SF2943 TIME SERIES ANALYSIS: A FEW COMMENTS ON
SPECTRAL DENSITIES

FILIP LINDSKOG

The aim of this brief note is to get some basic understanding of spectral densities by
computing, plotting and interpreting the spectral densities of the time series

(1) X; = 08X;1 + Z+ 097, 1,
2) X, = —0.8Xs_1 — 0.9X; 0 + Zs,
(3) Xy = —0.8X; 1+ %,

(4) X, = 0.8X,1 + Z,

where {Z;} is an iid sequence of standard normal random variables. The processes are
examples of causal linear time series, the roots of the autoregressive polynomials are all
located outside the unit circle in the complex plane.

In order to get some very preliminary feeling for the four systems above, we study how
the linear systems transforms the input (z1,29,23,...) = (1,0,0,...) into output values
(x1,x2,23,...). The result (with linear interpolation) is shown in Figure 1. The AR(1)
process (3) shows a periodic behavior, although a rather trivial one (plus, minus, plus,
minus, etc.). The AR(2) process (2) shows a more interesting periodic behavior, with cycle
lengths of approximately 3 time steps.

The spectral densities

e}

1 —ihA
= — h
o e "y(h),

h=—oc0

f)

for A € [0, 7], are shown in Figure 2. The AR(1) process (3) has a spectral density with a
maximum at A = 7. This is consistent with the cycle length of 27 /7 = 2 shown in Figure 1.
The AR(2) process (2) has a spectral density with a maximum at A ~ 2. This is consistent
with the cycle length of 271/2 = 7 ~ 3 shown in Figure 1. The processes (1) and (4) have
spectral densities with maxima at A = 0. They show no periodic behavior (or cycles of
infinite length). Since

M) = [ e

we notice that v(0) = ffﬂ f(A)dA. In particular, the comparison of the spectral densities

might be visualized more clearly by dividing the spectral densities by the stationary vari-

ance 7(0) of the respective processes. The relevant expressions for v(0) on pages 89 and
1
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91 in the course text book can be used. Alternatively, we may simulate the processes and
estimate the stationary variances by their sample analogues.

Finally, we check that the periodograms based on simulated data from the four time
series models produce estimates of the spectral densities that are sufficiently accurate to
draw the same conclusions as if we knew the spectral densities. The result is shown in
Figure 4.
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R-CcODE

ar2specdens<-function(l,s,phil,phi?2)

{

s72/ (2*%pi* (1+phil~2+phi2~2+2*phi2+2* (phil*phi2-phil)*cos (1) -4*phi2*cos(1l)~2))
}

armallspecdens<-function(l,s,phi,theta)

{
s”2*%(1+theta”2+2*xtheta*cos (1)) / (2xpi* (1+phi~2-2*phi*cos(1)))
}

xvals<-(0:100)*pi/100
plot(xvals,armallspecdens(xvals,1,0.8,0.9),type="1",x1lab="",ylab="",
ylim=c (0,max (ar2specdens(xvals,1,-0.8,-0.9))))
lines(xvals,ar2specdens(xvals,1,-0.8,-0.9))
lines(xvals,ar2specdens(xvals,1,-0.8,0))
lines(xvals,ar2specdens(xvals,1,0.8,0))

ar2roots<-polyroot(c(1,0.8,0.9))

(ar2roots[1]*ar2roots[2]) "2/ ((ar2roots[1]*ar2roots[2]-1) *(ar2roots[2] —ar2roots[1]))*
(ar2roots[1]/(ar2roots[1] “2-1)-ar2roots[2]/(ar2roots[2] “2-1))

g01<-(1+1.772/(1-0.8°2))
g02<-(ar2roots[1]*ar2roots[2]) "2/ ((ar2roots[1]*ar2roots[2]-1)*(ar2roots[2] -ar2roots[1]))*
(ar2roots[1]/(ar2roots[1] "2-1)-ar2roots[2]/(ar2roots[2] "2-1))

g03<-1/(1-0.872)

g04<-1/(1-0.872)

plot(xvals,armallspecdens(xvals,1,0.8,0.9)/g01,type="1",xlab="",ylab="",
ylim=c(0,max (ar2specdens(xvals,1,-0.8,-0.9)/Re(g02))))
lines(xvals,ar2specdens(xvals,1,-0.8,-0.9)/Re(g02))
lines(xvals,ar2specdens(xvals,1,-0.8,0)/g03)
lines(xvals,ar2specdens(xvals,1,0.8,0)/g04)

z<-1

tmpmat<-matrix(0,4,20)
tmpmat [1,1]<-z
tmpmat [2,1]<-z
tmpmat [3,1]<-z
tmpmat [4,1]<-z
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tmpmat [1,2]<-0.8*tmpmat [1,1]+0.9%z
tmpmat [2,2]<--0.8*tmpmat [2,1]
tmpmat [3,2]<--0.8*tmpmat [3,1]
tmpmat [4,2]<-0.8*tmpmat [4,1]

for(i in (3:20))

{

tmpmat [1,1]<-0.8*tmpmat [1,i-1]

tmpmat [2,1]<--0.8*tmpmat [2,i-1]-0.9*tmpmat [2,1-2]
tmpmat [3,1]<--0.8*tmpmat [3,i-1]

tmpmat [4,1i]1<-0.8*tmpmat [4,1i-1]

}

plot (tmpmat([1,],type="1",ylim=c(-1,1.8) ,xlab="",ylab="")
lines(tmpmat[2,])
lines(tmpmat[3,])
lines(tmpmat[4,])

armal.sim<-arima.sim(model=1list (ar=c(-0.8,-0.9)),n=200)
arma2.sim<-arima.sim(model=1list (ar=c(-0.8)),n=200)
arma3.sim<-arima.sim(model=1ist (ar=c(0.8)),n=200)
arma4.sim<-arima.sim(model=1list (ar=c(0.8) ,ma=c(0.9)),n=200)

spectrum(armal.sim)

lines(xvals/(2xpi) ,ar2specdens(xvals,1,-0.8,-0.9))
spectrum(arma2.sim)

lines(xvals/(2xpi) ,ar2specdens(xvals,1,-0.8,0))
spectrum(arma3.sim)

lines(xvals/(2xpi) ,ar2specdens(xvals,1,0.8,0))
spectrum(arma4.sim)

lines(xvals/(2#*pi) ,armallspecdens(xvals,1,0.8,0.9))
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FiGURE 1. Illustration of how the systems transform input to output
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FIGURE 2. Spectral densities



FI1GURE 3. Spectral densities normalized by dividing by the stationary vari-
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FIGURE 4. Periodograms based on samples of size 200 and the correspond-
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