underlying falls in the indicated range is q5 = 15.21/(0.9975 · 100) = 0.1525.
The subjective probability is Φ((0.015−0.01)/0.0025)−Φ((0.012−0.01)/0.0025) =
Φ(2) − Φ(0.8) = 0.1891. The other options are constructed similarly. With the

New option label Range Construction Price qk pk
1 (−∞, 0.5] A-B+C-D 0.62 0.0062 0.0228
2 (0.5, 0.7] B-C+D 6.02 0.0604 0.0923
3 (0.7, 1.0] C-D 43.23 0.4333 0.3849
4 (1.0, 1.2] D 34.05 0.3414 0.2881
5 (1.2, 1.5] E-D 15.21 0.1525 0.1891
6 (1.5,∞) F-E+D 0.62 0.0062 0.0228

Table 1: New digital options.

options in Table 1 the investment problem is a standard “horse race” problem,
which amounts to

maximize E[u(
∑n

k=1
wk

qk
Xk)]

subject to w1 + · · ·+ wn ≤ V0/B0.

The solution, when τ = 0, is to invest the amount wk in the kth digital, where

wk = V0
qk(pk/qk)

γ

∑n
j=1 qj(pj/qj)

γ
.

With the data given in Table 1 the solution is:

w1 = 33.15, w2 = 9.820, w3 = 8.015, w4 = 5.150, w5 = 10.72, w6 = 33.15.

The corresponding number of each “new” digital in the portfolio is hk = wk/qk
Translated to the original options the optimal investment is to buy the following
number of original options:

hA = h1, hB = h2 − h1, hC = h3 − h2 + h1,

hD = −h1 + h2 − h3 + h4 − h5 + h6, hE = h5 − h6, hF = h6.

The corresponding amounts invested in the original options are

wA = 355, wB = −2553, wC = 4020, wD = 30.38, wE = −2599, wF = 846.4.
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Problem 5

The price in three months of the bonds can be written as

PA
3 = 1.0425 · 106e−r3,8(5/12) = I.0425 · 106B5R5,

PB
3 = 0.04 · 106e−r3,8(5/12) + 1.04 · 106e−r3,20(17/20) = 0.04 · 106B5R5 + 1.04 · 106B17R17.

Therefore, the corresponding three-month returns can be written as

RA =
PA
3

PA
0

=
1.0425 · 106B5

PA
0

R5

RB =
PB
3

PB
0

=
0.04 · 106B5

PB
0

R5 +
1.04 · 106B17

PB
0

R17.

In vector form this relation is written

(

RA

RB

)

= M

(

R5

R17

)

,where M =

(

1.0425·106B5

PA
0

0
0.04·106B5

PB
0

1.04·106B17

PB
0

)

.

Therefore the covariance matrix of (RA, RB)T is equal to

ΣAB = MΣMT .

The objective can be written as

minimize
1

2
wTΣABw,

subject to wT1 ≤ −V0.

where w = (wA, wB)
T and V0 = 1.75 · 109. The solution is found by solving the two

equations:

ΣABw + λ1 = 0,

1Tw ≤ −V0,

which yields

w = −
Σ−1

AB1

1TΣ−1
AB1

.

Numerically we compute (rounded to two decimals)

ΣAB = 10−5

(

2.60 2.57
2.57 3.08

)

, Σ−1
AB = 105

(

2.18 −1.82
−1.82 1.85

)

, w = −109
(

1.64
0.11

)

.


